Responsive image
博碩士論文 etd-0214107-171701 詳細資訊
Title page for etd-0214107-171701
論文名稱
Title
聚焦離子束製作選擇性三維次微米玻璃壓印頭之UV膠探討
Selective 3D Submicron Glass Imprint Heads Fabrication by FIB for UV Cure
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
89
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-07-31
繳交日期
Date of Submission
2007-02-14
關鍵字
Keywords
奈米壓印、Pyrex玻璃、聚焦離子束、3D次微米結構、UV膠
Pyrex glass, Nanoimprint, UV Curing, 3-D submicron structures, Focused ion beam
統計
Statistics
本論文已被瀏覽 5693 次,被下載 0
The thesis/dissertation has been browsed 5693 times, has been downloaded 0 times.
中文摘要
本研究透過聚焦離子束(FIB)對派熱克斯玻璃(Pyrex glass) 快速的製作出3D次微米結構模仁。在這片玻璃模仁上面塗佈UV膠,針對壓印的壓力與UV曝光時間等參數進行一系統化的紫外線固化奈米壓印(UV-nanoimprint lithography;UV-NIL)成形實驗,觀察其成形缺陷並檢視其缺陷,藉以探討壓力、時間等參數與缺陷出現之關係。同時對於UV膠的材料特性也加以探討。透過奈米壓痕儀去測量UV膠在壓印過程中所能承受壓力的變形能力,且利用熱重分析儀來探討UV膠的裂解溫度,以避免在壓印過程中材料結構崩解。不但如此,也對派熱克斯玻璃(Pyrex glass)模仁進行探討,透過接觸角量測儀來測量在壓印中玻璃模仁表面特性。
Abstract
Focused Ion Beam (FIB) has several advantages such as high sensitivity, high material removal rates, low forward scattering and directing fabrication. Without any etched mask, processing time can be reduced. Pyrex glass etched by FIB is used for fast fabrication of 3-D submicron structure mold. In this study, glass is used as substrate. The UV-cured resin that spin-coated onto a mold has 3-D structure patterns. 3-D structure patterns are transferred on the plate to investigate the effects of parameters of UV cured, pressure and exposure time on the occurrence of defects. The relationship of these processing parameters for the imprinting process is also realized. Besides, the material property of UV-cured resin is investigated. UV-Cured resin is investigated by thermogravimetric Analysis (TGA) to measure the degradation temperature (Td). The hardness and modulus of UV-Cured resin was measured by nanoindentation to realize deformed ability of material for the imprinting process. Moreover, the contact angle of Pyrex glass is measured to investigate its surface quality for the imprint process.
目次 Table of Contents
目錄…………………………………………………...………….Ⅰ
圖目錄…………………………………………………..………..Ⅳ
表目錄…………………………………………………...….........Ⅶ
中文摘要…………………………………………………………Ⅷ
英文摘要………………………………………………………....Ⅸ
第1章 緒論--------------------------------------------------------------1
1-1 研究動機與背景------------------------------------------------------ 1
1-2 奈米壓印的發展------------------------------------------------------ 2
1-3 FIB 技術的發展------------------------------------------------------ 5
第2章 FIB 與奈米壓印原理-----------------------------------------7
2-1 FIB 的原理------------------------------------------------------------ 7
2-2 奈米壓印的原理----------------------------------------------------- 10
2-2-1 紫外光硬化之奈米壓印------------------------------ 10
2-2-2 反轉壓印技術------------------------------------------ 13
第3章 實驗流程、材料與設備------------------------------------ 19
3-1 實驗儀器及設備介紹----------------------------------------------- 19
3-1-1 聚焦離子束儀器--------------------------------------- 19
3-1-2 奈米三維量測儀及奈米薄膜材料試驗機--------- 22
3-1-3 紫外線點光機------------------------------------------ 26
3-1-4 熱重量分析儀------------------------------------------ 26
3-1-5 接觸角量測儀------------------------------------------ 27
3-2 實驗材料-------------------------------------------------------------- 28
3-2-1 Pyrex 玻璃--------------------------------------------- 28
3-2-2 UV 膠---------------------------------------------------- 30
3-3 實驗流程-------------------------------------------------------------- 34
3-3-1 實驗材料的準備--------------------------------------- 34
3-3-2 FIB 加工------------------------------------------------ 36
3-3-3 UV 固化壓印------------------------------------------- 38
第4章 實驗結果與討論--------------------------------------------- 43
4-1 3D 玻璃結構壓印轉移效果--------------------------------------- 43
4-2 FIB 加工與UV 膠壓印出不同3D 玻璃結構分析------------- 44
