Responsive image
博碩士論文 etd-0213112-093327 詳細資訊
Title page for etd-0213112-093327
論文名稱
Title
油污染場址調查技術及整治策略探討
Development of site investigation and remediation strategies at petroleum- hydrocarbon contaminated site
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
163
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-07-26
繳交日期
Date of Submission
2012-02-13
關鍵字
Keywords
環境法醫、指紋圖譜分析、環境場址評估、三合系統
environmental site assessments, environmental forensics, triad system, fingerprinting
統計
Statistics
本論文已被瀏覽 5705 次,被下載 0
The thesis/dissertation has been browsed 5705 times, has been downloaded 0 times.
中文摘要
土壤及地下水為各式污染事件陸上環境之最終受體,尤其油品類污染物具有可流動的特性,易污染地下水含水層,調查時常因地下環境隱晦不明,導致污染範圍不易釐清,污染物傳輸特性與化學轉變過程難以掌握,造成油品類污染場址特徵難以有效地予以釐清及改善,油品類污染場址之調查與整治即使在耗費龐大人力、物力、資金與時間之下,問題仍難得其解。本研究藉由環境場址評估(Environmental Site Assessment, ESA)調查程序搭配三合系統(triad system)快速調查評估流程及現場調查作業,建立場址污染概念模型,劃定污染關鍵區域,採集具代表性現場樣品執行實驗室檢測分析,並利用循環式評估流程,持續更新場址概念模型,釐清場址污染分佈狀況、污染影響程度、水文地質特徵及污染來源。探討有效縮限污染關鍵區域,取得高密集度調查成果,提高採樣分析代表性,提升案場調查效率,並藉由環境法醫鑑識技術,在污染來源判定上提供明確的證據。ESA phase I執行成果初步劃定污染關鍵區域、土壤及地下水關切物質及可能污染來源,ESA phase II污染初步評估顯示場址土壤污染屬較高碳數油品,且污染物向土壤深層移動至地表下9 m處,深層污染範圍不明。地下水檢測結果皆未超過管制標準,但加油站內檢出微量MTBE,故列入可能污染來源。ESA phase II污染細步評估結果,土壤中污染物以TPHC10-C40為主,污染深度達8m,加油站內之油槽及管線區檢測值皆偏低,並無油品洩漏跡象。污染程度於深度5m以上最為嚴重,TPH濃度普遍都在10,000 mg/kg以上,深度5m以下已明顯減輕, TPH濃度多在5,000 mg/kg以下。特定關係人訪談結果顯示,地下煉油行疑似設置於四十年前,疑似由廢船體取得船用油後,經再製後轉售牟利。污染源比對鑑定結果顯示,TPHC10-C40圖譜之碳數分佈或峰型皆與柴油較為相似。TIC圖譜顯示該油品為兩種蒸餾油混合,比對峰值頂點,推測低碳數者為柴油,高碳數者為燃料油。Pr/Ph比值比對,推測與中油柴油非為同一來源。雙環類倍半萜烷指紋圖譜比對結果,各樣品指紋圖譜形狀略異,但主要特徵化合物種類相同。芳香類指標化合物分析結果顯示,各樣品methyl phenanthrene與methyl dibenzothiophene異構物、多甲基取代之dibenzothiophene及phenanthrene異構物之間的比值相近。綜合指紋圖譜分析(fingerprinting)結果,場址污染物質特性相近,應為同一污染來源。場址污染物屬半揮發性、難溶於水之物質,主要污染多存於沉泥/黏土層,受到地質條件限制,現地整治技術在傳輸路徑上較難掌握,需要高密度之整治系統,突破傳輸路徑之瓶頸,但場址大部份為私人土地,整治過程用地取得不易,不合適全面離地處理。後續整治規劃可朝向高污染區污土移除、中長期透水性反應牆配合監測式自然降解。建議未來可針對土壤揚塵吸入及皮膚接觸、地下水食入、吸入及皮膚接觸等曝露途徑進行風險評估,提供場址管理上行政控管之依據。
Abstract
Soil and groundwater is the final receptor environment of contamination on land, especially easy to contaminate groundwater aquifers, because of the underground environment often obscure, it is difficult to clarify the scope of pollution, in addition, the transport and chemical transformation process are also difficult to evaluate. Resulting that although consumes on huge cost and materials, and times on oil contaminated site investigation and remediation, obtaining the solution of the problem is still hard. In this study, it combines with the environmental site assessment and the triad rapid investigation, the establishment of site contamination conceptual model, the key designated contaminated area, collect samples of the implementation for laboratory analysis, Moreover, use cyclic evaluation process, continuously updated site conceptual model, to clarify the distribution of contaminated sites, impact of pollution, hydro-geological characteristics and pollution sources. It also discussed the effective reduction of pollution critical area, to obtain high-density results, in order to improve sampling and analysis to make the efficiency of the case of site investigation, and using environmental forensic techniques to determine and provide the evidence of pollution sources.
