Responsive image
博碩士論文 etd-0213106-170246 詳細資訊
Title page for etd-0213106-170246
論文名稱
Title
飼料中植酸含量及添加去植酸植物蛋白對海鱺幼魚成長與磷、鋅、鐵利用率的影響
Effects of dietary phytic acid contents and dephytinized plant protein supplementation on growth and utilization of phosphorus, zinc and iron in juvenile cobia Rachycentron canadum
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
95
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-01-19
繳交日期
Date of Submission
2006-02-13
關鍵字
Keywords
海鱺、植酸、植酸酶、礦物質
mineral, cobia, phytic acid, phytase
統計
Statistics
本論文已被瀏覽 5657 次,被下載 37
The thesis/dissertation has been browsed 5657 times, has been downloaded 37 times.
中文摘要
本研究進行兩次飼育實驗,分別探討飼料中植酸含量及植物原料去除植酸對海鱺幼魚成長及磷、鋅、鐵利用率之影響。實驗ㄧ中,以魚粉及小麥麵筋為蛋白源配製之基礎飼料,分別添加0、5、10、15、20 g/kg diet 的植酸。初重20克的海鱺幼魚經八週之飼育,植酸的添加量對增重率、飼料轉換率、蛋白質效率、凈蛋白質利用率及魚體粗成份皆無顯著影響,但顯著影響魚體、脊椎骨、血清、糞便的鋅含量,植酸添加2%組的魚體鋅含量比0%控制組減少10.2%,脊椎骨與血清的鋅含量隨著植酸添加量增加而降低,植酸添加2%組的脊椎骨鋅含量比0%控制組減少22.3%,糞便的鋅含量與植酸添加量成正比。實驗二中,實驗飼料均為等蛋白質、等油脂及等能量,共九種,包括含421g/kg魚粉之控制組、以大豆粉取代魚粉蛋白40或50%,及以菜籽粕取代魚粉蛋白30或40%三類。為了解植物蛋白去除植酸的影響,另以大豆粉及菜籽粕經植酸酶處理除去90.9~94.6%所含的植酸,取代比例和未去除植酸者相同。初重94克的海鱺幼魚經八週之飼育,各取代組的成長、飼料轉換效率、蛋白質效率與凈蛋白質利用率皆劣於控制組。與菜籽粕相比,餵食含大豆粉飼料的海鱺,有較佳的增重率、飼料轉換率及淨蛋白質利用率。海鱺餵食植酸酶預處理之植物蛋白,魚體和脊椎骨的灰份、磷、鋅及鐵含量和餵食未處理之植物蛋白的組別並無顯著差異。因此,飼料的植酸會降鋅的生物可利用率,海鱺的成長表現及飼料品質顯示大豆粉比菜籽粕更適合作為魚粉的替代蛋白源,植酸的去除對提升海鱺幼魚的磷、鋅與鐵利用率並無幫助。
Abstract
Two feeding trials were conducted to evaluate the effects of dietary phytic acid contents and removal of phytate from plant protein sources on growth and utilization of phosphorus, zinc and iron in juvenile cobia. In experimental I, test diets were formulated by adding phytic acid, 0, 5, 10, 15 and 20 g/kg diet to the basal diet that used fish meal and wheat gluten as the protein source. Juvenile cobia with an initial weight of 20g were fed the test diets for 8 weeks. No significant difference among fish groups was found in percent weight gain, feed conversion ratio, protein efficiency, net protein utilization and body composition. Dietary phytic acid level significantly affected zinc concentrations in body, vertebra, serum and feces. Body zinc concentration in fish fed diet containing 2% phytic acid was 10.2% lower than the control group. Vertebra and serum zinc concentrations decreased with increasing dietary phytic acid levels, vertebra zinc concentration in fish fed diet containing 2% phytic acid was 22.3% lower than the control group. The dietary phytic acid concentration was positively related to the fecal zinc concentration. In experimental II, nine isonitrogenous, isolipid and isocaloric diets were formulated including control diet that contained 421g/kg fish meal, and four test diets with fish meal protein in control diet being replaced by 40 or 50% with soybean meal or by 30% or 40% with canola meal respectively. Another four test diets used dephytinized soybean or canola meal after phytase treatments removed 90.9~94.6% of phytate. Juvenile cobia with an initial weight of 94g were fed the test diets for 8 weeks. Growth, feed conversion ratio, protein efficiency and net protein utilization of fish fed diets containing plant proteins were poorer than control group. Better weight gain, feed conversion ratio and net protein utilization were observed in those groups fed diets contained soybean meal rather than canola meal. Ash, phosphorus, zinc and iron contents of whole body and vertebra in cobia fed phytase-pretreated plant protein were not significantly different from groups of fish fed raw plant protein. In conclusion, dietary phytic acid reduced the zinc bioavailability. Performance of cobia as well as diet quality indicated that soybean meal as the better alternative protein source for fish meal than canola meal. Dephytinization had no positive effect on utilization of phosphorus, zinc and iron in juvenile cobia.
