Responsive image
博碩士論文 etd-0213117-142234 詳細資訊
Title page for etd-0213117-142234
論文名稱
Title
抗聚乙二醇抗體創新定量平台開發及其與聚乙二醇化紅血球生成素療效之相關性
Development of an innovative quantitative platform by anti-polyethylene glycol antibody and the correlation of anti-PEG antibody with the therapeutic efficacy of PEGylated erythropoietin
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
157
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-03-07
繳交日期
Date of Submission
2017-03-13
關鍵字
Keywords
不同立體空間、腎性貧血、抗聚乙二醇抗體、美血樂、最佳組合、細胞基礎三明治酵素免疫吸附試驗
renal anemia, Mircera, different dimensions, cell-based sandwich ELISA, anti-poly(ethylene glycol) antibody, optimal pair
統計
Statistics
本論文已被瀏覽 5737 次,被下載 52
The thesis/dissertation has been browsed 5737 times, has been downloaded 52 times.
中文摘要
敏感分析聚乙二醇修飾藥物於體內的藥物動力學將能加速藥物的開發時程。本論文首先結合表現不同抗聚乙二醇抗體之捕捉細胞(293T/3.3 [binding PEG MW≥2000 Da]、293T/6.3 [binding PEG MW≥750 Da]及293T/15-2b [binding CH3O-end PEG]細胞)、四種含有不同抗聚乙二醇抗體之腹水(3.3、6.3、15-2b或7A4 [binding PEG MW≥750 Da])及辣根過氧化氫酶鏈結抗鼠源免疫球蛋白G固定區之二級抗體,開發出最佳化之抗聚乙二醇細胞基礎三明治酵素免疫吸附試驗來定量自由型聚乙二醇(mPEG2K-NH2及mPEG5K-NH2)或聚乙二醇鏈結之小分子(mPEG5K-Biotin及mPEG5K-NIR797)、蛋白(PegIntron及Pegasys)及奈米粒子(Liposomal-Doxorubicin; Lipo-Dox及Quantum-Dots; QDs)。結果指出293T/15-2b細胞能較293T/3.3及293T/6.3細胞於ng mL-1的層級更敏感的偵測自由型聚乙二醇、類聚乙二醇分子與聚乙二醇修飾蛋白。其中293T/15-2b細胞與7A4偵測抗體的組合具有最佳的偵測效率。另一方面,293T/3.3細胞結合15-2b抗體能偵測到2 ng mL-1的Lipo-Dox,擁有最高的敏感度。然而三種抗聚乙二醇抗體表現細胞結合15-2b抗體均能敏感偵測到7 pM的QD。這些結果指出結合293T/15-2b細胞及7A4抗體為敏感定量自由型聚乙二醇、類聚乙二醇分子與聚乙二醇修飾蛋白的最佳組合;而293T/3.3細胞與15-2b抗體較適合用於定量聚乙二醇修飾之奈米粒子。
即便最佳化的抗聚乙二醇細胞基礎三明治酵素免疫吸附試驗能敏感地定量自由型甲氧基聚乙二醇及甲氧基聚乙二醇修飾分子,但由於較少表位暴露的關係,抗聚乙二醇骨架之細胞基礎三明治酵素免疫吸附試驗偵測小於5000道爾吞之聚乙二醇的能力依舊很差。因此我們接著藉由表現不同立體空間的抗聚乙二醇骨架抗體(AGP3)於人類腎臟細胞表面(293T/S-αPEG;短型細胞、293T/L-αPEG;長型細胞及293T/SL-αPEG;混合型細胞),開發出敏感的三明治酵素免疫吸附試驗來提升對自由型聚乙二醇及聚乙二醇修飾分子的負載力與偵測敏感度。結果顯示混合型細胞對類聚乙二醇分子(CH3-PEG5K-FITC及8-arm PEG20K-FITC)的負載力較表現單一長度抗聚乙二醇抗體之293T細胞高出10至80倍。混合型細胞基礎三明治酵素免疫吸附試驗能敏感偵測到14-137 ng ml-1的自由型聚乙二醇(OH-PEG3K-NH2及CH3-PEG5K-NH2)及類聚乙二醇分子(CH3-PEG5K-FITC, CH3-PEG5K-SHPP及CH3-PEG5K-NIR797)。293T/SL-αPEG細胞也能較293T/S-αPEG或293T/L-αPEG細胞乘載更多且更敏感地偵測到3.2-16 ng ml-1的聚乙二醇修飾蛋白(PegIntron)及多臂聚乙二醇大分子(8-arm PEG20K-NH2及8-arm PEG40K-NH2)。
由於聚乙二醇已經廣泛應用於我們的生活當中,內生性及誘導性抗聚乙二醇抗體於人體內越來越常見。這些抗聚乙二醇抗體可能會限制聚乙二醇修飾藥物的治療效率。因此研究抗聚乙二醇抗體對聚乙二醇修飾藥物之藥物動力學及療效的影響是相當重要的。論文的最後,我們將探討抗聚乙二醇抗體與聚乙二醇修飾之紅血球生成素(Mircera®)於腎性貧血患者體內的藥物動力學及療效之相關性。我們檢測以Mircera治療之腎性貧血患者體內抗聚乙二醇抗體的含量並將其與貧血指標進行相關性分析。結果顯示Mircera治療無效的族群體內抗聚乙二醇抗體含量較治療有效的族群要高出許多(P<0.05)。而抗聚乙二醇抗體的含量與貧血的治療指標(血紅素[Hb, P<0.001]、血比容[Hct, P<0.001]及紅血球數量[P<0.01])呈現顯著負相關的關係。於動物實驗也證實給予外生性抗聚乙二醇抗體(6.3)能明顯地加速聚乙二醇修飾之紅血球生成素於動物體內循環的清除。以上的結果說明了抗聚乙二醇的含量與Mircera的治療效果及貧血治療指標(血紅素、血比容及紅血球數量)均呈現負相關的關係。我們相信最佳化及不同長度的抗聚乙二醇抗體表現細胞基礎三明治酵素免疫吸附試驗能於藥物開發的過程中提供敏感、精確且方便的工具來定量各式各樣的聚乙二醇修飾分子。此外,抗聚乙二醇抗體與Mircera 療效的相關性研究成果也將協助臨床醫師為慢性腎臟病患者制定妥善的治療策略,達到個人化醫療之目的。
Abstract
