Responsive image
博碩士論文 etd-0213107-225446 詳細資訊
Title page for etd-0213107-225446
論文名稱
Title
非線性效應與混合層厚度對非線性內波傳播的影響
The effect of nonlinearity and mixed layer thickness on the propagation of nonlinear internal waves
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
74
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-12-07
繳交日期
Date of Submission
2007-02-13
關鍵字
Keywords
內波、非線性、混合層、模式、孤立波
MODIS, solit, wave
統計
Statistics
本論文已被瀏覽 5791 次,被下載 1940
The thesis/dissertation has been browsed 5791 times, has been downloaded 1940 times.
中文摘要
本研究以數值模擬探討孤立內波之傳播。物理基礎是利用美國Cornell大學Lynett and Liu (2002)所發展,並經Cheng 等人(2005)修改後之二維內波傳播模式。模式中假設內波存在於弱非線性效應、弱頻散效應與黏滯性很小的兩層流體系統。其主要理論基礎是利用流體連續方程式與動量方程式為主要控制方程式,利用深度積分配合有限差分數值方法,並納入實際的地形水深以模擬內波傳播的情況。為了使模擬更符合實際情況,本文進而修改下列幾項初始條件:原本固定之上層混合層厚度改為隨地點不同而改變、原本sech2(x)函數波形納入其他函數波形及以衛星影像拍攝到的波前形狀。模式中模擬內波在東沙島附近傳播產生繞射的現象,並比較變動混合層厚度下與固定混合層厚度的不同。模擬MODIS影像上波前之傳播,利用模式與影像比對找出24小時後同一波源內波的位置。從衛星影像資料發現在呂宋海脊附近內波從波源產生後可以變得相當寬,其能量來源可能來自於波與波之間的非線性效應:大振幅內波吸收小振幅內波的能量。模擬結果也顯示在傳播的過程中大振幅內波的能量有增加的現象。
Abstract
This thesis applies a numerical model to study the propagation of internal solitary wave based on a two-dimensional model developed by Lynett and Liu (2002) and modified by Cheng et al. (2005).The numerical model derived assumes weak nonlinearity and weak dispersion in a two-layer inviscid fluid system. The governing continuity and momentum equations are solved and the real topography is included in the wave model. In order to improve the accuracy of simulation, mixed-layer thickness is allowed to change from place to place. Initial conditions are modified so that wave forms of non-hyperbolic -secant functions and wave fronts taken by satellite can be used. The diffraction near the island of Dongsha is simulated, and results of both fixed and variable mixed-layer thickness are compared. Simulated waveform in MODIS images after 24 hours are compared with other wave fronts of the same image. Laterally, internal waves can become very wide when it is far away from its origin. The extra energy can be explained by nonlinear wave-wave interaction because the energy of large amplitude internal wave increases after interacting with smaller internal waves.
目次 Table of Contents
章次
中文摘要 ………………………………………………………………...................
英文摘要 ………………………………………………………………...................
目錄 …………………………………………………………….......................
圖目錄 ………………………………………………………………...................
表目錄 ………………………………………………………………...................