目次 Table of Contents
中文摘要…………………………………………………………………………………………I
英文摘要…………………………………………………………………………………………II
目錄………………………………………………………………………………………………IV
表目錄……………………………………………………………………………………………V
圖目錄…………………………………………………………………………………………VII
第一章 文獻回顧………………………………………………………………………………1
第二章 實驗一、飼料中添加植酸對海鱺幼魚成長的影響…………………………………14
2.1 前言……………………………………………………………………………………15
2.2 材料與方法……………………………………………………………………………17
2.3 結果……………………………………………………………………………………31
2.4 討論……………………………………………………………………………………44
第三章 實驗二、飼料中添加去植酸植物蛋白對海鱺幼魚成長的影響 ……………………48
3.1 前言……………………………………………………………………………………49
3.2 材料與方法……………………………………………………………………………51
3.3 結果……………………………………………………………………………………58
3.4 討論……………………………………………………………………………………71
第四章 結論……………………………………………………………………………………74
參考文獻…………………………………………………………………………………………75
表一、飼料原料中植酸及植酸磷之含量………………………………………………………..3
表二、六類含鋅酵素……………………………………………………………………………..9
表三、實驗ㄧ之飼料配方………………………………………………………………………19
表四、實驗飼料中魚粉、小麥蛋白、大豆粉、菜籽粕、去植酸大豆粉及去植酸菜
籽粕之一般成份組成……………………………………………………………………20
表五、實驗飼料中魚粉、大豆粉、菜籽粕、去植酸大豆粉及去植酸菜籽粕之磷、鋅及鐵的濃度………………………………………………………………………………………21
表六、實驗ㄧ飼料的一般成分組成……………………………………………………………22
表七、實驗ㄧ飼料的磷、鋅、鐵的濃度………………………………………………………23
表八、海鱺餵食不同植酸添加量的飼料八週之增重率、飼料轉換率、蛋白質效率
、淨蛋白質利用率和存活率……………………………………………………………34
表九、海鱺餵食不同植酸添加量的飼料八週之肥滿度及肝體比……………………………35
表十、海鱺餵食不同植酸添加量的飼料八週之全魚魚體組成………………………………36
表十一、海鱺餵食不同植酸添加量的飼料八週之全魚魚體的磷、鋅和鐵含量……………37
表十二、海鱺餵食不同植酸添加量的飼料八週之脊椎骨的灰份、磷、鋅和鐵含量………38
表十三、海鱺餵食不同植酸添加量的飼料八週之肝臟的磷、鋅和鐵含量…………………39
表十四、海鱺餵食不同植酸添加量的飼料八週之血清的磷、鋅和鐵含量…………………40
表十五、海鱺餵食不同植酸添加量的飼料八週的血清天門冬胺酸轉胺酵素活性、
丙胺酸轉胺酵素活性、總蛋白質、三酸甘油脂和膽固醇含量……………………41
表十六、海鱺餵食不同植酸添加量的飼料八週的表面乾物消化率及鋅的消化率…………42
表十七、海鱺餵食不同植酸添加量的飼料八週之糞便的磷、鋅和鐵含量…………………43
表十八、實驗二之飼料配方……………………………………………………………………54
表十九、實驗二飼料的一般成分組成…………………………………………………………55
表二十、實驗二飼料的磷、鋅、鐵的濃度……………………………………………………56
表二十一、海鱺餵食實驗二飼料八週之增重率、飼料轉換率、蛋白質效率、淨蛋
白質利用率和存活率………………………………………………………………61
表二十二、海鱺餵食實驗二飼料八週之肥滿度及肝體比……………………………………62
表二十三、海鱺餵食實驗二飼料八週之增重率、飼料轉換率、蛋白質效率和淨蛋
白質利用率的2×2×2三向變方分析之結果………………………………………63
表二十四、海鱺餵食實驗二飼料八週之肥滿度及肝體比的2×2×2三向變方分析結果……64
表二十五、海鱺餵食實驗二飼料八週之全魚魚體組成 ………………………………………65
表二十六、海鱺餵食實驗二飼料八週之全魚魚體組成的2×2×2三向變方分析結果………66
表二十七、海鱺餵食實驗二飼料八週之全魚魚體的磷、鋅和鐵含量 ………………………67
表二十八、海鱺餵食實驗二飼料八週之脊椎骨的灰份、磷、鋅和鐵含量 …………………68
表二十九、海鱺餵食實驗二飼料八週之全魚魚體的磷、鋅和鐵含量的2×2×2三向
變方分析結果 ……………………………………………………………………....69
表三十、海鱺餵食實驗二飼料八週之脊椎骨的磷、鋅和鐵含量的2×2×2三向變方
分析結果………………………………………………………………………………70
圖一、pH與金屬離子對植酸型態的影響及植酸分子結構……………………………………2
圖二、植酸酶作用示意圖………………………………………………………………………..6
圖三、海鱺餵食不同植酸添加量的飼料八週之成長曲線……………………………………33
圖四、植酸酶作用不同時間後大豆粉及菜籽粕所含的植酸量………………………………53