Sensitive analysis of the pharmacokinetics of PEGylated molecules can accelerate the process of drug development. In this thesis, we first developed an optimized anti-PEG cell-based sandwich enzyme-linked immunosorbent assay (ELISA) by combining different anti-PEG Fab expressing 293T cells as capture cells (293T/3.3 [binding PEG MW≥2000 Da], 293T/6.3 [binding PEG MW≥750 Da] and 293T/15-2b [binding CH3O-end PEG] cells) with four ascites of anti-PEG antibodies (3.3, 6.3, 15-2b or 7A4 [binding PEG MW≥750 Da]) and HRP-conjugated anti-mouse IgG Fc secondary antibodies for quantification of free PEG (mPEG2K-NH2 and mPEG5K-NH2) or PEG-conjugated small molecules (mPEG5K-Biotin and mPEG5K-NIR797), proteins (PegIntron and Pegasys) and nanoparticles (Liposomal-Doxorubicin; Lipo-Dox and Quantum-Dots; QDs). Results indicated that 293T/15-2b had higher detection sensitivity of free PEG, PEG-like molecules and PEGylated proteins than 293T/3.3 and 293T/6.3 cells at ng mL-1 levels. This was particularly true of the combination of 293T/15-2b and 7A4 detection antibody, which had the best detection efficiency. On the other hand, 293T/3.3 combined with 15-2b antibody had the highest sensitivity for quantifying Lipo-Dox at 2 ng mL-1. Notwithstanding, all three types of anti-PEG cells combined with 15-2b had high sensitivity for QD quantification at 7 pM. These results suggest that the combination of 293T/15-2b and 7A4 detection antibody is the optimal pair for sensitive quantification of free PEG, PEG-like molecules and PEGylated proteins; and the 293T/3.3 cells combined with 15-2b are more suitable for quantifying PEGylated nanoparticles.
Despite the fact that the optimized anti-PEG cell-based sandwich ELISA can efficiently quantify free mPEG and mPEGylated molecules, the detection sensitivity remains relatively poor for PEG molecules smaller than 5000 Da in anti-PEG backbone cell-based sandwich ELISA because of fewer epitopes for anti-PEG detection antibodies. Thus, we next developed a sensitive sandwich ELISA for PEG by tethering anti-PEG antibodies (AGP3) via tethers with different dimensions on the surface of 293T cells (293T/S-αPEG, short-type cells; 293T/L-αPEG, long-type cells and 293T/SL-αPEG, hybrid-type cells) to improve the binding capacity and detection sensitivity for free PEG and PEGylated molecules. The binding capacity of hybrid-type cells for PEG-like molecules (CH3-PEG5K-FITC and 8-arm PEG20K-FITC) was at least 10- to 80-fold greater than for 293T cells expressing anti-PEG antibodies with uniform tether lengths. The detection sensitivity of free PEG (OH-PEG3K-NH2 and CH3-PEG5K-NH2) and PEG-like molecules (CH3-PEG5K-FITC, CH3-PEG5K-SHPP and CH3-PEG5K-NIR797) was 14-137 ng ml-1 in the hybrid-type cell-based sandwich ELISA. 293T/SL-αPEG cells also had significantly higher sensitivity for quantification of a PEGylated protein (PegIntron) and multi-arm PEG macromolecules (8-arm PEG20K-NH2 and 8-arm PEG40K-NH2) at 3.2, 16 and 16 ng ml-1, respectively. Additionally, the overall binding capacity of 293T/SL-αPEG cells for PEGylated macromolecules was higher than 293T/S-αPEG or 293T/L-αPEG cells.
