Responsive image
博碩士論文 etd-0213112-163232 詳細資訊
Title page for etd-0213112-163232
論文名稱
Title
枯、豐水季濁水溪河口三角洲及潮坪沉積物傳輸型態和來源的研究
Seasonal sediment transport pathways and sources in the Jhoushuei river delta and tidal flat complex based on grain-size distributions
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
127
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-01-09
繳交日期
Date of Submission
2012-02-13
關鍵字
Keywords
有機碳/氮比、河口三角洲、沉積物傳輸趨勢、粒徑分佈、濁水溪、潮坪
C/N ratio, grain size distribution, Jhoushuei River, tidal flat, river delta, sediment transport vector
統計
Statistics
本論文已被瀏覽 5814 次,被下載 678
The thesis/dissertation has been browsed 5814 times, has been downloaded 678 times.
中文摘要
本研究利用在濁水溪河口三角洲及潮坪表層沉積物粒徑的分佈作為示蹤劑,藉此瞭解沉積物季節性的傳輸途徑和來源,採樣時間分別為2010年5月 (枯水季)及9月 (豐水季)。藉由McLaren-Bowles方法和衍生的Gao-Collins粒徑傳輸趨勢分析技術、多變數分析方法和顆粒有機碳/氮莫耳比,探討此區在枯、豐水季沉積物傳輸趨勢的變化和來源。
結果顯示研究地區之表層沉積物粒徑分佈,大致由陸地往外海方向,粒徑組成為黏土至中砂,其中極細砂僅分佈在河口三角洲上。泥因豐水季時期輸出大量的泥質沉積物,及低能量的沉積物傳輸,使得在豐水季期間上潮坪泥的含量相較於枯水季來的多。沉積物分佈型態的分析中,豐水季河流輸出對沉積物分佈影響最小,主要原因為濁水溪河流所攜帶主要以細顆粒沉積物為主,因為逕流強大部分的沉積物直接輸往外海,僅少部份的沉積物受到漲潮流影響輸送至潮坪。
McLaren-Bowles方法結果顯示沉積物傳輸途徑可分為兩種: (1)濁水溪河流輸出沉積物至外海,繼而受到沿岸流的作用下沿東北-西南方向傳輸,(2) 漲潮流將濁水溪輸出的沉積物分別往北和往東方向通過河口三角洲和潮溝傳輸至潮坪。Gao-Collins方法分析結果,沉積物傳輸季節性變化在三角洲前緣最為明顯,在豐水季時期傳輸往海方向,枯水季則是朝陸地方向傳輸。潮坪上的沉積物傳輸趨勢往外海方向主要是受到退潮時採樣的影響。
Abstract
This study used the sediment samples collected in May (dry season) and September (wet season) 2010 in a river delta and tidal flat complex around Jhoushuei River mouth in Central Taiwan to examine seasonal sediment transport pathways and sources. Four different approaches were used in the analysis of grain-size distribution pattern. They include (1) the McLaren-Bowles method, and (2) the transport vector technique (Gao-Collins method), and (3) a combination of `filtering' and the empirical orthogonal (eigen) function (EOF) analysis technique, and (4) C/N elemental ratios of organic sediments.
The results of surface grain size distributions of sediment range from clay to medium sand towards the sea, and very fine sand deposited in the river delta. On the upper tidal flat, mud content of the wet season is higher than dry season due to higher river output of organic sediment and low-energy sediment transport. In wet season, according to the fine-grained sediment from the Jhoushuei River is therefore mainly discharged to the offshore area and little remain around the tidal flat, the influence of river on the grain-size distribution is the least.
The results based on McLaren-Bowles method indicate that there were two type sediment transport pathways, (1) the river carried sediment to the coast, then alone the northeast-southwest direction by the longshore current, and (2) during the flood tide, the riverine sediment move to northeast and east through the river delta and tidal creek to the upper tidal flat, respectively. The results based on Gao-Collins method indicate that there was possible seasonal variation of sediment transport pathways on the river delta front, where the significant transport was seaward in the wet season whereas the transport was the opposite in the dry season. On the tidal flat, the model results indicate that seaward transport seems to be controlled by ebb tidal current perhaps due to the sampling at low-tide.