ESA phase I implements the key results of the preliminary delineation of contaminated areas, soil and groundwater pollution concerns and possible sources of material. ESA phase II evaluates preliminary assessment of sites contaminated soil contamination is a high carbon number of oil and contaminants move to the surface to deeper soil 9 m at the lower, deeper pollution range is unknown. Groundwater test results garnered less than control standards, but the detection of trace gas station in MTBE, it is included in the possible sources of pollution. Taking ESA phase II assessment in a further analysis, the soil contaminants are TPHC10-C40 based, contamination depth of 8m, gas station area within the tank and pipeline testing values are low, there is no sign of oil leakage. Pollution more than 5m in depth the most serious, TPH concentrations in general are 10,000 mg/kg or more, the depth of 5m and the following have been significantly reduced, TPH concentrations than in the 5,000 mg/kg or less. Interviews showed that the specific relationship between the people, suspected underground oil refining line set 40 years ago, suspected of shipping oil from the waste obtained after the hull, after the system by then resold for profit.
Identification of pollution sources than the results, TPHC10-C40 carbon number distribution or pattern of the peak are more similar to diesel. TIC illustration showed that the distillate oil mixture for two, than the peak apex, suggesting that the low-carbon should be diesel fuel, and the high-carbon would be fuel. Pr/Ph ratio than, presumably with the CPC diesel from different sources. Alkyl bicyclic sesquiterpene class fingerprint comparison results, the shape of the fingerprint sample slightly different, but the main features of the same types of compounds. Analysis of aromatic compounds, indicators showed that the samples compound ratio of methyl phenanthrene and methyl dibenzothiophene isomers, dibenzothiophene, and phenanthrene isomers are closer. Integrated fingerprint analysis (fingerprinting) results, similar to the site characteristics of pollutants, for the same pollution source. The site is semi-volatile pollutants, substances insoluble in water, more stored in the main pollution silt/clay layer, subject to geological conditions, ground remediation techniques are more difficult to grasp in the transmission path, remediation systems that require high density, break through the bottleneck transmission path, but a majority of sites on private land, during the remediation process it is difficult to obtain the burgage, therefore, it would be fit the inappropriate comprehensive ground handling. Subsequent remediation plan can be removed towards the high pollution of soil pollution, and long-term monitoring of permeable reactive barrier type with natural degradation. Recommendations for the future studies can be dust inhalation and skin contact with soil, groundwater ingestion, inhalation and skin contact exposure pathways for risk assessment, site management provided a basis for administrative control.
