Responsive image
博碩士論文 etd-0213107-041951 詳細資訊
Title page for etd-0213107-041951
論文名稱
Title
高效率白光有機發光二極體之研製
The study of high efficiency white organic light emitting diodes
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
114
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-01-28
繳交日期
Date of Submission
2007-02-13
關鍵字
Keywords
漸進式結構、顯示器、有機發光二極體
OLED, display, grading structure
統計
Statistics
本論文已被瀏覽 5726 次,被下載 0
The thesis/dissertation has been browsed 5726 times, has been downloaded 0 times.
中文摘要
本論文中主要分為三大部分,首先我們利用一個NPB:Alq3混合層插入至NPB- Alq3兩層之間,藉由此層來減緩電洞之傳輸速率,以提昇電子電洞之復合效率,元件結構為ITO/ MTDATA(5 nm)/ NPB(60-Y)nm)/NPB:Alq3 (Z wt%)(Y nm) / Alq3(60 nm)/ LiF(0.7 nm)/ Al(180 nm),實驗中可以發現加入此層時,整個電流密度明顯的下降,因此可以証明此層的確可以減緩電洞之速率,而此結構之最佳值是在當NPB:Alq3混合層厚度為30 nm,Alq3濃度為30 wt%,可以得到元件最佳特性。接著,我們結合了NPB與Rubrene所發的光來形成白光,其元件結構為:ITO/ MTDATA/ NPB/ NPB:Rubrene/ TPBI/ LiF/ Al藉由調整NPB:Rubrene濃度,我們可以將色度座標(CIE coordinate)調整到白光區域,我們可以得到當NPB掺雜Rubrene濃度在1 wt%且電流密度為20.8mA/cm2 可得到最佳效率9.0 cd/A且光色為綠白光。
為了得到更高效率且更純的白光元件,我們利用漸進式結構來改善元件的復合效率及發光效率,其結構為元件A: ITO/ MTDATA(5nm)/ NPB(10nm)/ NPB:Rubrene1%(25nm)/ NPB:Rubrene0.5%(25nm) / TPBI(60nm)/ LiF(0.7nm)/Al (180nm);元件B:ITO/ MTDATA(5nm)/ NPB(10nm)/ NPB:Rubrene2%(17nm)/ NPB:Rubrene1%(17nm)/ NPB:Rubrene0.5%(17nm)/ TPBI(60nm)/ LiF(0.7nm)/ Al (180nm),我們可以發現利用漸近式的結構在亮度的表現上有明顯的改善而且可以得到最大亮度分別為17270 cd/m2及24280 cd/m2 ,我們可以得到元件A與元件B的最佳效率分別為16.1 cd/A及18.5 cd/A ,且色度座標為x=0.35, y=0.36為純白光範圍,因為漸進式的結構可以有效改善薄膜再做混合時的內部損耗(如quenching center的產生),所以利用其優越的特性來製作白光OLED不但可以得到高效率的元件亦可以提高元件的穩定性。
Abstract
Three subjects on the organic light-emitting diodes (OLEDs) have been studied. First, We inserted a NPB:Alq3 mixed layer between these two NPB and Alq3 layers to decrease the holes mobility and improve the combined efficiency between the holes and electrons. After inserting the NPB:Alq3 layer, the current density of the device( ITO/ MTDATA(5 nm)/ NPB(60-Y)nm)/NPB:Alq3 (Z wt%)(Y nm) / Alq3(60 nm)/ LiF(0.7 nm)/ Al(180 nm)) is decreased obviously. This result suggests that NPB:Alq3 layer could delay the holes mobility. The optimum concentration in our device is 30 wt% while the total thickness is 30nm. Then we combined NPB and Rubrene to obtaine white emission and fabricate a white organic light emitting diode (WOLED). The structure of WOLEDs is ITO/ MTDATA/ NPB/ NPB:Rubrene/ TPBI/ LiF/ Al. By change the concentration of NPB:Rubrene layer, the WOLED can emit white light. We can get the maximum luminance efficiency of 9.0 cd/A at 20.8mA/cm2 with 1 wt%. And the device emit greenish-white.
In order to get higher efficiency and pure light WOLED, we use the grading structure to prepare OLED. The structures are device A: ITO/ MTDATA(5nm)/ NPB(10nm)/ NPB:Rubrene1%(25nm)/ NPB:Rubrene 0.5%(25nm)/ TPBI(60nm)/ LiF(0.7nm)/Al (180nm); device B: ITO/ MTDATA(5nm)/NPB(10nm)/NPB:Rubrene2%(17nm)/ NPB:Rubrene1% (17nm)/NPB:Rubrene0.5%(17nm)/TPBI(60nm)/ LiF(0.7nm)/ Al (180nm)
We get the maximum luminance of 17270 cd/m2 and 24280 cd/m2 , respectively and the optimum efficiency of 16.1 cd/A and 18.5 cd/A, respectively. The CIE coordinate of the device is x=0.35, y=0.36, which is identical to white light.
目次 Table of Contents
總目錄