第一章 緒論 …………………………………………………………...................... 1
1.1 前言 ...............………………………………………………...................... 1
1.2 研究目的 ...…………………………………………………...................... 2
1.3 本文架構 .…………………………………………………........................ 2
第二章 文獻回顧 ……………………………………………………...................... 4
2.1 現場實驗及衛星影像資料研究 ..…………………………. ..................... 4
2.2 KdV方程式 ..………………………………………………...................... 7
2.3 數值模式 ..…………………………………………………. ..................... 9
第三章 數值模式介紹 ……………………………………….................................. 10
3.1 內波二維傳播模式 ..................................................................................... 10
3.2 模式初始條件設定 ..................................................................................... 10
第四章 模式驗證 .........................................……………………………………..... 28
4.1 模式代入波形測試 ..………………………………………………........... 28
4.2 穩定孤立波波形 ....................…………………………………………..... 28
4.3 模式在斜坡上的驗證 ………………………..……………....................... 32
第五章 模式結果、討論與結論 ..…………………………………........................ 35
5.1 模式結果與討論 ….………………………………………........................ 35
5.1.1 變動混合層厚度 ...………...……………………………........................ 35
5.1.2 兩個孤立波波形 ........……………………………………...................... 40
5.1.3模擬MODIS影像上波前傳播的情況 …………..………....................... 41
5.1.4波與波之間的非線性效應 ………………………………....................... 46
5.2 結論 ............................................................................................................... 50
參考文獻 ………………………………………….……………………..................... 51
附錄 ……………………………………………….……………………..................... 55
參考文獻 References
Apel, J.R., J.R. Holbrook, A.K. Liu, J. Tsai, 1985: The Sulu Sea internal soliton experiment, J. Phys. Oceanogr., 151625–1651.
Choi, W. and R. Camassa,1996: Weakly nonlinear internal waves in a two-fluid
system, J. Fluid Mech., 313: 83-103.
Choi, W. and R. Camassa, 1999: Fully nonlinear internal waves in a two-fluid system, J. Fluid Mech., 396: 1–36.
Cai, S., X. Long, Z. Gan (2002): A numerical study of the generation and propagation of internal solitary waves in the Luzon Strait, Oceanologica Acta, Vol. 25, 51–60.
Cheng, M.H., J.R.C. Hsu and C.Y. Chen, 2005: Numerical model for internal
solitary wave evolution on impermeable variable seabed, Proc. 27th Ocean
Eng. Conf. in Taiwan, pp. 355-359.
Ebbesmeyer, C.C. and R.D. Romea, 1992: Final design parameters for solitons
atselected locations in South China Sea, Final and supplementary reports
prepared for Amoco Production Company, pp. 209.
Fett, R.W., K. Rabe, 1977.:Satellite observation of internal wave refraction in the
South China Sea, Geophys. Res. Lett., 4 (5), 189-191.
Farmer, D.M., 1978: Observations of long nonlinear internal waves in a lake, J. Phys.
Oceanogr., 8: 63–73.
Fang,W., R. Chen, Q. Mao, 2000: Abrupt strong currents over continental slope of
northern South China Sea, Trop. Oceanol., 19 (1), 70-75 (in Chinese, English
abstract).
Garret, C. and W. Munk, 1972: Space-time scales of internal waves, Geophys. Fluid
Dyn., 3: 225-264.
Haury, L. R., M.G. Briscoe and M. T. Orr, 1979: Tidally generated internal wave
packets in Massachusetts Bay, Nature, 278-312.
Hsu, M.K., A.K. Liu and C. Liu, 2000: A study of internal waves in the China Sea
and Yellow Sea using SAR, Continental Shelf Research, 20: 389-410.
Korteweg, D.J. and G. De Vries, 1895: On the change of form of long waves
advancing in a rectangular canal and on a new type of long stationary waves,
Philosophical Magazine, 39 (5): 422-443.
Lee, C.-Y. and R.C. Beardsley, 1974: The generation of long nonlinear internal waves
in a weakly stratified shear flow, J. Geophys. Res., 79453–462.
Liu, A.K. 1988: Analysis of nonlinear internal waves in the New York Bight. J.
Geophys. Res., 93: 122–317.
Lynett, P.S. and L-F. Liu, I. Losada and C. Vidal, 2000: Solitary wave interaction
with porous breakwaters, J. Waterway, Port, Coastal & Ocean Eng., ASCE, 126
(6): 314–323.
Liu, A. K. and M. K. Hsu, 2004: Internal wave study in the South China Sea using
Synthetic Aperture Radar (SAR), INT. J. Remote Sensing, 10-20, vol. 25,
No. 7-8, 1261-1264.