目次 Table of Contents
第一章 前言 1-1
1-1 研究背景 1-1
1-2 研究目的 1-2
第二章 文獻回顧 2-1
2-1 國內土壤及地下水污染狀況 2-1
2-2 環境場址評估程序 2-3
2-2-1 場址環境一階評估標準實務 2-5
2-2-2 場址環境二階評估程序標準指引 2-7
2-2-3 三合法 2-8
2-3 環境法醫技術之運用 2-10
2-3-1 環境法醫技術 2-11
2-3-2 油品污染鑑識流程 2-14
2-3-3 總石油碳氫化合物指紋圖分析 2-17
2-3-4 芳香烴化合物分析 2-18
2-3-5 添加劑使用種類及歷史 2-20
2-3-6 穩定同位素分析 2-21
2-3-7 風化效應 2-23
2-3-8 生物指標化合物分析 2-28
第三章 研究方法及設備 3-1
3-1 一階場址環境評估 3-2
3-1-1 記錄審閱 3-2
3-1-2 現場勘查 3-3
3-1-3 場址訪談 3-4
3-1-4 概念式場址模型建構 3-4
3-2 二階場址環境評估 3-6
3-2-1 薄膜介面探測技術 3-6
3-3 水文地質特性調查評估方法 3-12
3-3-1 地質導電度連續偵測 3-12
3-3-2 地質鑽探 3-12
3-3-3土壤物性分析 3-13
3-3-4 地下水水文特性 3-13
3-3-5 水力試驗 3-14
3-4 場址污染潛勢與範圍評估方法 3-19
3-4-1土壤污染範圍調查及污染查證方法 3-19
3.4-2 地下水污染範圍調查及污染查證方法 3-21
3-5化學指紋分析技術 3-25
第四章 場址評估與來源鑑定結果 4-1
4-1 一階環境場址評估成果 4-1
4-1-1 歷史資料及紀錄審閱 4-1
4-1-2 場址勘查 4-6
4-1-3 相關人員訪談 4-11
4-1-4 第一階段場址模型建構 4-12
4-1-5 二階場址評估目標 4-13
4-2 二階環境場址評估查核 4-14
4-2-1污染初步評估結果 4-14
4-2-2 污染細部評估結果 4-25
4-3 場址污染概念模型 4-43
4-4待釐清事項 4-44
4-5 污染源比對鑑定 4-45
4.5.1土壤中TPH圖譜特徵初步比對 4-47
4.5.2 總碳氫化合物之指紋圖 4-50
4.5.3 生物指標化合物分析 4-59
4.5.4 芳香烴化合物分析 4-61
4.5.5添加劑分析 4-66
4.5.6風化效應 4-66
4-6 整治策略探討 4-67
4-6-1 第一種整治方式細部規劃 4-73
4-6-2 第二種整治方式細部規劃 4-76
第五章 結論與建議 5-1
5-1 結論 5-1
5-2 建議 5-3
第六章 文獻回顧 6-1
參考文獻 References
1. American Society for Testing and Materials, 1985, Standard Practice for Classification of Soils for Engineering Purposes, D2487-85.
2. American Society for Testing and Materials, 2000, Standard Practice for Description and Identification of Soils (Visual-Manual Procedure), D2488-00.
3. American Society for Testing and Materials, 2002, E 1903-97(02) Standard Guide for Environmental Site Assessments: Phase II Environmental Site Assessment Process, PA, USA.
4. American Society for Testing and Materials, 2005, E 1527-00(05) Standard Practice for Environmental Site Assessments: Phase I Environmental Site Assessment Process, PA, USA.
5. American Society for Testing and Materials, 2006, E 2531-06e1 Standard Guide for Development of Conceptual Site Models and Remediation Strategies for Light Nonaqueous-Phase Liquids Released to the Subsurface, PA, USA.
6. Barakat, A.O., Mostafa, A.R., Qian, Y., Kennicutt, M.C., 2002, Application of petroleum hydrocarbon chemical fingerprinting in oil spill investigations-gulf of Suez, 155 Egypt, Spill Science and Technology Bulletin, 7(5-6) 229-239.
7. Bedient, P.B., Rifai, H.S., Newell, C.J., 1994, Ground water contamination, PTR Prentice-Hall, Inc.
8. Crumbling, D.M., 2004, White paper: Summary of the triad approach, United States Environmental Protection Agency (USEPA), office of superfund remediation and technology innovation, march 25.
9. Daling, P.S., Faksness, L.G., Hansen, A.B., Stout, S.A., 2002, Improved and standardized methodology for oil spill fingerprinting. Environ. Forensics., 3, 263–278.
10. Douglas, G.S., Bence, A.E., Prince, R.C., McMillen, S.J., Butler, E.L., 1996, Environmental stability of selected petroleum hydrocarbon source and weathering ratios. Environ. Sci. Technol. 30, 2332-2339.
11. Fetter, C.W., 1994, Applied hydrogeology, third edition, Macmillan College Publishing Company.
12. Fingas, M.V., 1995, Review A literature review of the physics and predictive modelling of oil spill evaporation. Journal of Hazardous Materials 42 (1995) 157-175.