致 謝 ............................................ Ⅰ
中 文 摘 要 ………………………………………………………… Ⅱ
英 文 摘 要 ………………………………………………………… Ⅳ
總 目 錄 ……………………………………………………………… Ⅵ
表 目 錄 ……………………………………………………………… Ⅸ
圖 目 錄 ……………………………………………………………… Ⅸ

第一章 前言 …………………………………………………… 1
1-1 有機發光二極體的發展 ……………………………………… 1
1-2 不同顯示器之比較 ……………………………………… 4
1-3 研究動機與目的 ……………………………………… 6

第二章 有機發光二極體的物理理論
2-1 OLEDs的操作理論 …………………………………………… 8
2-2 有機電激發光元件的激發機制 ……………………………… 9
2-3 載子的注入與傳輸特性 ……………………………………… 11
2-4 有機發光二極體的分子架構 ………………………………… 12
2-4-1 有機發光二極體之材料 ………………………………… 13
2-5 OLEDs元件的量子效率 ……………………………………… 17
2-6 遷移率之量測 …………………………………………………… 19
2-7 OLEDs元件衰敗之原因 ……………………………………… 19
2-8 顯示器全彩化 …………………………………………………… 21
2-8-1 影像光罩法 ……………………………………………… 21
2-8-2 色轉換法 ………………………………………………… 21
2-8-3 白光元件加彩色濾光片 …………………………… 22

第三章 實驗步驟與系統描述
3-1 實驗材料
3-1-1 有機材料 …………………………………………………… 23
3-1-2 緩衝層 …………………………………………………… 23
3-1-3 金屬陰極 …………………………………………………… 24
3-2 ITO玻璃基板
3-2-1 ITO玻璃蝕刻 ……………………………………………… 25
3-2-2 ITO表面潔淨處理 ……………………………………… 26
3-3 實驗系統
3-3-1 有機薄膜的蒸鍍 …………………………………………… 27
3-3-2 電極的蒸鍍 ………………………………………………… 28
3-3-3 封裝 ……………………………………………………… 29
3-4 量測
3-4-1 IV特性量測 ……………………………………………… 29
3-4-2 亮度特性之量測 ……………………………………… 30
第四章 利用混合層改善OLED之效率
4-1 簡介 ………………………………………………………… 31
4-2 實驗與元件製作 ……………………………………………… 34
4-3 結果與討論 ……………………………………………………… 35
4-4 結論 ………………………………………………………… 37
第五章 利用混合層結構製作白光OLED
5-1 實驗目的 ………………………………………………… 38
5-2 利用不同濃度與厚度的發光層製作白光OLED
5-2-1 (NPB:Rubrene)發光層濃度2wt%元件之探討 ……… 39
5-2-2 (NPB:Rubrene)發光層濃度1wt%元件之探討 ……… 40
5-2-3 (NPB:Rubrene)混合層濃度0.5wt%元件之探討 ……… 42
5-3 利用漸進式結構來增加有機發光二極體之效率 ……… 43

第六章 結論 45

參考文獻 ……………………………………………………… 98
參考文獻 References
1. Q. Pope, M., Kallmann, H. P. and Magnante, P., J. Chem. Phys, 38, 2042, (1963).
2. Helfrich, W. and Schneider, W.G., Phys. Rev. Lett., 14, 229 (1965).
3. C. W. Tang and S. A. VanSlyke, Appl. Phsy. Lette., 51, 913 (1987).
4. Burroughs, J. H., Bradley, D. D. C, Brown, A. R., Marks, R. N., Mackay, K., Friend, R. H., Burn, P. L. and Holmes, A. B., Nature., 347, 539 (1990)
5. R. N. Marks, D. D. C. Bradley, R. W. Jackson, P. L. Burn, and A. B. MacDiarmid, Synth. Met., 57, 4128 (1993).
6. I. D. Parker, J. Appl. Phys., 75, 1656 (1994).
7. H. Vestweber, J. Pommerehne, R. Sander, R. Sander, R. F. Mahrt, A. Greiner, W. Heitz, and H. Bassler, Synth. Met., 68, 263 (1995).
8. Shirota, Y., Kuwabara, Y., Inada, and H., Wakimoto, T., Appl. Phys. Lett., 65, 807 (1994).
9. C. Hosokawa, H. Higashi, H. Nakamura, and T. Kusumoto, Appl. Phys. Lett., 67, 3853 (1995).
10. M. A. Baido, S. Lamansky, P. E. Burroes, M. E. Thompson, and S. R. Forrest, Appl. Phys. Lett., 75, 4 (1999).
11. T. Tsuyoshi, H. KOhei, T. Naoki, Appl. Phys. Lett., 70, 762 (1997).
12. Y. Kijima, N. Asai, and S. I. Tamura, Jpn. J. Appl. Phys., Part 1 ,38 , 5274 (1999).
13. C. Giebeler, H. Antoniadis, D. D. C. Bradley, and Y. Shirota, Appl. Phys. Lett., 72, 2488 (1998).