目次 Table of Contents
目 錄
誌謝 i
中文摘要 ii
英文摘要 iv
目錄 vi
圖目錄 x
表目錄 xiii
第一章 前言 1
1-1河口三角洲及潮坪地貌控制因素 2
1-1.1潮坪沉積物傳輸 5
1-2應用沉積物粒徑判別傳輸趨勢 6
1-3沉積物有機碳/氮莫耳比 9
1-4研究目的 10
第二章 研究區域 11
2-1 地理位置及流域介紹 11
2-1.1 氣候和河流水文特性 12
2-1.2 流域地質概況 14
2-2海洋作用 15
2-2.1波浪 16
2-2.2潮汐 16
2-2.3海流 19
2-2.4漂沙 19
2-3沖淡水擴散型態 21
2-4濁水溪河口海岸 21
第三章 研究方法 25
3-1表層沉積物採樣 25
3-2沉積物樣本分析 29
3-3沉積物傳輸趨勢分析 32
3-3.1 McLaren and Bowles方法 32
3-3.2 Gao and Collins方法 34
3-4沉積物分佈型態分析 38
3-4.1偏離場建立 38
3-4.2經驗正交函數分析 39
第四章 結果 42
4-1枯、豐水季沉積物粒徑空間分佈 42
4-1.1枯、豐水季沉積物粒徑空間分佈變化 49
4-2表層粒徑參數分佈結果 51
4-3有機碳、氮分佈和有機碳/氮莫耳比值之空間分佈 55
4-4 McLaren and Bowles方法之結果 56
4-4.1枯水季濁水溪河口三角洲及潮坪沉積物傳輸途徑型態 60
4-4.2豐水季濁水溪河口三角洲及潮坪沉積物傳輸途徑型態 62
4-5 Gao and Collins 方法之結果 64
4-5.1枯水季濁水溪河口三角洲及潮坪傳輸趨勢分析結果 64
4-5.2豐水季濁水溪河口三角洲及潮坪傳輸趨勢分析結果 65
4-6經驗函數分析結果 68
4-6.1影響沉積物分佈型態的各種可能因子之假設 68
4-6.2偏離場經由經驗函數分析後結果 70
4-7枯水季偏離場結果 74
4-7.1枯水季各偏離場第一種模態的比較 74
4-7.2枯水季各偏離場第二種模態的比較 75
4-8豐水季偏離場結果 79
4-8.1豐水季各偏離場第一種模態的比較 79
4-8.2豐水季各偏離場第二種模態的比較 80
4-9枯、豐水季碎屑性沉積物和有機碳、氮EOF分析結果 81
第五章 討論 85
5-1枯、豐水季沉積物粒徑空間分佈 85
5-1.1枯、豐水季沉積物粒徑空間變化 85
5-2枯、豐水季沉積物傳輸機制及途徑 85
5-2.1枯水季傳輸機制 86
5-2.2枯水季傳輸途徑和趨勢 87
5-2.3豐水季傳輸機制 88
5-2.4豐水季傳輸途徑和趨勢 89
5-2.5沉積物傳輸和季節變化 89
5-3枯、豐水季有機碳、氮空間分佈 90
5-3.1枯、豐水季有機碳/氮莫耳比分佈 91
第六章 結論 92
參考文獻 94
附錄 104

圖目錄
圖1-1三角洲地形根據潮汐、波浪及河流三角分類圖 3
圖1-2三角洲地形根據潮汐、波浪、河流及粒徑分類圖 4
圖1-3潮坪海岸地貌根據潮汐、波浪及粒徑分類圖 4
圖2-1濁水溪流域圖 11
圖2-2麥寮全年風向玫瑰圖 12
圖2-3溪州大橋流量站 13
圖2-4 修改海岸沉積環境分類 17
圖2-5 濁水溪近岸潮流流場模擬結果 18
圖2-6濁水溪出海口各個不同時期沖淡水衛星影像 23
圖2-7 濁水溪河口三角洲及潮坪漲、退潮衛星影像 24
圖3-1 實驗流程圖 26
圖3-2枯、豐水季沉積物站位分佈圖 27
圖3-3抓泥器示意圖 28
圖3-4二維沉積物輸運趨勢分析步驟示意圖 37
圖3-5去除雜訊概念圖 37
圖3-6數值內插進行補點方法 37
圖3-7 建立偏離場流程圖 40
圖3-8 EOF分析流程圖 41
圖4-1枯、豐水季表層沉積物之黏土粒徑群空間分佈 43
圖4-2枯、豐水季表層沉積物之粉砂粒徑群空間分佈 44
圖4-3枯、豐水季表層沉積物之極細砂粒徑群空間分佈 45
圖4-4枯、豐水季表層沉積物之細砂粒徑群空間分佈 46
圖4-5枯、豐水季表層沉積物之中砂粒徑群空間分佈 47
圖4-6枯、豐水季表層沉積物之粗砂粒徑群空間分佈 48
圖4-7枯、豐水季表層沉積物之各個粒徑群空間分佈變化 50
圖4-8枯、豐水季表層沉積物粒徑之平均粒徑空間分佈圖 52
圖4-9枯、豐水季表層沉積物粒徑之淘選度空間分佈圖 53
圖4-10枯、豐水季表層沉積物粒徑之歪斜度空間分佈圖 54
圖4-11枯、豐水季表層沉積物有機碳空間分佈圖 57
圖4-12枯、豐水季表層沉積物總氮空間分佈圖 58
圖4-13枯、豐水季表層沉積物有機碳/氮莫耳比空間分佈圖 59
圖4-14枯、豐水季濁水溪河口三角洲及潮坪假設的傳輸路徑 61
圖4-15枯、豐水季濁水溪河口三角洲及潮坪表層沉積物傳輸途徑示意圖 66
