Responsive image
博碩士論文 etd-0214107-200208 詳細資訊
Title page for etd-0214107-200208
論文名稱
Title
利用奈米級氧化鎂破壞性吸附染料廢水之反應機制
Destructive Adsorption Mechanisms for the Treatment of Dye Wastewater by Nanoscale Magnesium Oxide
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
207
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-01-22
繳交日期
Date of Submission
2007-02-14
關鍵字
Keywords
反應性染料、破壞性吸附、奈米級氧化鎂、均勻沉澱法、反應機制
Homogeneous Precipitation, Reaction Mechanism, Nanoscale MgO, Destructive Adsorption; Reactive Dye
統計
Statistics
本論文已被瀏覽 5638 次,被下載 3537
The thesis/dissertation has been browsed 5638 times, has been downloaded 3537 times.
中文摘要
本研究利用均勻沈澱法自行製備奈米級MgO,並從不同初始反應條件下,進行Reacitve Black-5(RB-5)與Reactive Blue-19(RB-19)染料廢水之破壞性吸附試驗。此外,本研究亦藉由使用UV-vis全波長分析、基質輔助雷射脫附游離法(MALDI)連接飛行時間質譜儀(TOF/MS)與氣相層析儀配置質譜儀檢知器(GC/MS),針對破壞性吸附後之中間產物加以定性分析,據此推測其破壞性吸附之反應機制。
本研究利用均勻沈澱法合成奈米級MgO之最佳操作條件如下:(1) 反應劑(尿素/氯化鎂)莫耳比為9,(2) 添加水量250 mL,(3) 反應溫度125℃,(4) 震盪強度為90 strokes/min,(5) 反應時間為7 hr,(6) 以5 ℃/min之升溫速率加熱至450℃,維持4小時之煅燒,(7) 迴流加熱時間為24 hr,(8) 使用冷凍乾燥法進行乾燥,(9) 以兩階段式煅燒(以5 ℃/min之升溫速率加熱至300℃,維持1小時,並以相同升溫速率至500℃,維持4小時)。其所合成之奈米級MgO係屬於六角板,二維奈米結構,其六角形板厚約20〜30 nm ,BET比表面積介於120〜125 m2/g。
奈米級MgO對RB-5與RB-19之吸附模式較符合Langmuir equation,而其分別之吸附容量為196.08 mg/g和163.93 mg/g;兩者的吸附動力模式皆為擬二階動力方程式。奈米級MgO對於RB-5和RB-19之最佳操作條件為:(1)染料之初始濃度為1000 mg/L;(2)奈米級MgO添加量為15 g/L;(3)強烈攪拌時間為30 min;(4)系統pH值並不需調整,其ADMI與COD符合染整業廢水之法定放流標準。
經由UV-vis全波長掃描結果顯示,奈米級MgO對RB-5與RB-19反應後之色度去除結果十分良好,亦發現對於兩種染料之次波峰吸收值有下降趨勢,同時也都有生成新的吸收波峰,可證實染料分子產生斷鍵現象。由於RB-5之分子量較大、分子結構支鏈長、擁有較多可吸附在奈米級MgO的磺酸基與硫酸乙磺醯基,且RB-19之蔥醌結構不易被破壞,因此,奈米級MgO破壞性吸附RB-5之結果優於RB-19。
本研究係將奈米級MgO使用於水相環境,其破壞性吸附可能係以其表面反應位址為主:陰/陽離子空位、超氧離子O2-、邊、角、締合之-OH基、晶格鍵結之OH及孤立之OH。由MALDI-TOF/MS及GC/MS結果推測,RB-5之反應機制可分為:(1)吸附與水溶性基脫落階段,(2)發色團分解脫色階段,(3)淺色中間產物的進一步降解階段;RB-19則分為:(1)吸附與助色團脫落分解階段,(2)發色團分解脫色階段。
Abstract
This study was to prepare nanoscale MgO using the homogeneous precipitation process and to investigate its destructive adsorption with dye wastewater of reactive black-5 and reactive blue-19. In addition, UV-vis Spectrophotometer, Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry (MALDI-TOF/MS) and Gas Chromatograph/Mass Spectrometer (GC/MS) were used to analyze the intermediates resulting from destructive adsorption. Based on the results obtained, the destructive adsorption mechanisms for the treatment of dye wasterwater by nanoscale MgO were proposed in this study.

In this work, the optimal operating conditions for nanoscale MgO synthesis were determined to be the following: (1) a chemical reaction time of 7 hr, (2) reaction temperature of 125℃, (3) molar ratio of 9 for urea/MgCl2.6H2O, (4) water addition of 250 mL, (5) mixing intensity of 90 strokes per min, (6) calcination at 450℃ for 4 hr, (7) reflux time of 24 hr, (8) freeze-drying method, (9) two stage calcinations. Using these operating conditions one is able to prepare 2-D nanoscale MgO of hexagonal platelets with a thickness of 20-30 nm and BET surface area of 120-125 m2/g.