Naturally occurring or induced anti-PEG antibodies have been commonly observed in humans and PEG is widely encountered in our daily lives. The associated anti-PEG antibodies may restrict the therapeutic efficacy of PEGlyated drugs. Therefore, it is important to study the effect of anti-PEG antibodies on the pharmacokinetics and therapeutic efficacy of PEGylated drugs before therapeutic performance. Finally, we focus on the study of correlation between anti-PEG antibodies with the pharmacokinetics and therapeutic efficacy of PEG-EPO (Mircera) in renal anemia patients. We analyzed the level of anti-PEG antibodies and correlated it with anemia indexes in Mircera-treated renal anemia patients. Results show that the level of anti-PEG antibodies in the Mircera insensitive population was significantly (P < 0.05) higher than in the Mircera sensitive population. The level of anti-PEG antibodies was negatively correlated with treatment indexes (hemoglobin [Hb, P < 0.001], hematocrit [Hct, P < 0.001] and RBC count [P < 0.01]) of anemia. The exogenous anti-PEG antibody (6.3) dramatically accelerated the clearance of PEG-EPO from the circulation in an animal model as compared with control mice. Together, the level of anti-PEG antibodies was negatively correlated with therapeutic efficacy of Mircera and the treatment indexes of anemia (Hb, Hct and RBC count). We believe that the optimized and variable length anti-PEG Ab tethered cell-based sandwich ELISA can provide a sensitive, precise and convenient tool for the quantification of each type of PEGylated molecule during drug development. This observational study of correlation between anti-PEG antibody and therapeutic efficacy of Mircera provides strong support for clinicians to decide therapeutic strategies and carry out personal medicine in chronic kidney disease.
目次 Table of Contents
CONTENT
誌謝 ii
中文摘要 iii
ABSTRACT v
LIST OF FIGURES x
TABLE OF CONTENTS xii
APPENDICES xiii
ABBREVIATIONS xiv
INTRODUCTION 1
Chapter 1: Optimization of an anti-poly(ethylene glycol) (anti-PEG) cell-based capture system to quantify PEG and PEGylated molecules 10
1. Introduction 11
2. Materials and Methods 14
2-1. Reagents 14
2-2. Cells and Animals 14
2-3. Antibodies 15
2-4. Characterization of the Anti-PEG Antibody 16
2-5. Plasmid Construction 17
2-6. Generation of anti-PEG Expressing Cells by Lentiviral Transduction 17
2-7. Fluorescence-Activated Cell Sorting Analysis of the anti-PEG Expressing Cells 18
2-8. Anti-PEG Cell-Based Sandwich ELISA 18
2-9. ELISA Data Analysis 19
3. Results 21
3-1. Characterization of Anti-PEG Antibodies 21
3-2. Surface Display of Functional Anti-PEG Antibodies on 293T Cells 22
3-3. Quantification of free PEG and PEG-like Molecules by anti-PEG Cell-Based Sandwich ELISA 22
3-4. Quantification of PEGylated Proteins by anti-PEG Cell-Based Sandwich ELISA 24
3-5. Quantification of PEGylated Nanoparticles by anti-PEG Cell-Based Sandwich ELISA 25
4. Figures and Tables 26
5. Discussion 34
6. Conclusion 39
Chapter 2: Steric membrane anti-poly(ethylene glycol) antibody enhances sensitivity for quantifying PEG and PEGylated molecules 40
1. Introduction 41
2. Materials and Methods 45
2-1. Cells and Reagents 45
2-2. Plasmid Construction 45
2-3. Generation of Short-, Long- and Hybrid-Type Anti-PEG Expressing Cells by Lentiviral Transduction 46
2-4. Western Blot Analysis of the anti-PEG Expressing Cells 47
2-5. Fluorescence-Activated Cell Sorting Analysis of the anti-PEG Expressing Cells 47
2-6. Anti-PEG Cell-Based Sandwich ELISA 48
2-7. Modeling the structures and calculating the length of short- (AGP3-eB7) and long-type (AGP3-PTK7) anti-PEG Fab 49
2-8. Statistical Analysis 50
3. Results 51
3-1. Characterization of Short-, Long- or Hybrid-type Anti-PEG Antibodies-Expressing 293T cells 51
3-2. Binding Capacity of PEGylated Molecules in Short-, Long- or Hybrid-type Anti-PEG Antibodies-Expressing 293T cell 52
3-3. Quantification of Free PEG and PEG-like Molecules by anti-PEG Cell-Based Sandwich ELISA 53
3-4. Quantification of PEGylated protein and multi-arm PEG macromolecules by anti-PEG Cell-Based Sandwich ELISA 54
3-5. Speculative Model for Higher Capacity and Detective Sensitivity of PEG molecules in Hybrid-tethered Anti-PEG Antibody-Expressing 293T cells 55
4. Figures 57
5. Discussion 64
6. Conclusion 69
Chapter 3: The effect of endogenous anti-poly(ethylene glycol) antibody on the therapeutic efficiency of long-acting erythropoietin in renal anemia triggered by peritoneal dialysis in CKD patients Introduction 71
1. Introduction 72
2. Materials and Methods 76
2-1. Patients 76
2-2. Animals 76
2-3. Antibodies and Reagents 76
2-4. Analysis of anti-PEG antibodies in plasma of CKD patients 77
2-5. Clearance of Mircera in vivo 78
2-6. Statistical Analysis 78
3. Results 79
3-1. Hemoglobin level in Mircera-treated chronic kidney disease patients 79
3-2. Detection of anti-PEG antibodies in plasma samples of CKD patients by direct PEG-based ELISA 79
3-3. Correlation of the level of anti-PEG antibodies and the effectiveness of Mircera-treated CKD patients 79
3-4. Relationship between the level of anti-PEG antibodies and anemia indexes of Mircera-treated CKD patients 80
3-5. In vivo clearance of PEG-EPO 81
4. Figures and Tables 83
5. Discussion 100
6. Conclusions 108
CONCLUSIONS 109
REFERENCES 115
參考文獻 References
REFERENCES
1. Cheng, T.L., Chuang, K.H., Chen, B.M. & Roffler, S.R. Analytical measurement of PEGylated molecules. Bioconjug Chem 23, 881-899 (2012).