圖4-16枯、豐水季濁水溪河口三角洲及潮坪表層沉積物傳輸趨勢圖 67
圖4-17 研究地區內各個假設因子之採樣點位分佈圖 71
圖4-18 碎屑性沉積物各假設因子之平均粒徑組成分佈圖 72
圖4-19 各假設因子與原始資料經過EOF分析後所得到前特徵兩種模態累積變異度 73
圖4-20 枯水季三種假設因子的第一種模態 76
圖4-21 枯水季三種假設因子的第二種模態 78
圖4-22 豐水季三種假設因子的第一種模態 82
圖4-23 豐水季三種假設因子的第二種模態 83
圖4-24 枯、豐水季碎屑性沉積物和有機碳、氮經由經驗函數分析結果 84
表目錄
表2-1世界前25高輸砂量的河流 13
表2-2麥寮潮位站,1998~2010年實測潮位分析表 17
表2-3濁水溪近岸海域海流 20
表2-4濁水溪出海口各個不同時期潮汐、流量及風向表 22
表3-1 Udden-Wentworth粒徑等級規範 31
表3-2粒徑參數組合 34
參考文獻 References
中文部份
中興工程顧問有限公司,2010。彰化縣西南角(大城)海埔地工業區工業專用港開發環境影響評估報告。台北市,國光石化科技股份有限公司。
台塑麥寮港海氣象資訊網,網址:http://www.comc.ncku.edu.tw/mailiao。
私立逢甲大學營建及防災中心,2007。 河川高攤地淤積砂石開採可行性評估研究。台北市,經濟部水利署。
林宗儀,2003。 雲林海岸漂砂研究。華岡地理學報,第十六期,第25-41頁。
洪奕星、蔡政翰、歐俊宏、曾信勝、遲建業,1995。曾文溪三角洲海域季節性沉積物之傳輸。地質第十七屆海洋工程研討會暨1995兩岸港口及海岸開發研討會論文集,第1327-1344。
美國地質調查所,網址:http://www.usgs.gov。
孫林耀明,1988,台灣西岸海埔地自然特性及開發利用之分析,文化大學地理研究所博士論文。第18-22頁。
氣象局麥寮氣象站,網址:http://www.cwb.gov.tw。
高樹基,1995。高剝蝕率島嶼之碳的生物地球化學:以蘭陽溪流域為例。國立台灣大學海洋研究所博士論文,262頁。
國立交通大學防災工程研究中心,2006。全省主要河川流域地質資料查核:鳳山溪及濁水溪專題報告書。台中縣,經濟部水利署水利規劃試驗所(3) 12-64。
張瑞津,1983。濁水溪沖積扇河道變遷之探討,《地理學研究》第七期,國立台灣師範大學地理系,第85-100 頁。
張嫚珊,2008。台灣海峽東側沉積物之來源及傳輸途徑,國立台灣大學海洋研究所碩士論文,94頁。
許明雄、余進利、鄭志維,2003。雲林離島工業區附近海域海流調查研究,第25屆海洋工程研討會論文集,第579-586。
許鳳心,2008。台灣西南海域有機碳沉降受鄰近島嶼型河川顆粒傳輸影響之研究,國立台灣大學海洋研究所碩士論文,80頁。
陳文福和江崇榮,1999。 濁水溪扇州及鄰近地區之沉積物分佈與沉積環境,地質第十八卷。台北市,經濟部中央地質調所。
黃煌煇、高瑞棋、余進利、江文山、劉大綱、溫進丁、許明雄、凃力夫,2005。彰化濱海工業區整體開發規劃調查研究94年度第一部份現場調查監測及分析第一冊壹、海域地形水深調查貳、海流流況調查參、彰濱工業區潮汐觀測。台南市,成功大學水工試驗所。
楊仁凱,2010。沖淡水中粒徑之時空變化,國立中山大學海洋地質及化學研究所,160頁。
楊玉皎,2007。南台灣近岸海域沉積物的傳輸型態,國立中山大學海洋地質及化學研究所碩士論文,105頁。
經濟部水資源局,2007。臺灣水文年報。台北市,經濟部水利署台北辦公區。
經濟部水資源局,2008。臺灣水文年報。台北市,經濟部水利署台北辦公區。
經濟部水資源局,2009。臺灣水文年報。台北市,經濟部水利署台北辦公區。
經濟部水資源局,2010。臺灣水文年報。台北市,經濟部水利署台北辦公區。
臺灣糖業公司雲林海埔地墾殖實驗處編,1962。雲林海埔地四十九及五十年度工作報告。台北市,臺灣糖業公司雲林海埔地墾殖實驗處。
劉琨章,2000。從沉積物粒徑的分佈來看高屏溪口近岸海域的沉積物傳輸,國立中山大學海洋地質及化學研究所碩士論文,99頁。

英文部份
Aitkenhead, J.A., McDowell, W.H., 2000. Soil C/N ratios as a predictor of annual riverine DOC flux at local and global scales. Global Biogeochemical Cycles. 14, 127–138.
Anderson, R.N., 1988. Marine Geology-A Planet Earth Perspective. New York, Wiley. 328p.
