Responsive image
博碩士論文 etd-0214105-142108 詳細資訊
Title page for etd-0214105-142108
論文名稱
Title
超音波導入法對角質層通透性之機制研究
The Mechanism Study of the Sonophoresis to the Permeation of Stratum Corneum
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
123
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2005-01-31
繳交日期
Date of Submission
2005-02-14
關鍵字
Keywords
超音波導入、擴散聲場、頻率、生物超音波
diffuse field, sonophoresis, bio-ultrasound, frequency
統計
Statistics
本論文已被瀏覽 5686 次,被下載 0
The thesis/dissertation has been browsed 5686 times, has been downloaded 0 times.
中文摘要
超音波生物效應一般可分為:機械效應、對流效應、空孔效應與熱效應等。本研究將從機械效應與空孔效應角度切入超音波導入法,以探討超音波導入法對角質層通透性改變之機制研究。所謂超音波導入,乃是藉由超音波之生物效應改變皮膚的通透性而將藥物或保養品傳至目標細胞。目前市面上的超音波導入產品,其照射頻率、能量與作用時間均是直接利用醫療用超音波儀器來調變,但對於整個超音波導入機制並不清楚,因此使用醫療用超音波探頭進行導入的結果,無法於短時間內達到預期之成效。
針對上述問題,本研究即以超音波之空孔效應(Cavtitation Effect)做為超音波導入之主要機制。以Rayleigh-Plesset所提之氣泡運動方程式,計算附著於豬皮組織上氣泡之空孔共振頻率區,以引致空孔效應之氣體活作用(Gas Body Activation)。該共振頻率區間為15到36 kHz,選取該區域內之頻率20 kHz以作為超音波導入之頻率,與非共振頻率區間之10、60 kHz進行超音波導入,並以大於與小於引致空孔效應門檻值的聲強,13.6 mW/cm2、1.9 mW/cm2進行頻率、聲強等參數變化下的導入維他命C量比較。實驗結果可發現以空孔共振頻率20 kHz,13.6 mW/cm2照射的組別維他命C通透過豬皮組織的量最多;而在豬皮組織的維他命C殘留量比較上,以10 kHz,13.6 mW/cm2的組別為最多。與市面上所通用於超音波導入之頻率1 MHz,2.22 W/cm2做比較,結果證實,以符合共振頻率區之頻率(20 kHz)所進行之導入,與高頻(1 MHz)的導入條件相比,20 kHz的維他命C導入結果相較於高頻超音波的導入結果,於聲強上只需高頻的 能量,以及 的導入時間,就有相同的結果。
此外本研究也嘗試從工程的角度,針對照射聲場的能量均勻性做一探討,依波長及能量擴散的方式,設計一楔型塊,使超音波在此楔型塊中形成擴散聲場(Diffused Field),並比較聲場均勻與否對於導入的影響。實驗結果證實經過均勻聲場的照射會使得欲導入之藥物導入至皮膚組織間的量,二倍於非均勻聲場照射的導入量。
以上之實驗結果,提供了超音波導入在頻率、聲強與聲場均勻程度等參數的改變,可影響導入的量與目標,對於導入技術有著更上一層的提升,可於未來提供更多可應用的範疇與新的發展。
Abstract
The study of the bioeffects of ultrasound and their etiology is of fundamental importance as a part of basic biophysics. In general, the most fruitful approach to the study of bioeffects of physical agents is the mechanistic one. The ultrasonic mechanisms include the mechanical effect, convective effect, cavitation effect, and thermal effect. In this research, the test skin was radiated the ultrasound using the medical equipment and analyzed the permeation of skin. However, it is not sufficiently to analyze the quantitative of the sonophoresis by the medical equipment setup.
To solve the above-mentioned problem, the oscillation of the stratum corneum in response to the ultrasound radiation is simulated using Rayleigh-Plesset’s bubble activation theory. To calculate the resonance frequency domain of bubbles attached of pig skin which is around 15 to 36 kHz that called low frequency and it caused gas body activation on test skin. We choose 20 kHz in the resonance frequency domain to compared with 10, 60 kHz as non-resonance frequency. 1.9 and 13.6 mW/cm2 of the sound intensity which are respectively lower and higher than cavitation threshold intensity are used. The result of low frequency sonophoresis presented that high permeation rate is caused by resonance frequency 20 kHz. And according to the experiment, it is also proved that the experiment of low frequency sonophoresis only took 1/160 of the sound intensity and 1/4 of the time for the high frequency sonophoresis.