2. Harris, J.M. & Chess, R.B. Effect of pegylation on pharmaceuticals. Nature reviews. Drug discovery 2, 214-221 (2003).
3. Veronese, F.M. & Pasut, G. PEGylation, successful approach to drug delivery. Drug discovery today 10, 1451-1458 (2005).
4. Kyluik-Price, D.L., Li, L. & Scott, M.D. Comparative efficacy of blood cell immunocamouflage by membrane grafting of methoxypoly(ethylene glycol) and polyethyloxazoline. Biomaterials 35, 412-422 (2014).
5. Jokerst, J.V., Lobovkina, T., Zare, R.N. & Gambhir, S.S. Nanoparticle PEGylation for imaging and therapy. Nanomedicine 6, 715-728 (2011).
6. Yowell, S.L. & Blackwell, S. Novel effects with polyethylene glycol modified pharmaceuticals. Cancer Treat Rev 28 Suppl A, 3-6 (2002).
7. Brinckerhoff, L.H. et al. Terminal modifications inhibit proteolytic degradation of an immunogenic MART-1(27-35) peptide: implications for peptide vaccines. International journal of cancer 83, 326-334 (1999).
8. He, Q. et al. The effect of PEGylation of mesoporous silica nanoparticles on nonspecific binding of serum proteins and cellular responses. Biomaterials 31, 1085-1092 (2010).
9. Owens, D.E., 3rd & Peppas, N.A. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. International journal of pharmaceutics 307, 93-102 (2006).
10. Chaffee, S. et al. IgG antibody response to polyethylene glycol-modified adenosine deaminase in patients with adenosine deaminase deficiency. The Journal of clinical investigation 89, 1643-1651 (1992).
11. Turecek, P.L., Bossard, M.J., Schoetens, F. & Ivens, I.A. PEGylation of Biopharmaceuticals: A Review of Chemistry and Nonclinical Safety Information of Approved Drugs. J Pharm Sci 105, 460-475 (2016).
12. Guiotto, A. et al. Efficient and chemoselective N-acylation of 10-amino-7-ethyl camptothecin with poly(ethylene glycol). Bioorganic & medicinal chemistry letters 14, 1803-1805 (2004).
13. Sedlak, M. et al. Synthesis and characterisation of a new amphotericin B-methoxypoly(ethylene glycol) conjugate. Bioorganic & medicinal chemistry letters 11, 2833-2835 (2001).
14. Chuang, K.H. et al. Development of an Anti-Methoxy Poly(ethylene glycol) (α-mPEG) Cell-Based Capture System to Measure mPEG and mPEGylated Molecules. Macromolecules 47, 6880-6888 (2014).
15. Li, W. et al. Synthesis, in vitro and in vivo release kinetics, and anti-HIV activity of a sustained-release prodrug (mPEG-AZT) of 3'-azido-3'-deoxythymidine (AZT, Zidovudine). ChemMedChem 5, 1893-1898 (2010).
16. Manns, M.P. et al. Peginterferon alfa-2b plus ribavirin compared with interferon alfa-2b plus ribavirin for initial treatment of chronic hepatitis C: a randomised trial. Lancet 358, 958-965 (2001).
17. Molineux, G. The design and development of pegfilgrastim (PEG-rmetHuG-CSF, Neulasta). Current pharmaceutical design 10, 1235-1244 (2004).
18. Sanchez-Fructuoso, A. et al. Anemia control in kidney transplant patients treated with methoxy polyethylene glycol-epoetin beta (mircera): the Anemiatrans Group. Transplantation proceedings 42, 2931-2934 (2010).
19. Heathcote, E.J. et al. Peginterferon alfa-2a in patients with chronic hepatitis C and cirrhosis. The New England journal of medicine 343, 1673-1680 (2000).
20. Reddy, K.R. et al. Efficacy and safety of pegylated (40-kd) interferon alpha-2a compared with interferon alpha-2a in noncirrhotic patients with chronic hepatitis C. Hepatology 33, 433-438 (2001).
21. Barenholz, Y. Doxil(R)--the first FDA-approved nano-drug: lessons learned. J Control Release 160, 117-134 (2012).
22. Passero, F.C., Jr., Grapsa, D., Syrigos, K.N. & Saif, M.W. The safety and efficacy of Onivyde (irinotecan liposome injection) for the treatment of metastatic pancreatic cancer following gemcitabine-based therapy. Expert Rev Anticancer Ther 16, 697-703 (2016).