圖五、鱺餵食實驗二飼料之成長曲線…………………………………………………………60
參考文獻 References
李愛杰,1996。水產動物營養與飼料學。水產出版社。
胡俐綺,2000。馬拉巴石斑稚魚之最適鋅需求。國立中山大學海洋生物研究所碩
士論文。
荻野珍吉,1988。魚類的飼料與營養。五洲出版社。
Aamodt, R. L., W. F. Rumble, and R. I. Henkin. 1983. Zinc absorption in humans: effects of age, sex, and food. Pages 61-82 in G. E. Inglett, editor. Nutritional Bioavailability of Zinc. American Chemical Society, Washington, D. C., USA.
AOAC (Association of Official Analytic Chemists), 1984. W. Horwitz, editor. Official Methods of Analysis. 13th edition. Washington, D. C., USA.
Aoe, H., I. Masuda, I. Abe, T. Saito, T. Toyoda, and S. Kitamura. 1970. Nutrition of protein in young carp-I. Nutritive valve of free amino acids. Bulletin of the Japanese Society of Scientific Fisheries 36:407-413.
Arai, S. 1981. A purified test diet for coho salmon (Oncorhynchus kisutch). Bulletin of the Japanese Society of Scientific Fisheries 47:547-550.
Auld, D. S. 2001. Zinc coordination sphere in biochemical zinc sites. BioMetals 14:271-313.
Beard, J. L. 2001. Iron biology in immune function, muscle metabolism and neuronal functioning. The Journal of Nutrition 131:568S-580S.
Bitar, K., and J. G. Reinhold. 1972. Phytase and alkaline phosphatase activities in intestinal mucosae of rat, chicken, calf, and man. Biochimica et Biophysica Acta 268:442-452.
Boonyaratpalin, M., P. Suraneiranat, and T. Tunpibal. 1998. Replacement of fish meal with various types of soybean products in diets for the Asian seabass, Lates calcarifer. Aquaculture 161:67-78.
Brenes, A., A. Viveros, I. Arija, C. Centeno, M. Pizarro, and C. Bravo. 2003. The effect of citric acid and microbial phytase on mineral utilization in broiler chicks. Animal Feed Science and Technology 110:201-219.
Carlson, D., and H. D. Poulsen. 2003. Phytate degradation in soaked and fermented liquid feed—effect of diet, time of soaking, heat treatment, phytase activity, pH and temperature. Animal Feed Science and Technology 103:141-154.
Cheng, Z. J., and R. W. Hardy. 2002. Effect of microbial phytase on apparent nutrient digestibility of barley, canola meal, wheat and wheat middlings, measured in vivo using rainbow trout (Oncorhynchus mykiss). Aquaculture Nutrition 8:271-277.
Cheng, Z. J., and R. W. Hardy. 2003. Effects of extrusion and expelling processing, and microbial phytase supplementation on apparent digestibility coefficients of nutrients in full-fat soybeans for rainbow trout (Oncorhynchus mykiss). Aquaculture 218:501-514.