Asselman, N.E.M., 1999. Grain size trends used to assess the effective discharge for floodplain sedimentation, River Waal, the Netherlands. Journal of Sedimentary Research. 69, 51–61.
Carvalho, C., Anjos, R.M., Veiga, R., Macario, K., 2011. Application of radiometric analysis in the study of provenance and transport processes of Brazilian coastal sediments. Journal of Environmental Radioactivity. 102, 185-192.
Chang, Y.H., Scrimshaw M.D., Lester, J.N., 2001. A revised grain size trend analysis program to define net sediment transport pathways. J. Computers & Geosciences. 27, 109-114.
Cheng, P., Gao, S., Bokuniewicz, H., 2004. Net sediment transport patterns over the Bohai Strait based on grain size trend analysis. Estuarine, Coastal and Shelf Science. 60, 203–212.
Cifuentes, L.A., 1991. Spatial and temporal variations in terrestrial-derived organic matter from sediments of the Delaware Estuary. Estuaries. 14, 414-429.
Dadson, S.J., Hovius, N., Chen, H., Dade, W.B., Hsieh, M.L., Willett, S.D., Hu, J.C., 2003. Links between erosion runoff variability and seismicity in the Taiwan orogen. Nature. 426, 648–651.
Eisma, D., 1998. Intertidal Deposits: River, Mouths, Tidal Flats, and Coastal Lagoons, CRC Press LLC, Florida, 525.
Friedman, G.M., 1967. Dynamic processes and statistical parameters compared for size frequency distribution of beach and river sands. J. Geology petrology. 37, 327-354.
Galloway, W.E., 1975. Process framework for describing the morphologic and stratigraphic evolution of deltaic depositional systems. In Broussard, M.L. (ed), Deltas: Models for Exploration. Houston, TX: Houston Geological Society, 87–96.
Gao, S., Collins, M., 1992. Sand sediment transport patterns inferred from grain-size trends based upon definition of “transport vectors”. Sediment. Geol. 80, 47–60.
Gyllencreutz, R., Mahiques, M.M., Alves, D.V.P., Wainer, I.K.C., 2010. Mid to late-Holocene paleoceanographic changes on the southeastern Brazilian shelf based on grain size records. The Holocene. 20(6) 863-875.