23. Liu, H. et al. Impact of PEGylation on the biological effects and light heat conversion efficiency of gold nanoshells on silica nanorattles. Biomaterials 34, 6967-6975 (2013).
24. Zhang, Y., Sun, C., Kohler, N. & Zhang, M. Self-assembled coatings on individual monodisperse magnetite nanoparticles for efficient intracellular uptake. Biomed Microdevices 6, 33-40 (2004).
25. Rapoport, N.Y., Efros, A.L., Christensen, D.A., Kennedy, A.M. & Nam, K.H. Microbubble Generation in Phase-Shift Nanoemulsions used as Anticancer Drug Carriers. Bubble Sci Eng Technol 1, 31-39 (2009).
26. Borden, M.A., Zhang, H., Gillies, R.J., Dayton, P.A. & Ferrara, K.W. A stimulus-responsive contrast agent for ultrasound molecular imaging. Biomaterials 29, 597-606 (2008).
27. Madan, J. et al. Poly (ethylene)-glycol conjugated solid lipid nanoparticles of noscapine improve biological half-life, brain delivery and efficacy in glioblastoma cells. Nanomedicine 9, 492-503 (2013).
28. Ballou, B., Lagerholm, B.C., Ernst, L.A., Bruchez, M.P. & Waggoner, A.S. Noninvasive imaging of quantum dots in mice. Bioconjug Chem 15, 79-86 (2004).
29. Kang, J.S., Deluca, P.P. & Lee, K.C. Emerging PEGylated drugs. Expert opinion on emerging drugs 14, 363-380 (2009).
30. Kolate, A. et al. PEG - a versatile conjugating ligand for drugs and drug delivery systems. J Control Release 192, 67-81 (2014).
31. Hershfield, M.S. et al. Use of site-directed mutagenesis to enhance the epitope-shielding effect of covalent modification of proteins with polyethylene glycol. Proc Natl Acad Sci U S A 88, 7185-7189 (1991).
32. Cheng, T.C. et al. Sensitivity of PEGylated interferon detection by anti-polyethylene glycol (PEG) antibodies depends on PEG length. Bioconjug Chem 24, 1408-1413 (2013).
33. Novakova, L. & Vlckova, H. A review of current trends and advances in modern bio-analytical methods: chromatography and sample preparation. Anal Chim Acta 656, 8-35 (2009).
34. Lee, H.J. & Pardridge, W.M. Monoclonal antibody radiopharmaceuticals: cationization, pegylation, radiometal chelation, pharmacokinetics, and tumor imaging. Bioconjug Chem 14, 546-553 (2003).
35. Cahouet, A. et al. Biodistribution of dual radiolabeled lipidic nanocapsules in the rat using scintigraphy and gamma counting. International journal of pharmaceutics 242, 367-371 (2002).
36. Seo, J.W., Zhang, H., Kukis, D.L., Meares, C.F. & Ferrara, K.W. A novel method to label preformed liposomes with 64Cu for positron emission tomography (PET) imaging. Bioconjug Chem 19, 2577-2584 (2008).
37. Cao, J., Du, Y., Tian, H., Gao, X.D. & Yao, W.B. Quantitative determination of pegylated consensus interferon in rhesus monkey serum using a competitive enzyme-linked immunosorbent assay. Immunopharmacol Immunotoxicol 31, 543-549 (2009).
38. Cheng, T.L. et al. Monoclonal antibody-based quantitation of poly(ethylene glycol)-derivatized proteins, liposomes, and nanoparticles. Bioconjug Chem 16, 1225-1231 (2005).
39. Su, Y.C., Chen, B.M., Chuang, K.H., Cheng, T.L. & Roffler, S.R. Sensitive quantification of PEGylated compounds by second-generation anti-poly(ethylene glycol) monoclonal antibodies. Bioconjug Chem 21, 1264-1270 (2010).
40. Kumada, Y., Hamasaki, K., Shiritani, Y., Ohse, T. & Kishimoto, M. Efficient immobilization of a ligand antibody with high antigen-binding activity by use of a polystyrene-binding peptide and an intelligent microtiter plate. J Biotechnol 142, 135-141 (2009).
41. Zalipsky, S. Functionalized poly(ethylene glycol) for preparation of biologically relevant conjugates. Bioconjug Chem 6, 150-165 (1995).
42. Sherman, M.R.S., M. G. P.; Williams, L. D.; Michaels, S. J. and Sobczyk, M. A. Next-generation PEGylation enables reduced immunoreactivity of PEG-protein conjugates. Drug Development & Delivery 12, 36-42 (2012).
43. Garay, R.P., El-Gewely, R., Armstrong, J.K., Garratty, G. & Richette, P. Antibodies against polyethylene glycol in healthy subjects and in patients treated with PEG-conjugated agents. Expert opinion on drug delivery 9, 1319-1323 (2012).