Chou, R. L., B. Y. Her, M. S. Su, G. Hwang, Y. H. Wu, and H. Y. Chen. 2004. Substituting fish meal with soybean meal in diets of juvenile cobia Rachycentron canadum. Aquaculture 229:325-333.
Cousins, R. J., and J. M. Hempe. 1990. Zinc. Pages 251-260 in M. L. Brown, editor. Present Knowledge in Nutrition. International Life Sciences Institute Nutrition Foundation, Washington, D. C., USA.
De Silva, S. S., and T. A. Anderson. 1995. Fish Nutrition in Aquaculture. Chapman and Hall, London, England.
Egounlety, M., and O. C. Aworh. 2003. Effect of soaking, dehulling, cooking and fermentation with Rhizopus oligosporus on the oligosaccharides, trypsin inhibitor, phytic acid and tannins of soybean (Glycine max Merr.), cowpea (Vigna unguiculata L. Walp) and groundbean (Macrotyloma geocarpa Harms). Journal of Food Engineering 56:249-254.
Elangovan, A., and K. F. Shim. 2000. The influence of replacing fish meal partially in the diet with soybean meal on growth and body composition of juvenile tin foil barb (Barbodes altus). Aquaculture 189:133-144.
Engelen, A. J., F. C. van der Heeft, P. H. G. Randsdorp, and Ed L. C. Smtt. 1994. Simple and rapid determination of phytase activity. Journal of AOAC International. 77:760-764.
Erdman, J. W. 1979. Oilseed phytates: nutritional implications. Journal of the American Oil Chemists’ Society 56:736-741.
Eya, J. C., and R. T. Lovell. 1997. Net absorption of dietary phosphorus from various inorganic sources and effect of fungal phytase on net absorption of plant phosphorus by channel catfish Ictalurus punctatus. Journal of the World Aquaculture Society 28:386-391.
FAO (Food and Agriculture Organization of the United Nations). 2004. The State of World Fisheries and Aquaculture. FAO, Rome.
Fordyce, E. J., R. M. Forbes, K. R. Robbins, and J. W. Erdman JR. 1987. Phytate ×calcium/zinc molar ratios: are they predictive of zinc bioavailability? Journal of Food Science 52:440-444.
Forster, I., D. A. Higgs, B. S. Dosanjh, M. Powshandeli, and J. Parr. 1999. Potential for dietary phytase to improve the nutritive value of canola protein concentrate and decrease phosphorus output in rainbow trout (Oncorhynchus mykiss) held in 11℃ fresh water. Aquaculture 179:109-125.
Francis, G., H. P. S. Makkar, and K. Becker. 2001. Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture 199:197-227.
Furukawa, A., and H. Tsukahara. 1966. On the acid digestion method for the determination of chromic oxide as an index substance in the study of digestibility of fish feed. Bulletin of the Japanese Society of Scientific Fisheries 32:502-506.
Gatlin III, D. M., and R. P. Phillips. 1986. Characterization of iron deficiency and the dietary iron requirement of fingerling channel catfish. Aquaculture 52:191-198.
Gatlin III, D. M., and H. F. Phillips. 1989. Dietary calcium, phytate and zinc interactions in channel catfish. Aquaculture 79:259-266.
Graf, E. 1983. Applications of phytic acid. Journal of the American Oil Chemists’ Society 60:1861-1867.
Hartman, G. H. 1979. Removal of phytate from soy protein. Journal of the American Oil Chemists’ Society 56:731-735.
Higgs, D. A., H. U. M. Fagerlund, J. R. McBride, M. D. Plotnikoff, B. S. Dosanjh, J. R. Markert, and J. Davidson. 1983. Protein quality of Altex canola meal for juvenile chinook salmon (Oncorhynchus tshawytscha) considering dietary protein and 3,5,3’-triiodo-L-thyronine content. Aquaculture 34:213-238.
Hirao, S., J. Yamada, and R. Kikuchi. 1955. Relation between chemical constituents of rainbow trout eggs and the hatching rate. Nippon Suisan Gakkaishi 21:240-243.
Ho, E., C. Courtemanche, and B. N. Ames. 2003. Zinc deficiency induces oxidative DNA damage and increases P53 expression in human lung fibroblasts. The Journal of Nutrition 133:2543-2548.
Ibs, K.-H., and L. Rink. 2003. Zinc-altered immune function. The Journal of Nutrition 133:1452S-1456S.