4-3 使用不同壓力壓印出不同3D 玻璃結構分析------------------ 49
4-4 利用奈米壓痕量測不同UV 曝光時間的機械性質----------- 58
4-5 UV 膠的TGA 熱變化分析---------------------------------------- 64
4-6 Pyrex 玻璃接觸角量測-------------------------------------------- 66
第5章 結論與未來展望--------------------------------------------- 68
5-1 結論-------------------------------------------------------------------- 68
5-2 未來展望-------------------------------------------------------------- 70
5-2-1 表面張力的改善--------------------------------------- 70
5-2-2 添加劑、顏料或染料等的摻雜--------------------- 71
參考文獻----------------------------------------------------------------- 72
參考文獻 References
吳志榮,(2006).「聚焦離子束加工玻璃次微米三維結構的探討」,國立中山大學機械與機電所碩士論文。
何侑倫,(2004).「奈米轉印技術現況與未來」,微系統暨奈米科技協會會刊,12期, p.29─38。
張豐志,(2003). 「應用高分子手冊」,五南圖書,p.57-72。
余福熙,(2001).「如何選擇及使用紫外線/可視光硬化型接著劑」,化工科技與商情,第十七期,p.9-12。
劉建良,(2003).「UV Curing發展簡介及應用」,化工科技與商情,第四十一期,p.1-4。
余福熙,(2001).「如何選擇及使用紫外線/可視光硬化型接著劑」,化工科技與商情,第十七期,p. 9-12。
王德海,(2001).「紫外光固化材料-理論與應用」,北京:科學出板社,p.127-130。
王玉麟,(1994). 「低能量掃描式聚焦離子束及其表面科學與光電科技應用」,中央研究院原子與分子科學研究所。
許英傑,(2005).「利用聚焦離子束光罩製作之灰階微透鏡」,國立交通大學碩士論文。
葉謀振,(1991),「FIB 應用在故障分析的簡介」,工研院電子所。
吳志宏,(2002),「FY91可行性研究計劃結案報告」,工研院機械所。
許鴻隆,(2005).「近場光學讀取頭中奈米孔與固態浸沒透鏡整合製程之研究」,國立交通大學碩士論文。
陳國明,(2003),「微電子元件針測壓痕之深度預測及其對錫鉛凸塊電子遷移影響之研究」,國立清華大學博士論文。
中山大學奈米中心,雙束型聚焦離子束Focus Ion Beam (FIB),圖見於http://khvic.nsysu.edu.tw/khvic/JL/76.htm。
中山大學奈米中心,奈米壓痕系統(MTS Nano-Indenter) ,圖見於http://khvic.nsysu.edu.tw/khvic/JL/86.htm。
成功大學化學工程系,TGA 7熱重分析儀,圖見於http://www.che.ncku.edu.tw/service.php。
Bachmann, J. et al., (2000)“Development and Application of a New Sessile Drop Contact Angle Method to Assess Soil Water Repellency”, Journal of Hydrology, Vol. 231-232, p. 66-75。
Bailey, T. et al., (1999)“Step and flash imprint lithography:A New Approach to High-Resolution Patterning”, Proceedings of the SPIE, Vol. 3676, p.379-389。
Bailey, T. et al., (2001)“Step and flash imprint lithography:Defect analysis”, J. Vac. Sci. Technol., Vol.19, p.2086-2810。
Borzenko, T. et al., (2001)“A polymer bonding process for nanolithography”, Appl. Phys. Lett., Vol.79, p.2246-2248。
Cabrinia, S., Carpentieroa, A. et al., (2005)“Focused ion beam lithography for two dimensional array structures for photonic applications”, Microelectronic Engineering, vol.78-79, p.11─15。
CAI, Y. Q. et al., (2005)“Study on Surface Performance of UV-Curing Materials”, PAINT & COATINGS INDUSTRY, Vol.35, No.5, p35-38。
Choi, B. J. et al., (2001)“Design of orientation stages for step and flash imprint lithography”, J. Int. Soc. Precision Eng. Nanotechnol., p192-199。
Chou, S. Y., Krauss, P. R. et al., (1995)“Imprint of sub-25 nm vias and trenches in polymers”, Applied Physics Letters, Vol.67(21), p.3114-3116。
Chou, S. Y., Krauss, P. R. et al., (1996)“Nanoimprint lithography”, J. Vac. Sci. Technol., B 14(6), p.4129-4133。
Chou, S. Y., Krauss, P. R. et al., (1996)“Imprint lithography with 25-nanometer resolution”, Science, Vol.272, p.85-87。
Chou, S. Y. and Wu, W. et al., (1998)“Large area high density quantized magnetic disks fabricated using nanoimprint lithography”, Journal of Vacuum Society and Technology B, Vol.16, p.3825-3829。
Chou, S. Y. and Sun, X. et al., (1998)“Multilayer resist methods for nanoimprint lithography on nonflat surfaces”, Journal of Vacuum Society and Technology B, Vol.16, p.3922-3925。
Chou, S. Y. and Tan, H. et al., (1998)“Roller nanoimprint lithography”, Journal of Vacuum Society and Technology B, Vol.16, p.3926-3928。
Cheng, X., Guo*, L. J., (2004)“A combined nanoimprint and photolithography patterning technique”, Microelectronic Engineering, p. 277–282。
Decker, E. L. et al., (1999)“Physics of Contact Angle Measurement”, Colloids and Surfaces A, Vol. 156, pp. 177-189(13)。
Guo, L. J. and Pang, S. W. et al., (2002)“ Reversal imprinting by transferring polymer from mold to substrate”, J. Vac. Sci. Technol. B, Vol.20, No.6, p.2872-2876。