44. Chuang, K.H. et al. Measurement of poly(ethylene glycol) by cell-based anti-poly(ethylene glycol) ELISA. Anal Chem 82, 2355-2362 (2010).
45. Jain, P., Vyas, M.K., Geiger, J.H., Baker, G.L. & Bruening, M.L. Protein purification with polymeric affinity membranes containing functionalized poly(acid) brushes. Biomacromolecules 11, 1019-1026 (2010).
46. Barua, S. et al. Particle shape enhances specificity of antibody-displaying nanoparticles. Proc Natl Acad Sci U S A 110, 3270-3275 (2013).
47. Ishida, T. & Kiwada, H. Anti-polyethyleneglycol antibody response to PEGylated substances. Biological & pharmaceutical bulletin 36, 889-891 (2013).
48. Richter, A.W. & Akerblom, E. Antibodies against polyethylene glycol produced in animals by immunization with monomethoxy polyethylene glycol modified proteins. International archives of allergy and applied immunology 70, 124-131 (1983).
49. Tsuji, J., Hirose, K., Kasahara, E., Naitoh, M. & Yamamoto, I. Studies on antigenicity of the polyethylene glycol (PEG)-modified uricase. International journal of immunopharmacology 7, 725-730 (1985).
50. Armstrong, J.K. et al. Antibody against poly(ethylene glycol) adversely affects PEG-asparaginase therapy in acute lymphoblastic leukemia patients. Cancer 110, 103-111 (2007).
51. Sundy, J.S. et al. Efficacy and tolerability of pegloticase for the treatment of chronic gout in patients refractory to conventional treatment: two randomized controlled trials. Jama 306, 711-720 (2011).
52. Hamad, I., Hunter, A.C., Szebeni, J. & Moghimi, S.M. Poly(ethylene glycol)s generate complement activation products in human serum through increased alternative pathway turnover and a MASP-2-dependent process. Molecular immunology 46, 225-232 (2008).
53. JK., A. PEGylated protein drugs. (Veronese FM ed.). Birkhauser Verlag, Basel (2009).
54. Richter, A.W. & Akerblom, E. Polyethylene glycol reactive antibodies in man: titer distribution in allergic patients treated with monomethoxy polyethylene glycol modified allergens or placebo, and in healthy blood donors. International archives of allergy and applied immunology 74, 36-39 (1984).
55. Fishbane, S. Anemia in chronic kidney disease: status of new therapies. Current opinion in nephrology and hypertension 18, 112-115 (2009).
56. Regidor, D.L. et al. Associations between changes in hemoglobin and administered erythropoiesis-stimulating agent and survival in hemodialysis patients. Journal of the American Society of Nephrology : JASN 17, 1181-1191 (2006).
57. Collins, A.J. Influence of target hemoglobin in dialysis patients on morbidity and mortality. Kidney international. Supplement, 44-48 (2002).
58. Schmid, H. Cost-effectiveness of continuous erythropoietin receptor activator in anemia. ClinicoEconomics and outcomes research : CEOR 6, 319-330 (2014).
59. Jevsevar, S., Kunstelj, M. & Porekar, V.G. PEGylation of therapeutic proteins. Biotechnol J 5, 113-128 (2010).
60. Cheng, T.L., Wu, P.Y., Wu, M.F., Chern, J.W. & Roffler, S.R. Accelerated clearance of polyethylene glycol-modified proteins by anti-polyethylene glycol IgM. Bioconjug Chem 10, 520-528 (1999).
61. Roffler, S.R. et al. A membrane antibody receptor for noninvasive imaging of gene expression. Gene Ther 13, 412-420 (2006).
62. Fang, J. et al. Stable antibody expression at therapeutic levels using the 2A peptide. Nat Biotechnol 23, 584-590 (2005).
63. Yang, M., Kostov, Y., Bruck, H.A. & Rasooly, A. Gold nanoparticle-based enhanced chemiluminescence immunosensor for detection of Staphylococcal Enterotoxin B (SEB) in food. Int J Food Microbiol 133, 265-271 (2009).
64. Chapman, A.P. et al. Therapeutic antibody fragments with prolonged in vivo half-lives. Nat Biotechnol 17, 780-783 (1999).
65. Natarajan, A., Xiong, C.Y., Albrecht, H., DeNardo, G.L. & DeNardo, S.J. Characterization of site-specific ScFv PEGylation for tumor-targeting pharmaceuticals. Bioconjug Chem 16, 113-121 (2005).
66. Veronese, F.M. Peptide and protein PEGylation: a review of problems and solutions. Biomaterials 22, 405-417 (2001).
67. Photos, P.J., Bacakova, L., Discher, B., Bates, F.S. & Discher, D.E. Polymer vesicles in vivo: correlations with PEG molecular weight. J Control Release 90, 323-334 (2003).
68. Rajender Reddy, K., Modi, M.W. & Pedder, S. Use of peginterferon alfa-2a (40 KD) (Pegasys) for the treatment of hepatitis C. Adv Drug Deliv Rev 54, 571-586 (2002).
69. Kinstler, O., Molineux, G., Treuheit, M., Ladd, D. & Gegg, C. Mono-N-terminal poly(ethylene glycol)-protein conjugates. Adv Drug Deliv Rev 54, 477-485 (2002).