Jackson, L. S., M. H. Li, and E. H. Robinson. 1996. Use of microbial phytase in channel catfish Ictalurus punctatus diets to improve utilization of phytate phosphorus. Journal of the World Aquaculture Society 27:309-313.
Johnson, L. F., and M. E. Tate. 1969. Structure of “phytic acid”. Canadian Journal of Chemistry 47:63-73.
Jongbloed, A. W., Z. Mroz, R. van der Weij-Jongbloed, and P. A. Kemme. 2000. The effects of microbial phytase, organic acids and their interaction in diets for growing pigs. Livestock Production Science 67:113-122.
Katayama, T. 1997. Effects of dietary myo-inositol or phytic acid on hepatic concentrations of lipids and hepatic activities of lipogenic enzymes in rats fed on corn starch or sucrose. Nutrition Research 17:722-728.
Kaushik, S. T., J. P. Cravedi, J. P. Lalles, J. Sumpter, B. Fauconneau, and M. Laroche. 1995. Partial or total replacement of fish meal by soybean protein on growth, protein utilization, potential estrogenic or antigenic effects, cholesterolemia and flesh quality in rainbow trout (Oncorhynchus mykiss). Aquaculture 133:257-274.
Knuckles, B. E. 1988. Effect of phytate and other myo-inositol phosphate esters on lipase activity. Journal of Food Science 53:250-252.
Lei, X. G., and C. H. Stahl. 2001. Biotechnological development of effective phytases for mineral nutrition and environmental protection. Applied Microbiology and Biotechnology 57:474-481.
Leslie, A. J., and J. D. Summers. 1975. Amino acid balance of rapeseed meal. Poultry Science 54:532-538.
Lim, C., P. H. Klesius, M. H. Li, and E. H. Robinson. 2000. Interaction between dietary levels of iron and vitamin C on growth, hematology, immune response and resistance of channel catfish (Ictalurus punctatus) to Edwardsiella ictaluri challenge. Aquaculture 185:313-327.
Liu, B. L., A. Rafiq, Y. M. Tzeng, and A. Rob. 1998. The induction and characterization of phytase and beyond. Enzyme and Microbial Technology 22:415-424.
Lolas, G. M., N. Palamidis, and P. Markakis. 1976. The phytic acid-total phosphorus relationship in barley, oats, soybeans, and wheat. Cereal Chemistry 53:867-871.
Lonnerdal, B. 2000. Dietary factors influencing zinc absorption. The Journal of Nutrition 130:1378S-1383S.
Maage, A., and K. Julshamn. 1993. Assessment of zinc status in juvenile Atlantic salmon (Salmo salar) by measurement of whole body and tissue levels of zinc. Aquaculture 117:179-191.
MacDonald, R. S. 2000. The role of zinc in growth and cell proliferation. The Journal of Nutrition 130:1500S-1508S.
Manary, M. J., C. Hotz, N. F. Krebs, R. S. Gibson, J. E. Westcott, T. Arnold, R. L. Broadhead, and K. M. Hambidge. 2000. Dietary phytate reduction improves zinc absorption in Malawian children recovering from tuberculosis but not in well children. The Journal of Nutrition 130:2959-2964.
Martinez, M. M., G. M. Hill, J. E. Link, N. E. Raney, R. J. Tempelman, and C. W. Ernst. 2004. Pharmacological zinc and phytase supplementation enhance metallothionein mRNA abundance and protein concentration in newly weaned pigs. The Journal of Nutrition 134:538-544.
Mazid, M. A., Y. Tanaka, T. Yatayama, K. L. Simpson, and C. O. Chichester. 1978. Metabolism of amino acids in aquatic animals-III. Indispensable amino acids for Tilapia zillii. Bulletin of the Japanese Society of Scientific Fisheries 44:739-742.
McCall, K. A., C. Huang, and C. A. Fierke. 2000. Function and Mechanism of Zinc Metalloenzymes. The Journal of Nutrition 130:1437S-1446S.
Medeiros, D. M., A. Plattner, D. Jennings, and B. Stoecker. 2002. Bone morphology, strength and density are compromised in iron-deficient rats and exacerbated by calcium restriction. The Journal of Nutrition 132:3135-3141.
Miyazawa, E., A. Iwabuchi, and T. Yoshida. 1996. Phytate breakdown and apparent absorption of phosphorus, calcium and magnesium in germfree and conventionalized rats. Nutrition Research 16:603-613.