Guo, L. J. and Bao, L. R. et al., (2002)“ Nanoimprinting over topography and multilayer three-dimensional printing”, J. Vac. Sci. Technol. B, Vol.20, p.2881-2886。
Guo, L. J. (2004)“ Recent progress in nanoimprint technology and its applications”, J. Phys. D: Appl. Phys., Vol.37, p.R123-R141。
Hirai, Y. et al., (2003)“High Aspect Pattern Fabrication by Nano Imprint Lithography Using Fine Diamond Mold”, Jpn. J. Appl. Phys. Vol. 42 Part 1, No.6B, p.3863–3866。
Hirai, Y. et al., (2003)“Defect analysis in thermal nanoimprint lithography”, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, Volume 21, p. 2765-2770。
Hirai, Y. et al., (2004)“Simulation and experimental study of polymer deformation in nanoimprint lithography”, J. Vac. Sci. Technol. B 22, p.3288-3293。
Hirai*, Y. et al., (2005)“Fine pattern transfer by nanocasting lithography”, Microelectronic Engineering, p.641–646。
Ishitani, T. et al., (1991)“Focused -ion-beam ‘cutter’ and ‘attacher’ for micromachining and device transplantation”, J. Vac. Sci. Technol. B, vol.9, p.2633-2637。
JING, J. B., (2004)“UV Curable Adhesive”, Information Recording Materials, Vol.5, No.4, p.31-36。
JIANG, L. P., (2003)“Composition and application of UV-curable adhesive”, CHINA ADHESIVES, Vol.12, No.1, p.55-58。
Kim, Joon-Sung et al., (2003)“Simple and Low Cost Fabrication of Thermally Stable Polymeric Multimode Waveguides using a UV-curable Epoxy”, Jpn. J. Appl. Phys., Vol. 42, p. 1277–1279。
Kwok, D. Y. and Neumann, A. W., (1999)“Contact Angle Measurement and Contact Angle Interpretation”, Advance in Colloid and Interface Science, Vol. 81, p. 167-249。
Kirk, E. C. G. et al., (1988)“Scanning ion microscopy and microsectioning of electron beam recrystallized silicon on insulator devices”, J. Vac. Sci. Technol. B ,vol.6, p.1940-1943。
Kim, Y. K. et al., (2006)“Focused Ion Beam Nanopatterning for Optoelectronic Device Fabrication”, ieee journal of selected topics in quantum electronics, Vol.11, p.1292-1298。
Kumar, A. et al., (1993)“ Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol ink followed by chemical etching”, App. Phys. Lett., Vol.63, p.2002-2004。
Kurashima1,2,*,Y. et al., (2005)“Fabrication of Low Line Edge Roughness Mold by Spin On Glass (SOG) Replica Method”, Japanese Journal of Applied Physics, Vol.44, No.7B, p.5617–5621。
Marmur, A., (1996)“Equilibrium Contact Angles: Theory and Measurement”, Colloids and Surfaces A, Vol. 116, p.55-61。
Melngailis, J., (1987)“Critical review: focused ion beam technology and applications”, J. Vac. Sci. Technol. B, Vol.5, p.469-495。
Otto, M. et al., (2001)“Characterization and application of a UV-based imprint technique”, Microelectric engineering, Vol.57-58, p. 361-366。
Plachetkaa,*, U. et al., (2004)“Wafer scale patterning by soft UV-Nanoimprint Lithography”, Microelectronic Engineering 73–74, p.167–171。
Ryssel, H. et al., (1986)“Ion Implantation ”,Wiley, New York。
TAKAHAHI*, M. et al., (2005)“Nanoiprint of glass matrials with galssy carbon molds fabricated by focused-ion –beam”, Japanese Journal of Applied Physics,Vol.44, p.5600-5605。
Yoon, S. W., Choi, W. K., Lee, H. M. (1999)“Calculation of surface tension and wetting properties of Sn-Based solder alloys ”, Scripta Materialia, Volume 40, Number 3, p. 297-302(6)。
Yoshikawa, T. et al., (2005)“Fabrication of 1/4 wave plate by nanocasting lithography”, J. Vac. Sci. Technol., B 23, p.2939-2943。
Youn, S.W. et al., (2005)“Maskless pattern fabrication on Pyrex 7740 glass surface by using nano-scratch with HF wet etching”, Scripta Materialia, Vol.52, p.117-122。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.144.116.159
論文開放下載的時間是 校外不公開

Your IP address is 3.144.116.159
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code