13. McCutcheon, M.C., Farahani, H.J., Stednick, J.D., Buchleiter, G.W., Green, T.R, 2006, Effect of soil water on apparent soil electrical conductivity and texture relationships in a dryland field, Biosystems Engineering 94(1), 19-32.
14. Murphy, B.L., Morrison, R.D., 2000, Introduction to environmental forensics.
15. Murphy B.L. and Morrison R. D., Introduction to Environmental Forensics, Academic Press, 2002.
16. Peter K.E., Moldowan J.M., 1992, The biomarker guide-interpreting molecular fossils in petroleum and ancient sediments, Prentice Hall, Englewood Cliffs.
17. Robert D. Morrison, 1999, Environmental Forensics : Principles & Applications, Environmental Forensics.
18. Rodgers, R.P., Blumer, E.N., Freitas, M.A., Marshall, A.G., 2000, Complete compositional monitoring of the weathering of transportation fuels based on elemental compositions from fourier transform ion cyclotron resonance mass spectrometry. Environmental Science and Technology, 34, 1671–1678.
19. Sauer, T.C., Uhler, A.D., 1994, Pollutant source identification and allocation: advances in hydrocarbon fingerprinting. Remediation Journal, 5(1), 25-50.
20. Schreier, C.G., Walker, W.J., Burns, J., Wilkenfeld, R., 1999, Total organic carbon as a screening method for petroleum hydrocarbons. Chemosphere, 39(3), 503-510.
21. Schulmeister, M.K., Butler Jr., J.J., Healey, J.M., Zheng, L., Wysocki, D.A., McCall, G.W., 2003, Direct-push electrical conductivity logging for high-resolution hydrostratigraphic characterization, Ground Water Monitoring & Remediation, 23(3), 52-62.
22. Superfund Amendment and Reauthorization Act,1986.
23. U.S. EPA, 1986, Superfund Amendment and Reauthorization Act.
24. U.S. EPA, 1997, Expedited Site Assessment Tools For Underground Storage Tank Sites-A Guide For Regulators, EPA 510/9/R-97/001.
25. Wang, Z., Fingas, M., Page, D.S., 1999. Oil spill identification. J. Chromatogr. A 843, 369-411.
26. Wang, Z., Fingas, M., Sigouin, L., 2001, Characterization and identification of a “mystery” oil spill from Quebec (1999). J. Chromat. A. 909, 155-169.
27. Whang, D.W., 2007, The study of sediment PAHs in Hoping industrial port by chemical fingerprint. (黃東緯,化學指紋鑑定法應用於和平專用港底泥多環芳香烴之研究,國立東華大學環境政策研究所,碩士論文)
28. Scott A. Stout and Zhendi Wang, 2008, Diagnostic Compounds for Fingerprinting Petroleum in the Environment , Environmental Forensics.
29. 王正雄,1999,環境法醫學與化學指紋追蹤技術之探討,環境檢驗第41期。
30. 行政院環保署,2007,土壤及地下水污染整治費申報、審理、稽核等相關作業計畫工作。
31. 行政院環境保護署,2010,環境檢驗所20週年所慶研討會專刊。
32. 沈冠宇,2009,Characterization and Identification of the Mixed Oil Spillage via Biomarker Analytical Technique。
33. 許麗娟、陸瑩、杜盛清、蕭甜珍,2003,土壤中總石油碳氫化合物(TPHs)檢測之研究。
34. 郭清河,2006,美國推動超級基金計畫之應用,環檢通訊雜誌第14期。
35. 黃德坤等,2004,環境法醫技術應用在油污染源之鑑定,工業污染防治,第91 期,第23-41頁。
36. 黃文彥,2007,石化污染場址風險管控策略之研究,國立中山大學 環境工程研究所 博士論文。
37. 魏顯祥及洪立群,2005,介紹美國環境場址評估的新基準-AAI Rule,台灣土壤及地下水環境保護協會簡訊。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 13.59.218.147
論文開放下載的時間是 校外不公開

Your IP address is 13.59.218.147
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code