Mohanna, C., and Y. Nys. 1999. Changes in zinc and manganese availability in broiler chicks induced by vegetal and microbial phytases. Animal Feed Science and Technology 77:241-253.
Morris, E. R., and R. Ellis. 1980. Effect of dietary phytate/zinc molar ratio on growth and bone zinc response of rats fed semipurified diets. The Journal of Nutrition 110:1037-1045.
Nelson, T. S., L. W. Ferrara, and N. L. Storer. 1968. Phytate phosphorus content of feed ingredients derived from plants. Poultry Science:1372-1374.
Newkirk, R. W., and H. L. Classen. 1998. In vitro hydrolysis of phytate in canola meal with purified and crude sources of phytase. Animal Feed Science and Technology 72:315-327.
O’Dell, B. L. 2000. Role of zinc in plasma membrane function. The Journal of Nutrition 130:1432S-1436S.
Ogino, C., and G.-Y. Yang. 1978. Requirement of rainbow trout for dietary zinc. Nippon Suisan Gakkaishi 44:1015-1018.
Ogino, C., and G.-Y. Yang. 1979. Requirement of carp for dietary zinc. Nippon Suisan Gakkaishi 45:967-969.
Oh, B. C., W. C. Choi, S. Park, Y.-o. Kim, and T. K. Oh. 2004. Biochemical properties and substrate specificities of alkaline and histidine acid phytases. Applied Microbiology and Biotechnology 63:362-372.
Okazaki, Y., T. Kayashima, and T. Katayama. 2003. Effect of dietary phytic acid on hepatic activities of lipogenic and drug-metabolizing enzymes in rats fed 1,1,1-trichloro-2,2-bis (P-chlorophenyl) ethane (DDT). Nutrition Research 23:1089-1096.
Pandey, A., G. Szakacs, C. R. Soccol, J. A. Rodriguez-Leon, and V. T. Soccol. 2001. Production, purification and properties of microbial phytases. Bioresource Technology 77:203-214.
Papatryphon, E., R. A. Howell, and J. H. Soares, JR. 1999. Growth and mineral absorption by striped bass Morone saxatilis fed a plant feedstuff based diet supplemented with phytase. Journal of the World Aquaculture Society 30:161-173.
Paripatananont, T., and R. T. Lovell. 1995a. Chelated zinc reduces the dietary zinc requirement of channel catfish, Ictalurus punctatus. Aquaculture 133:73-82.
Paripatananont, T., and R. T. Lovell. 1995b. Responses of channel catfish fed organic and inorganic sources of zinc to Edwardsiella ictaluri challenge. Journal of Aquatic Animal Health 7:147-154.
Paripatananont, T., and R. T. Lovell. 1997. Comparative net absorption of chelated and inorganic trace minerals in channel catfish Ictalurus punctatus diets. Journal of the World Aquaculture Society 28:62-67.
Periago, M. J., G. Ros, M. C. Martinez, F. Rincon, G. Lopez, J. Ortuno, and F. Ros. 1996. In vitro estimation of protein and mineral availability in green peas as affected by antinutritive factors and maturity. Lebensmittel-Wissenschaft Technologie 29:481-488.
Pinero, D. J., B. C. Jones, and J. L. Beard. 2001. Variations in dietary iron alter behavior in developing rats. The Journal of Nutrition 131:311-318.
Plaami, S. 1997. Myoinositol phosphates: analysis, content in foods and effects in nutrition. Lebensmittel-Wissenschaft Technologie 30:633-647.
Porn-Ngam, N., S. Satoh, T. Takeuchi, T. Watanabe. 1993. Effect of the ratio of phosphorus to calcium on zinc availability to rainbow trout in high phosphorus diet. Nippon Suisan Gakkaishi 59:2065-2070.
Powell, S. R. 2000. The antioxidant properties of zinc. The Journal of Nutrition 130:1447S-1454S.
Raboy, V. 2002. Progress in breeding low phytate crops. The Journal of Nutrition 132:503S-505S.
Refstie, S., O. J. Korsoen, T. Storebakken, G. Baeverfjord, I. Lein, and A. J. Roem. 2000. Differing nutritional responses to dietary soybean meal in rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar). Aquaculture 190:49-63.
Reiterer, G., R. MacDonald, J. D. Browning, J. Morrow, S. V. Matveev, A. Daugherty, E. Smart, M. Toborek, and B. Hennig. 2005. Zinc deficiency increases plasma lipids and atherosclerotic markers in LDL-receptor-deficient mice. The Journal of Nutrition 135:2114-2118.