70. Adler-Storthz, K., Kendall, C., Kennedy, R.C., Henkel, R.D. & Dreesman, G.R. Biotin-avidin-amplified enzyme immunoassay for detection of herpes simplex virus antigen in clinical specimens. J Clin Microbiol 18, 1329-1334 (1983).
71. Lorey, M. et al. Mass-tag enhanced immuno-laser desorption/ionization mass spectrometry for sensitive detection of intact protein antigens. Anal Chem 87, 5255-5262 (2015).
72. Rowinsky, E.K. et al. A phase I and pharmacokinetic study of pegylated camptothecin as a 1-hour infusion every 3 weeks in patients with advanced solid malignancies. J Clin Oncol 21, 148-157 (2003).
73. Mattern, M.R. et al. In vitro and in vivo effects of clinically important camptothecin analogues on multidrug-resistant cells. Oncol Res 5, 467-474 (1993).
74. Zhao, H. et al. Novel prodrugs of SN38 using multiarm poly(ethylene glycol) linkers. Bioconjugate Chem 19, 849-859 (2008).
75. Greenwald, R.B. et al. Drug delivery systems: water soluble taxol 2'-poly(ethylene glycol) ester prodrugs-design and in vivo effectiveness. J Med Chem 39, 424-431 (1996).
76. Pasut, G. & Veronese, F.M. State of the art in PEGylation: the great versatility achieved after forty years of research. J Control Release 161, 461-472 (2012).
77. Wang, J., Fang, X. & Liang, W. Pegylated phospholipid micelles induce endoplasmic reticulum-dependent apoptosis of cancer cells but not normal cells. ACS Nano 6, 5018-5030 (2012).
78. Stefanick, J.F., Ashley, J.D., Kiziltepe, T. & Bilgicer, B. A systematic analysis of peptide linker length and liposomal polyethylene glycol coating on cellular uptake of peptide-targeted liposomes. ACS Nano 7, 2935-2947 (2013).
79. Rammohan, A. et al. PEGylated Carbon Nanocapsule: A Universal Reactor and Carrier for In Vivo Delivery of Hydrophobic and Hydrophilic Nanoparticles. ACS Appl Mater Interfaces 8, 350-362 (2016).
80. Hu, Y., Haynes, M.T., Wang, Y., Liu, F. & Huang, L. A highly efficient synthetic vector: nonhydrodynamic delivery of DNA to hepatocyte nuclei in vivo. ACS Nano 7, 5376-5384 (2013).
81. Nance, E. et al. Brain-penetrating nanoparticles improve paclitaxel efficacy in malignant glioma following local administration. ACS Nano 8, 10655-10664 (2014).
82. Lin, W.W. et al. Optimization of an Anti-poly(ethylene glycol) (anti-PEG) Cell-Based Capture System To Quantify PEG and PEGylated Molecules. Anal Chem 88, 12371-12379 (2016).
83. Chuang, K.H. et al. Development of a universal anti-polyethylene glycol reporter gene for noninvasive imaging of PEGylated probes. J Nucl Med 51, 933-941 (2010).
84. Tsai, N.M., Cheng, T.L. & Roffler, S.R. Sensitive measurement of polyethylene glycol-modified proteins. Biotechniques 30, 396-402 (2001).
85. Cauda, V., Argyo, C. & Bein, T. Impact of different PEGylation patterns on the long-term bio-stability of colloidal mesoporous silica nanoparticles. J Mater Chem 20, , 8693-8699 (2010).
86. Xu, Y., Mehl, J.T., Bakhtiar, R. & Woolf, E.J. Immunoaffinity purification using anti-PEG antibody followed by two-dimensional liquid chromatography/tandem mass spectrometry for the quantification of a PEGylated therapeutic peptide in human plasma. Anal Chem 82, 6877-6886 (2010).
87. Brown, D.W., Kim, Y.T. & Siskind, G.W. The influence of immune complexes, steric effects, and antigen-antigen interactions on the sensitivity of enzyme-linked immunosorbent assays. J Immunol Methods 116, 45-51 (1989).
88. Sakhnini, L.I. et al. Designing monoclonal antibody fragment-based affinity resins with high binding capacity by thiol-directed immobilisation and optimisation of pore/ligand size ratio. Journal of chromatography. A 1468, 143-153 (2016).
89. Phatak, U.P. & Pashankar, D.S. Role of polyethylene glycol in childhood constipation. Clin Pediatr (Phila) 53, 927-932 (2014).
90. Nielsen, K. et al. The use of divalent cation chelating agents (EDTA/EGTA) to reduce non-specific serum protein interaction in enzyme immunoassay. Vet Res Commun 18, 433-437 (1994).
91. Urbonaviciute, V. et al. Factors masking HMGB1 in human serum and plasma. J Leukoc Biol 81, 67-74 (2007).
92. DeForge, L.E. et al. Species-dependent serum interference in a sandwich ELISA for Apo2L/TRAIL. J Immunol Methods 320, 58-69 (2007).