Hayes, M.O., 1979. Barrier island morphology as a function of tidal and wave regime. In: Barrier island from the Gulf of St. Lawrrence to the Gulf of Mexico, Leatherman, S.P. (ed), Academic Press, New York, 1-27.
Horng, C.S., Huh, C.A., 2011. Magnetic properties as tracers for source to sink dispersal of sediments: A case study in the Taiwan Strait. Earth Planet. Sci. Lett., 309, 141-152.
Huh, C.A., Chen, W., Hsu, F.H., Su, C.C., Chiu, J.K., Lin, S., Liu, C.S. and Huang, B.J. 2011. Modern (<100 years) sedimentation in the Taiwan Strait: rates and source-to-sink pathways elucidated from radionuclides and particle size distribution. Continental Shelf Research. 31, 47-63.
Kao, S.J., Milliman, J.D., 2008. Water and sediment discharge from small mountainous rivers, Taiwan: the roles of lithology, episodic events, and human activities. Journal of Geology. 116, 431–448.
Kirby, R., 2000. Practical implications of tidal &#64258;at shape. Continental Shelf Research. 20, 1061–1077.
Kremer, H.H., Le Tissier, M.D.A., Burbridge, P.R., Talaue-McManus, L., Rabalais, N.N., Parslow, J., Crossland, C.J., Young, B., 2005. IGBP Report 51 / IHDP Report 18. Land–Ocean Interactions in the Coastal Zone (LOICZ): Science Plan and Implementation Strategy Structure.
Le Roux, J.P., 1994. Net sand sediment transport patterns inferred from grain size trends, based upon definition of transport vectors comment. Sediment. Geol. 90, 153–156.
Le Roux, J.P., Rojas, E.M., 2007. Sediment transport patterns determined from grain-size parameters: overview and state of the art. Sedimentary Geology. 202, 473-488.
Liao, H.R., Yu, H.S., Su, C.C., 2008. Morphology and sedimentation of sand bodies in the tidal shelf sea of eastern Taiwan Strait. Marine Geology. 248, 161-178.
Liu, J.T., Yuan, P.B., Hung, J.J., 1998. The coastal transition at the mouth of a small mountainous river in Taiwan. Sedimentology. 45, 803-816.
Liu, J.T., Huang, J.S., Chyan, J.M., 2000. The coastal depositional system of a small mountainous river: a perspective from grain-size distributions. Marine Geology. 165, 63-86.
Liu, J.T., Liu, K.J., Huang, J.C., 2002. The effect of a submarine canyon on the river sediment dispersal and inner shelf sediment movements in southern Taiwan. Marine Geology. 181, 357-386.
Liu, J.T., Hung, J.J. and Huang, Y.W. 2009. Partition of suspended and riverbed sediments related to the salt-wedge in the lower reaches of a small mountainous river. Marine Geology. 264, 152–164.
Liu, J.P., Liu, C.S., Xu, K.H., Milliman, J.D., Chiu, J.K., Kao, S.J., Lin, S.W., 2008. Flux and fate of small mountainous rivers derived sediments into the Taiwan Strait. Marine Geology. 256, 65–76.
McCave, I.N., 1978. Grain-size trends and transport along beaches: an example from eastern England. Marine Geology. 28, 43-51.
McLaren, P., 1981. An interpretation of trends in grain size measures. J. Sediment. Petrol. 51 (2), 611–624.
McLaren, P., Bowles, D., 1985. The effects of sediment transport on grain-size distribution. J. Sediment. Petrol. 55, 457-470.
Meade, R.H., Nordin, C.F., Curtis, W.F., Curtis, W.F., Costarodrigues, F.M., Dovale, C.M. and Edmond, J.M., 1979. Sediment loads in the Amazon River. Nature. 278, 161-163.
Meybeck, M., 1994. Origin and variable composition of present day riverborne material. Material Fluxes on the Surface of the Earth, National Academy of Sciences. 61–73.
Milliman, J.D., Meade, R.H., 1983. Worldwide delivery of river sediment to the oceans. J .Geology. 91, 1-21.
Miliman J.D, Shen, H.T., Yang Z.S., Meade, R.H, 1985. Transport and deposition of river sediment in the Changjiang estuary and adjacent continental shelf. Continental Shelf Research. 4, 37- 45.