Richardson, N. L., D. A. Higgs, R. M. Beames, and J. R. McBride. 1985. Influence of dietary calcium, phosphorus, zinc and sodium phytate level on cataract incidence, growth and histopathology in juvenile chinook salmon (Oncorhynchus tshawytscha). The Journal of Nutrition 115:553-567.
Rimbach, G., A. Walter, E. Most, and J. Pallauf. 1998. Effect of microbial phytase on zinc bioavailability and cadmium and lead accumulation in growing rats. Food and Chemical Toxicology 36:7-12.
Roberts, H., and J. Yudkin. 1960. Dietary phytate as a possible cause of magnesium deficiency. Nature 185:823-825.
Rodehutscord, M., and E. Pfeffer. 1995. Effects of supplemental microbial phytase on phosphorus digestibility and utilization in rainbow trout (Oncorhynchus mykiss). Water Science and Technology 31:143-147.
Rossi, L., S. Migliaccio, A. Corsi, M. Marzia, P. Bianco, A. Teti, L. Gambelli, S. Cianfarani, F. Paoletti, and F. Branca. 2001. Reduced growth and skeletal changes in zinc-deficient growing rats are due to impaired growth plate activity and inanition. The Journal of Nutrition 131:1142-1146.
Sajjadi, M., and C. G. Carter. 2004. Effect of phytic acid and phytase on feed intake, growth, digestibility and trypsin activity in Atlantic salmon (Salmo salar, L.). Aquaculture Nutrition 10:135-142.
Sakamoto, S., and Y. Yone. 1978a. Requirement of red sea bream for dietary iron-II. Nippon Suisan Gakkaishi 44:223-225.
Sakamoto, S., and Y. Yone. 1978b. Effect of dietary phosphorus level on chemical composition of red sea bream. Nippon Suisan Gakkaishi 44:227-229.
Sakamoto, S., and Y. Yone. 1978c. Iron deficiency symptoms of carp. Nippon Suisan Gakkaishi 44:1157-1160.
Satoh, S., H. Yamamoto, T. Takeuchi, and T. Watanabe. 1983. Effects on growth and mineral composition of rainbow trout on deletion of trace elements or magnesium from fish meal diet. Nippon Suisan Gakkaishi 49:425-429.
Satoh, S., K. Tabata, K. Izume, T. Takeuchi, and T. Watanabe. 1987a. Effect of dietary tricalcium phosphate on availability of zinc to rainbow trout. Nippon Suisan Gakkaishi 53:1199-1205.
Satoh, S., K. Izume, T. Takeuchi, and T. Watanabe. 1987b. Availability to rainbow trout of zinc contained in various types of fish meals. Nippon Suisan Gakkaishi 53:1861-1866.
Satoh, S., W. E. Poe, and R. P. Wilson. 1989. Effect of supplemental phytate and/or tricalcium phosphate on weight gain, feed efficiency and zinc content in vertebrae of channel catfish. Aquaculture 80:155-161.
Satoh, S., N. Porn-Ngam, T. Takeuchi, and T. Watanabe. 1993. Effect of various types of phosphates on zinc availability to rainbow trout. Nippon Suisan Gakkaishi 59:1395-1400.
Scarpa, J., D. M. Gatlin III, and D. H. Lewis. 1992. Effects of dietary zinc and calcium on select immune functions of channel catfish. Journal of Aquatic Animal Health 4:24-31.
Schafer, A., W. M. Koppe, K. H. Meyer-Burgdorff, and K. D. Gunther. 1995. Effects of a microbial phytase on the utilization of native phosphorus by carp in a diet based on soybean meal. Water Science and Technology 31:149-155.
Singh, M., and A. D. Krikorian. 1982. Inhibition of trypsin activity in vitro by phytate. Journal of Agricultural and Food Chemistry 30:799-800.
Solomons, N. W. 1983. Competitive mineral-mineral interaction in the intestine: implications for zinc absorption in humans. Pages 247-271 in G. E. Inglett, editor. Nutritional Bioavailability of Zinc. American Chemical Society, Washington, D. C., USA.
Spinelli, J., C. R. Houle, and J. C. Wekell. 1983. The effect of phytates on the growth of rainbow trout (Salmo gairdneri) fed purified diets containing varying quantities of calcium and magnesium. Aquaculture 30:71-83.