Furthermore, the research examined the uniformity of the sound field, and a wedge is designed to make a diffused field to compare the effect between a uniform one and its contrast. The result presented that the permeating drug with uninformative field is twice the amount of the normal exposure ultrasound field.
Based on the above results, the changes of frequency, sound intensity and sound field uniformity, the enhancement effects of the sonophoresis will be achieved.
目次 Table of Contents
中文摘要 Ⅰ
英文摘要 Ⅲ
目錄 Ⅴ
表目錄 Ⅷ
圖目錄 Ⅸ
第一章 前言 1
1.1 研究主題 1
1.2 背景分析 3
1.3 文獻回顧 9
1.4 研究目的 13
第二章 基本理論 17
2.1 空孔氣泡動力學 17
2.2 空孔氣泡運動方程式 19
2.3 維他C命定量法 20
第三章 實驗方法與步驟 24
3.1 實驗目的 24
3.2 實驗方法 26
3.2.1頻率計算 26
3.2.2聲強選用 26
3.2.3豬皮組織波速變化之量測 27
3.2.4超音波探頭聲場的設定 28
3.3 實驗物品與儀器 30
3.4 實驗步驟 38
3.4.1高頻超音波導入實驗步驟 38
3.4.2低頻超音波導入實驗步驟 40
3.5 均勻聲場的設計 41
第四章 實驗結果與討論 57
4.1 共振頻率與導入量定義 57
4.1.1氣泡與共振頻率計算 55
4.1.2導入量定義 58
4.2 超音波熱療機導入評估 60
4.2.1頻率與導入量比較 60
4.2.2波速與導入量比較 61
4.3 空孔共振頻率之超音波導入評估 64
4.3.1頻率與導入量比較 64
4.3.2波速與導入量比較 63
4.4 楔型塊之聲場量測 68
4.5 均勻聲場照射下之超音波導入 70
第五章 結論與建議 96
5.1 結論 96
5.2 建議事項與未來展望 99
參考文獻 101
附錄 A 104
參考文獻 References
1. 陳思忠,袁易全,馮若,近代超聲原理及應用,南京大學出版社,170-178,1996。
2. M. W. Miller, D. L. Miller and A. A. Brayman, “A Review of In Vitro Bioeffects of Inertial Ultrasonic Cavitation from a Mechanistic Persective,” Ultrasound in Med. & Bio, 22(9), 1131-1154, 1996.
3. 燒燙傷皮膚網:http://coolshade.tamu.edu/skin_2.html。
4. A. Jarrett., (Ed), The Physiology and Pathology of the Skin, Academic Press, London, 1978.
5. K. A. Walters, “Transdermal Drug Delivery: Developmental Issues and Research Initiatives,” J. Hadgraft, R. H. Guy, Eds., Marcel Dekker, 197-233, 1989.
6. H. E. Junginer, H. E. Bodde, de Haan de, F. H. and N., “Drug Permeation Enhancement : Hsieh,” D.S. (Ed), Marcel Dekker, 59-90, 1994.
7. R. R. Burnette, “Developmental Issues and Research Initiatives,” Marcel Dekker, 247-288, 1989.
8. 江西省大餘縣人民醫院理療康復科:http://www.dyhp.com.cn/lcyx/qtkx/llx/llx.htm。
9. S. Mitragorti, D. Blankschtein and R. Langer, “A Mechanistic Study of Ultrasonically Enhanced Transdermal Drug Delivery,” J. Pharm. Sci, 84 697-706, 1995.
10. S. Mitragorti, D. Blankschtein and R. Langer, “Transdermal Drug Delivery Using Low Frequency Sonophoresis,” Pharm. Res. 13, 411-420, 1996.
11. K. Tachibana, “Transdermal Delivery of Insulin to Alloxan-Diabetic Rabbits by Ultrasound Exposure,” Pharm. Res. 7, 952-954, 1992.
12. J. Kost, S. Mitragotri, R. A. Gabbay, M. Pishko and R. Langer, “Transdermal Monitoring of Glucose and Other Analyses Using Ultrasound,” Nat. Med. 6, 347-350, 2000.
13. H. Tang, S. Mitragotri, D. Blankschtein and R. Langer, “Theoretical Description of Transdermal Transport of Hydrophilic Permeants: Application to Low-Frequency Sonophoresis,” J. Pharm. Sci. 90(5), 545-68, 2001.