14. Woo-Bin Im, Ha-Keun Hwang, Jae-Gyoung Lee, Kijong Han, and Youngkyoo Kim, Appl. Phys. Lett., 79, 1387 (2001).
15. Koji Itano, Toshimitsu Tsuzuki, Hiromitsu Ogawa, Susan Appleyard, Martin R. Willis, and Yasuhiko Shirota, IEEE TRANSACTIONS ON ELECTRON DEVICE, 44, 1218 (1997).
16. C. C. Wu, C. I. Wu, J. C. Sturm, and A. Kahn, Appl. Phys. Lett., 70, 1348, (1997).
17. K. Furukawa, Y. Terasaka, H. Ueda, M. Mtsumura, Synth. Met., 91, 99, (1997).
18. M. G. Mason, L. S. Hung, C. W. Tang, S. T. Lee, K. W. Wong, and M. Wang, J. Appl. Phys., 86, 1688 (1999).
19. Y. Itoh, N. Tomikawa, S. Kobayashi, and T. Minato, Extended Abstracts, The 51th Autumn Meeting, The Japan Society of Applied Physics, 1040 (1990).
20. T. Wakimoto, S. Kawami, K. Nagayama, Y. Yonemoto, R. Murayama, J.Funaki, H. Sato, H. Nakada, and K. Imai, Hamamatsu, 77 (1994).
21. L. S. Hung, C. W. Tang, and M. G. Mason, Appl. Phys, Lett., 70, 152 (1997).
22. Tang, C. W. , VanSlyke, S. A., Chen, and C. H. J. Appl. Phys., 65, 3610 (1989).
23. Ko, C, W.; Tao, Y. T.; Danel, A.; Krzeminska, L.; Tomasik, and P. Chem. Mater., 13, 2441 (2001).
24. Mitschke, U.;Bauerle, P. J. Mater. Chem. 10, 1471 (2000).
25. 陳金鑫, 石建民, 鄧青雲, 化學, 54, 125 (1996).
26. Kraft, A.; Grimsdale, A. C.; Holmes, A. B. Angew. Chem., Int, Ed., 37, 402 (1998).
27. Grell, M., Bradley, and D. D. C. Adv. Mater., 11, 895 (1999).
28. Lussem, G..; Wendorff, J. H. Polym. Adv. Technol., 9 , 443 (1998).
29. Friend, R. H., Gymer, R. W., Holems, A. B., Burroughes, J. H., Marks, R. N., Taliani, C., Bradley, D. D. C., Dos Santos, D. A., Bredas, J. L., Logdlund, M., and Salaneck, W. R. Nature, 397, 121 (1999).
30. Thelakkat, M.; Schmidt, and H. W. Polym. Adv. Technol., 9, 429 (1998).
31. Miyata, S., Nalwa, H. S. Eds.; Gordon and Breach, Amsterdam (1997).
32. Freeman, D. C., White, C. E., and J. Am. Chem. Soc., 78, 2678 (1956).
33. C. Adachi, K. Nagai, and N. Tamoto, Appl. Phys. Lett., 66, 2679 (1995).
34. S. A. Van slyke, C. H. Chen, and C. W. Tang, Appl. Phys. Lett., 69, 2160 (1996).
35. Yong Qiu,a) Yudi Gao, Peng Wei, and Liduo Wang, Appl. Leet., 80, 2628 (2002).
36. Carsten Giebeler, Homer Antoniadis, J. Appl. Phys., 85, 608 (1999).
37. Yasuhiko Shirota, Yoshiyuki Kuwabara, Hiroshi. Inada, Appl. Phys. Lett., 65, 807 (1994).
38. Yasunori Kijuma, Nobutoshi Asai and Sin-ichiro Tamura, Tan. J. Appl. Phys., 38, 5274 (1999).
39. Y. T. Tao and E. Balasubramaniam, Appl. Phys. Lett., 77, 933 (2000).
40. M. Cocchi, D. Virgili, G. Giro, V. Fattori, and P. Di Marco, Appl. Phys. Lett., 80, 2401 (2002).
41. Adachi Chihaya, Kwong Raymond, Forres Stephen R. T., Organic Electronics, 2, 37 (2001).
42. J. Kalinowski, L. C. Picciolol, H. murata, and Z. H. Kafafi, J. Appl. Phys., 89, 1866 (2001).