Spry, D. J., P. V. Hodson, and C. M. Wood. 1988. Relative contributions of dietary and waterborne zinc in the rainbow trout, Salmo gairdneri. Canadian Journal of Fisheries and Aquatic Sciences 45:32-41.
Storebakken, T., K. D. Shearer, and A. J. Roem. 1998. Availability of protein, phosphorus and other elements in fish meal, soy protein concentrate and phytase-treated soy-protein-concentrate-based diets to Atlantic salmon, Salmo salar. Aquaculture 161:365-379.
Storebakken, T., S. Refstie, and B. Ruyter. 2000. Soy products as fat and protein sources in fish feeds for intensive aquaculture. Pages 127-170 in J. K. Drackley, editor. Soy in Animal Nutrition. Federation of Animal Science Societies. Savoy, IL.
Strube, Y. N. J., J. L. Beard, and A. C. Ross. 2002. Iron deficiency and marginal vitamin A deficiency affect growth, hematological indices and the regulation of iron metabolism genes in rats. The Journal of Nutrition 132:3607-3615.
Sugiura, S. H., F. M. Dong, C. K. Rathbone, and R. W. Hardy. 1998. Apparent protein digestibility and mineral availabilities in various feed ingredients for salmonid feeds. Aquaculture 159:177-202.
Teskeredzic, Z., D. A. Higgs, B. S. Dosanjh, J. R. McBride, R. W. Hardy, R. M. Beames, J. D. Jones, M. Simell, T. Vaara, and R. B. Bridges. 1995. Assessment of undephytinized and dephytinized rapeseed protein concentrate as sources of dietary protein for juvenile rainbow trout (Oncorhynchus mykiss). Aquaculture 131:261-277.
Turecki, T., R. C. Ewan, and H. M. Stahr. 1995 Effect dietary phytic acid and cadmium on the availability of cadmium, zinc, copper, iron, and manganese to rats. Bulletin of Environmental Contamination and Toxicology 54:760-767.
Uchida, T. 1995. Overview of iron metabolism. International Journal of Hematology 62:193-202.
Uppstrom, B., and R. Svensson. 1980. Determination of phytic acid in rapeseed meal. Journal of the Science of Food and Agriculture 31:651-656.
Usmani, N., and A. K. Jafri. 2002. Influence of dietary phytic acid on the growth, conversion efficiency, and carcass composition of mrigal Cirrhinus mrigala (Hamilton) fry. Journal of the World Aquaculture Society 33:199-204.
Valencia, Z., and E. R. Chavez. 2002. Phytase and acetic acid supplementation in the diet of early weaned piglets: effect on performance and apparent nutrient digestibility. Nutrition Research 22:623-632.
Vielma, J., J. Koskela, and K. Ruohonen. 2002a. Growth, bone mineralization, and heat and low oxygen tolerance in European whitefish (Coregonus lavaretus L.) fed with graded levels of phosphorus. Aquaculture 212:321-333.
Vielma, J., K. Ruohonen, and M. Peisker. 2002b. Dephytinization of two soy proteins increases phosphorus and protein utilization by rainbow trout, Oncorhynchus mykiss. Aquaculture 204:145-156.
Watanabe, T., V. Kiron, and S. Satoh. 1997. Trace minerals in fish nutrition. Aquaculture 151:185-207.
Webster, C. D., L. G. Tiu, J. H. Tidwell, and J. M. Grizzle. 1997. Growth and body composition of channel catfish (Ictalurus punctatus) fed diets containing various percentages of canola meal. Aquaculture 150:103-112.
Williams, R. J. P. 1987. The biochemistry of zinc. Polyhedron 6:61-69.
Willis, J. N., and W. G. Sunda. 1984. Relative contributions of food and water in the accumulation of zinc by two species of marine fish. Marine Biology 80:273-279.
Yan, W., R. C. Reigh, and Z. Xu. 2002. Effects of fungal phytase on utilization of dietary protein and minerals, and dephosphorylation of phytic acid in the alimentary tract of channel catfish Ictalurus punctatus fed an all-plant-protein diet. Journal of the World Aquaculture Society 33:10-22.
Zacharias, B., H. Ott, and W. Drochner. 2003. The influence of dietary microbial phytase and copper on copper status in growing pigs. Animal Feed Science and Technology 106:139-148.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內公開,校外永不公開 restricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.147.104.248
論文開放下載的時間是 校外不公開

Your IP address is 3.147.104.248
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code