93. Veronese, F.M. & Pasut, G. PEGylation, successful approach to drug delivery. Drug discovery today 10, 1451-1458 (2005).
94. Keating, M.J., Holmes, R., Lerner, S. & Ho, D.H. L-asparaginase and PEG asparaginase--past, present, and future. Leukemia & lymphoma 10 Suppl, 153-157 (1993).
95. Banerjee, S.S., Aher, N., Patil, R. & Khandare, J. Poly(ethylene glycol)-Prodrug Conjugates: Concept, Design, and Applications. J Drug Deliv 2012, 103973 (2012).
96. Wang, A.Z., Langer, R. & Farokhzad, O.C. Nanoparticle delivery of cancer drugs. Annu Rev Med 63, 185-198 (2012).
97. Verhoef, J.J., Carpenter, J.F., Anchordoquy, T.J. & Schellekens, H. Potential induction of anti-PEG antibodies and complement activation toward PEGylated therapeutics. Drug discovery today 19, 1945-1952 (2014).
98. Koide, H. et al. T cell-independent B cell response is responsible for ABC phenomenon induced by repeated injection of PEGylated liposomes. International journal of pharmaceutics 392, 218-223 (2010).
99. Shimizu, T., Ishida, T. & Kiwada, H. Transport of PEGylated liposomes from the splenic marginal zone to the follicle in the induction phase of the accelerated blood clearance phenomenon. Immunobiology 218, 725-732 (2013).
100. Storring, P.L. et al. Epoetin alfa and beta differ in their erythropoietin isoform compositions and biological properties. Br J Haematol 100, 79-89 (1998).
101. Kalantar-Zadeh, K. History of Erythropoiesis-Stimulating Agents, the Development of Biosimilars, and the Future of Anemia Treatment in Nephrology. Am J Nephrol 45, 235-247 (2017).
102. Chen, B.M. et al. Measurement of Pre-Existing IgG and IgM Antibodies against Polyethylene Glycol in Healthy Individuals. Anal Chem 88, 10661-10666 (2016).
103. Garratty, G. Progress in modulating the RBC membrane to produce transfusable universal/stealth donor RBCs. Transfus Med Rev 18, 245-256 (2004).
104. Suzuki, T. et al. Accelerated blood clearance of PEGylated liposomes containing doxorubicin upon repeated administration to dogs. International journal of pharmaceutics 436, 636-643 (2012).
105. Hershfield, M.S. et al. Induced and pre-existing anti-polyethylene glycol antibody in a trial of every 3-week dosing of pegloticase for refractory gout, including in organ transplant recipients. Arthritis Res Ther 16, R63 (2014).
106. Sundy, J.S. et al. Pharmacokinetics and pharmacodynamics of intravenous PEGylated recombinant mammalian urate oxidase in patients with refractory gout. Arthritis Rheum 56, 1021-1028 (2007).
107. Liu, Y. et al. A double antigen bridging immunogenicity ELISA for the detection of antibodies to polyethylene glycol polymers. J Pharmacol Toxicol Methods 64, 238-245 (2011).
108. Myler, H. et al. Anti-PEG antibody bioanalysis: a clinical case study with PEG-IFN-lambda-1a and PEG-IFN-alpha2a in naive patients. Bioanalysis 7, 1093-1106 (2015).
109. Yang, Q. & Lai, S.K. Anti-PEG immunity: emergence, characteristics, and unaddressed questions. Wiley Interdiscip Rev Nanomed Nanobiotechnol 7, 655-677 (2015).
110. Dams, E.T. et al. Accelerated blood clearance and altered biodistribution of repeated injections of sterically stabilized liposomes. J Pharmacol Exp Ther 292, 1071-1079 (2000).
111. Ganson, N.J. et al. Pre-existing anti-polyethylene glycol antibody linked to first-exposure allergic reactions to pegnivacogin, a PEGylated RNA aptamer. J Allergy Clin Immunol 137, 1610-1613 e1617 (2016).
112. Dong, H. et al. Development of a Generic Anti-PEG Antibody Assay Using BioScale's Acoustic Membrane MicroParticle Technology. AAPS J 17, 1511-1516 (2015).
113. Schellekens, H., Hennink, W.E. & Brinks, V. The immunogenicity of polyethylene glycol: facts and fiction. Pharm Res 30, 1729-1734 (2013).
114. Strohl, W.R. Fusion Proteins for Half-Life Extension of Biologics as a Strategy to Make Biobetters. BioDrugs 29, 215-239 (2015).
115. Schellenberger, V. et al. A recombinant polypeptide extends the in vivo half-life of peptides and proteins in a tunable manner. Nat Biotechnol 27, 1186-1190 (2009).
116. Fares, F.A. et al. Design of a long-acting follitropin agonist by fusing the C-terminal sequence of the chorionic gonadotropin beta subunit to the follitropin beta subunit. Proc Natl Acad Sci U S A 89, 4304-4308 (1992).
117. Macdougall, I.C. et al. Pharmacokinetics of novel erythropoiesis stimulating protein compared with epoetin alfa in dialysis patients. Journal of the American Society of Nephrology : JASN 10, 2392-2395 (1999).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code