14. A. Tezel, A. Sens and S. Mitragotri, “A Theoretical Analysis of Low-Frequency Sonophoresis: Dependence of Transdermal Transport Pathways on Frequency and Energy Density,” Pharm. Res, 19(12), 1841-6, 2002.
15. A. Tezel, A. Sens and S. Mitragotri, “Description of Transdermal Transport of Hydrophilic Solutes During Low-Frequency Sonophoresis Based on a Modified Porous Pathway Model,” J. Pharm. Sci, 92(2), 381-93, 2003.
16. S. Mitragotri, D. Blankschtein and R. Langer, “Transdermal Drug Delivery Using Low-Frequency Sonophoresis,” Pharm. Research 13(3), 411-420, 1995.
17. A. Tezel, A. Sens and S. Mitragotri, “Incorporation of Lipophilic Pathways into the Porous Pathway Model for Describing Skin Permeabilization During Low-Frequency Sonophoresis,” J. Control Release. 83(1), 183-188, 2002.
18. A. Tezel, A. Sens, J. Tuchscherer and S. Mitragotri, “Frequency Dependence of Sonophoresis,” Pharm. Res. 18(12), 1694-7000, 2001.
19. H. Tang, C. C. Wang, D. Blankschtein and R. Langer, “An Investigation of the Role of Cavitation in Low-Frequency Ultrasound-Mediated Transdermal Drug Transport,” Pharm. Res. 19(8),1160-1169, 2002.
20. T. Terahara, S. Mitragotri, J. Kost and R. Langer, “Dependence of Low-Frequency Sonophoresis on Ultrasound Parameters; Distance of the Horn and Intensity,” J. Pharm. 235(1-2), 35-42, 2002.
21. T. Terahara, S. Mitragotri and R. Langer, “Porous Resins as a Cavitation Enhancer for Low-Frequency Sonophoresis,” J. Pharm. Sci. 91(3), 753-759, 2002.
22. G. Merino, Y. N. Kalia, M. B. Delgado-Charro, R. O. Potts and R. H. Guy, “Frequency and Thermal Effects on the Enhancement of Transdermal Transport by Sonophoresis,” J. Control Release. 88(1), 85-94, 2003.
23. H. Tang, D. Blankschtein and R. Langer, “Effects of Low-Frequency Ultrasound on the Transdermal Permeation of Mannitol: Comparative Studies with In Vivo and In Vitro Skin,” J. Control Release 81(1-2), 113-119, 2002.
24. 方嘉佑,「Clobetasol 17-propionate以低頻率超音波進其經皮吸收之研究」,國科會專題計畫,NSC-2314-B-038-145,民國87年7月。
25. 詹益豪,超音波誘發豐年蝦卵活化及助長之研究,國立中山大學機械與機電工程學系碩士論文,中華民國92年7月。
26. M. S. Plesset, Pasadena and Calif, “The Dynamics of Cavitation Bubble,” J. App. Mech. 16, 277-282, 1949.
27. 陳明凱,超音波照射下之草履蟲生物效應機制研究,國立中山大學機械與機電工程學系碩士論文,中華民國90年6月。
28. H. G. Flynn, “Cavitation Dynamics I. A Mathematical Formulation,” J. Acoust. Soc. Am. 57(6), 1379-1396, 1975.
29. W. Lauterborn, “Numerical Investigation of Nonlinear Oscillations of Gas Bubbles in Liquids,” J. Acoust. Soc. Am. 59(2), 283-293, 1976.
30. 沈壯志,尚志遠,“用聲波擴散改善清洗場中(小功率)聲場的均勻性,” 應用聲學第18卷(5), 41-43, 1999.
31. Pierce, A. D, Acoustics, McGraw-Hill, New York, 1981.
32. 大眾醫藥網:http://www.windrug.com/pic/30/11/28/134.htm
33. R. Esche, “Untersuchung der Schwingungskavitation in Flüssigkeiten,” Acustica 2, AB208-AB218, 1952.
34. E. A. Neppiras, “Acoustic Cavitation”, Physics Reports-Review Section of Physics Letters. 61(3), pp. 159-251, 1980.
35. G. Cum, G. Galli, R. Gallo and A. Spadaro, “Role of Frequency in the Ultrasonic Activation of Chemical Reaction,” Ultrasonics 30(4), 262-270, 1990.
36. G. H. Glover, “Computerized Time of Flight Tomography for Breast Examination,” Ultrasound in Med. & Bio. 3, 117-127, 1977.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.222.23.119
論文開放下載的時間是 校外不公開

Your IP address is 18.222.23.119
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code