Milliman, J.D., Lin, S., Kao, S.J., Liu, J.P., Liu, C.S., Liu, J.K., Lin, Y.C., 2007. Short-term changes in seafloor character due to Flood-derived hyperpycnal discharge: Typhoon Mindulle, Taiwan, July 2004. J. Geol. 35, 779-782.
Morton, R.A., 2003. An Overview of Coastal Land Loss: with Emphasis on the Southeastern United States. U.S. Geological Survey. Open File Report, 03-337.
Navarro, M., Munoz-Perez, J.J., Roman-Sierra, J., Tsoar, H., Rodriguez, I., Gomez-Pina, G., 2011. Assessment of highly active dune mobility in the medium, short and very short term, Geomorphology. 129, 14–28.
Nielsen, A.A., Conradsen, K., Andersen, Ole Baltazar., 2002. A change oriented extension of EOF analysis applied to the 1996-1997 AVHRR sea surface temperature data. Physics and Chemistry of the Earth. 27, 1379-1386.
Nummedal, D., Fishcher, I.A., 1978. Process-response modes for depositional shorelines: thee German and the Georgia Bights. Proc. 16th Coastal Eng. Conf., ASCE, 543-562.
Orton, G.J., Reading, H.G., 1993. Variability of deltaic processes in terms of sediment supply with particular emphasis on grain size. Sedimentology. 40, 475–512.
Pedreros, R., Howa, H.L., Michel, D., 1996. Application of grain size trend analysis for the determination of sediment transport pathways in intertidal areas. Marine Geology 135, 35–49.
Pettijihon, F.G., Potter, P.D. and Siever, R., 1972. Sand and sandstone. Springer, New York, 618.
Poizot, E., Me’ar, Y., 2010. Using a GIS to enhance grain size trend analysis, Environmental Modelling & Software. 25, 513–525.
Poizot, E., Me’ar, Y., Thomas, M., Garnaud, S., 2006. The application of geostatistics in de&#64257;ning the characteristic distance for grain size trend analysis. Computers & Geosciences. 32 (3), 360–370.
Postma, H., 1961, Transport and accumulation of suspended matter in the Dutch Wadden Sea, Neth. J. Sea Res., 1, 148–180.
Redfield, A.C., Ketchum, B.H., Richards, F. A., 1963. The influence of organisms on the composition of sea water. In ‘‘The Sea’’, 2, M. N. Hill ed., Wiley-Interscience, New York, 26-77.
Rios, E.M., Cisternas, Marco., Le Roux, J.P., Correa, I., 2002. Seasonal sediment transport pathways in Lirquen Harbor, Chile, as inferred from grain-size trends, Invest. Mar. 30, 3-23.
Rojas, E.M., Le Roux, J.P., Cisternas, M., 2000. Metodologia y algoritmos que permiten determinar las direcciones de transporte de sedimentos utilizando parametros granulometricos: caso teorico y aplicacion a una cuenca activa. Abstract Volume IX Congreso Geologico Chileno, 1. Sociedad Geologica de Chile, Santiago, 539 – 543.
Syvitski, J.P.M., 2003. Supply and flux of sediment along hydrological pathways: research for the 21st century. Global and Planetary Change. 39, 1–11.
Tolkova, E., 2010. EOF analysis of a time series with application to tsunami detection, Dynamics of Atmospheres and Oceans. 50, 35–54.
Visher, G.S., 1969. Grain size distributions and depositional processes. J. Sediment. Petrol. 26, 3-32.
Wu, J.X., Shen, H.T., 1999. Estuarine bottom sediment transport based on the ‘McLaren model’: a case study of Huangmaohai Estuary, South China. Estuarine, Coastal and Shelf Science. 49, 265–279.
Xu, K.H., Milliman, J.D. Li, Anchun., Liu, J.P., Kao, S,J., Wan, Shiming., 2009. Yangtze- and Taiwan-derived sediments on the inner shelf of East China Sea. Continental Shelf Research. 29, 2240–2256.
Yang, S., Yim, Wyss, W.S., Huang, G.Q., 2008. Geochemical composition of inner shelf Quaternary sediments in the northern South China Sea with implications for provenance discrimination and paleoenvironmental reconstruction, Global and Planetary Change. 60, 207– 221.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code