43. C. Adachi, M. Baldo, S. R. Forrest, and M. E. Thompson, J. Appl. Phys., 90, 5048 (2001).
44. C. F. Madigan, M.-H. Lu, and J. C. Sturm, Appl. Phys. Lett., 76, 1650, (2000).
45. M.-H. Lu, J. C. Sturm, J. Appl. Phys., 91, 595 (2002).
46. M. A. Baldo, d. F. O’Brien, M. E. Thompson, and S. R. Forrest, Phys.Rev. B, 60, 14422 (1999).
47. Shun-Wei Liu, Ching-An Hunag, and Yih Chang. 第五屈環太平泮電射與光電研討會,545 (2003).
48. C. F. Madigan, M.-H. Lu, and J. C. Sturm, Appl. Phys. Lett., 76, 1650 (2000).
49. C. Adachi, M. Baldo, S. R. Forrest, and M. E. Thompson, J. Appl. Phys., 90, 5048 (2001).
50. Yoshiharu Sato, Shoko Ichinosawa, Hiroyuki Kanai, IEEE J. Selected Topics in Quantum electronics, 4, 40 (1998).
51. Y. Sato and H. Kanai, Mol. Cryst. Liq. Cryst. 253, 143 (1994).
52. E.-M. Han, L-M. Do, N. Yamamoto, and M. Fujihira, Thin Solid Films, 273, 202 (1996).
53. H. Aziz, Z., Popovic, C. P. Tripp, N.-X. Hu, A-M. Hor, and G. Xu, Appl. Phys. Lett., 82, 2642 (1998).
54. H. Aziz and g. Xu, J. Phys. Chem. B 101, 4009 (1997).
55. P. E. Burrows, V. Bulovic, S. R. Forrest, L. S. Sapochak, D. M. McCarty, and M. E. Thompson, Appl. Phys. Lett., 65, 2922 (1994).
56. E. M. Han, L. M. Do, N. Yamamoto, and M. Fujihira, Synth. Metals, 273, 202 (1996).
57. M. Fujihira, L.M. Do, A. Koike, and E. M. Han, Appl. Phys. Lett., 68, 1787 (1996).
58. T. Zyung and J. J. Kim, Appl. Phys. Lett., 67, 3420 (1995).
59. E. G. Staring, A. M. Berntsen, S. T. R. Romme, G. L. J. Rikken, and P. Urbach, Phil. Trans. Roy. Soc. London A, 355, 695 (1997).
60. Y. Sato and H. Kanai, Mol. Cryst. Liquid Cryst., 253, 143 (1994).
61. F. Papadimitrakopoulos and X. M. Zhang, Synth. Metals, 85, 1221 (1997).
62. Dongge Ma, C. S. Lee, S. T. Lee and L. S. Huang, Appl. Phys. Lett., 80, 3641(2002).
63. C. Adachi, S. Tokito, T. Tsutsui, and S. Saito, Jpn. J. Appl. Phys. 27, L713 (1988)
64. M. Era, C. Adachi, S. Tokito, T. Tsutsui, S.Saito, Chem. Phys. Lett. 178, 488 (1991)
65. Dongge Maa, J. M. Lupton, I. D. W. Samuel, Shi-Chun Lo and P. L. Burn. Appl Phys.81 (2002)
66. J. P. J. Markham, S.-C. Lo, S. W. Magennis, P. L. Burn, I. D. W. Samuel. Appl Phys.80 (2002)
67. Thomas D. Anthopoulos, Jonathan P. J. Markham, Ebinazar B. Namdas, Ifor D. W. Samuel, Shih-Chun Lo and Paul L. Burnb. Appl Phys.82 (2003)
68. X. Zhou, M. Pfeiffer, J. S. Huang, J. Blochwitz-Nimoth, D. S. Qin, A. Werner, J. Drechsel, B. Maennig, and K. Leo. Appl Phys.81 (2002)
69. Gufeng He, Oliver Schneider, Dashan Qin, Xiang Zhou, Martin Pfeiffer, and Karl Leo. Appl Phys.95 (2004)
70. Qianfei Xu, Jianyong Ouyang, and Yang Yang, Takayuki Ito and Junji Kido Appl Phys.83 (2003)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.149.253.239
論文開放下載的時間是 校外不公開

Your IP address is 3.149.253.239
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code