Liu, C.T., R. Pinkel, M-K Hsu, R-S Tseng, Y-H Wang, J.M. Klymak, H-W Chen, C. Villanoy, L.David, Y. Yang, C-H Nan, Y-J Chyou, C-W Lee and Antony K. Liu, 2006: Nonlinear Internal Waves From the Luzon Strait, EOS, Vol. 87, No. 42.
Maxworthy, T. 1979: A note on the internal solitary waves produced by tidal flow
over a three-dimensional ridge, J. Geophys. Res., 84, 338-346.
Nansen, F. 1902: The oceanography of the north polar basin, Sci. Results,
Norwegian North Polar Expedition 1893-1896, 3: 9.
Osborne, A.R. and T.L. Burch, 1980: Internal solitons in the Andaman Sea, Science,
208 (43): 451-460.
Press, W.H., B.P. Flannery, and S.A. Teukolsky, 1989. Numerical Recipes.
Cambridge: Cambridge University Press , pp. 569–572.
Russell, J.S., 1844: On waves. Report of the 14th Meeting of the British Association
for the Advancement of Science, York, 311-390.
Ramp, S. R., T. Y. Tang, T. Duda, J. F. Lynch, A. K. Liu, C.-S. Chiu, F. Bahr, H.-R. Kim, and Y. J. Yang, 2004: “Internal solitons in the Northeastern South China Sea Part I: Sources and deep water propagation,” IEEE J. Oceanic Eng., vol. 29, pp. 1157-1181.
Sveen, J.K., Y. Guo, P.A. Davies, and J. Grue, 2002: On the breaking of internal
solitary waves at a ridge. J. Fluid Mech., 469 (25): 161-188.
Small, Justin, 2001: A nonlinear model of the shoaling and refraction of interfacial solitary wave in the ocean. PartΙ: Development of the Model and Investigations of the Shoaling Effect. J. Phys. Oceanogr, vol 31, 3163-3183.
Small, Justin, 2001: A nonlinear model of the shoaling and refraction of interfacial solitary wave in the ocean. PartII: Oblique Refraction across a Continental Slope and Propagation over a Seamount. J. Phys. Oceanogr, vol 31, 3184-3199.
Tomasson, G.G. and W.K. Melville, 1992: Geostrophic adjustment in a channel:
nonlinear and dispersive effects, J. Fluid Mech. 241, pp. 23-57.
Vlasenko, V., and K.Hutter, 2002: Numerical experiments on the breaking of
solitary internal waves over a slope-shelf topography, J. Phys. Oceanogr.,
32 (6): 1779-1793.
Wang, K.-H., 1993: Diffraction of solitary waves by breakwaters, J. Waterway, Port,
Coastal. Ocean Eng., 119 (1): 49-69.
Wei, G. and J.T. Kirby, 1995: A time-dependent numerical code for extended
Boussinesq equations, J. Waterway, Port, Coastal & Ocean Eng. ASCE, 120:
251-261.
Wessels, F. and K. Hutter, 1996: Interaction of internal waves with a topographic sill in a two-layered fluid. J. Phys. Oceanogr. 26 (1): 5-20.
Yang, Y. J., T. Y. Tang, S. R. Ramp, 2004: “Solitons Northeast of Tung-Sha Island
During the ASIAEX Pilot Studies”, IEEE J. Ocean Eng., 29, 1182-1199.
Zabusky, N.J. and M.S. Kruskal, 1965: Interaction of solitons in a collisionless
plasma and the recurrence of initial states, Phys. Rev. Lett., 15: 240-243.
Zheng, Q., Y. Yuan, V. Klemas and X. H. Yan, 2001: ”Theoretical expression for an
ocean internal soliton synthetic aperture radar image and determination of the
soliton characteristic half width”, J. Geophy. Res., 106, 31415-31423.
Zhao, Z., V. Klemas, Q. Zheng and X. H. Yan, 2004: “Remote sensing evidence for
baroclinic tide origin of the internal solitary waves in the northern South China
Sea”, Geophysical Research Letters, vol. 31.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code