The adsorption model of nanoscale MgO for RB-5 and RB-19 was fitted to the Langmuir equation and their adsorption capacity were 196.08 mg/g and 163.93 mg/g, respectively. Both of them were fitted to the pseudo-second-order kinetic model equation. The optimal operating conditions of nanoscale MgO for destructive adsorption of both dyes were determined to be the following: (1) an initial dye concentration of 1000 mg/L, (2) a nanoscale MgO dose of 15 g/L, (3) a vigorous mixing of 30 min, (4) no need of system pH adjustment. Under such conditions, chemical oxygen demand (COD) and American Dye Manufacturers Institute (ADMI) of RB-5 and RB-19 were lower than the textile effluent standards.

According to the UV-vis spectrophotometer scanning results, the color removal of nanoscale MgO for RB-5 and RB-19 was good. At the same time, the absorbance of their second maximal peaks was decreased and some peaks were observed. Therefore, it proved that the model dyes were destroyed. Experimental results have shown that nanoscale MgO has a better performance of destructive adsorption on RB-5 than that of RB-19. This might be ascribed to the following reasons: (1) a greater molecular weight, (2) a longer molecule structure, (3) more sulfate ethyl sulfone groups for RB-5, and (4) a hard to be destroyed structure of anthraquinone for RB-19.

The destructive adsorption of dye wastewater by nanoscale MgO presumably took place mainly on the surface active sites of nanoscale MgO, including anion/cation vacancies, superoxide anion, edge, corner, isolated OH, lattice bound OH and assiocited-OH groups. According to the results of MALDI-TOF/MS and GC/MS analysis, the relevant reaction mechanism for RB-5 could be divided into three stages: (1) adsorption and water-soluble groups exfoliation stage, (2) chromophor decomposition and decolorization stage, and (3) further degradation stage for light-color intermediates. On the other hand, the relevant reaction mechanism for RB-19 might involve only the adsorption and auxochrome exfoliation stage and chromophor decomposition and decolorization stage.
目次 Table of Contents
聲明切結書………………………………………………………… i
謝誌………………………………………………………………… ii
摘要………………………………………………………………… iii
Abstract…………………………………………………………… v
目錄……………………………………………….……………… vii
表目錄……………………………………………………………… xiii
圖目錄……………………………………………………………… xv

第一章 前言……………………………………………………… 1
1-1 研究緣起…………………………………………………… 1
1-2 研究目的…………………………………………………… 3
1-3 研究內容…………………………………………………… 3
1-4 研究架構…………………………………………………… 5

第二章 文獻回顧………………………………………………… 6
2-1 染整廢水…………...……………………..…………….. 6
2-1-1 台灣染整廢水之污染情形……………………………. 6
2-1-2 染料簡介………………………………………………. 8
2-1-3 染料之發光團學說及基本結構………………… 11
2-1-4 反應性染料……………………………………………13
2-2 染整廢水之處理技術…………………………………………15
2-2-1 簡介………………………………………………… 15
2-2-2 國內外之處理技術………………………………… 16
2-2-3 染料降解途徑與機制……………………………… 25
2-3 氧化鎂……...……………………………............. 30
2-3-1 各國使用MgO之情形……………………………….. 30
2-3-2 奈米級MgO之用途…………………………………… 32
2-3-3 破壞性吸附………………………………………… 32
2-3-4 奈米級MgO之製備方法……………………………… 45
2-4 MALDI-TOF/MS….……………………………………….... 53
2-4-1 MALDI-TOF/MS之原理……………………………… 53
2-4-2 基質簡介...…………………………………………….. 56
2-4-3 MALDI游離機制……………………………………… 58
2-4-4 飛行時間偵測器(TOF)介紹……………………….. 58
2-4-5 MALDI-TOF/MS之應用……………………………… 60

第三章 實驗材料、設備與方法…………….…………………… 62
3-1 實驗材料…………………………………………………… 62
3-2 實驗設備…………………... …………………………… 64
3-3 實驗方法…………………………………………………… 68
3-3-1 利用均勻沉澱法製備奈米級MgO實驗..……………. 68
3-3-1-1 奈米級MgO製備…………………………… 68
3-3-1-2 奈米級MgO活化…………………………… 69
3-3-2 合成粉末之基本性質分析.…………………………… 70
3-3-2-1 晶形鑑定……………………………………. 70
3-3-2-2 粉末外觀型態……………………………….. 70
3-3-2-3 比表面積分析……………………………….. 71
3-3-2-4 熱分析……………………………………….. 71
3-3-3 破壞性吸附反應………………………………………. 71
3-3-3-1 奈米級MgO與RB-5之反應實驗…………. 71
3-3-3-2 奈米級MgO與RB-19之反應實驗………… 73
3-3-3-3 UV-vis全波長分析............... 74
3-3-3-4 MALDI-TOF/MS分析.................... 74
3-3-3-5 GC/MS分析……...………………………….. 75
3-3-3-6 破壞性吸附之反應機制…………………….. 75
3-3-4 與其他吸附劑比較……………………………………. 76
3-3-5 水質參數分析方法.…………………………………… 76

第四章 結果與討論…………………………………………….… 80
4-1 利用均勻沉澱法製備奈米級MgO實驗.……………………. 80
4-1-1 奈米級MgO製備…….……………………………….. 80
4-1-1-1 反應時間之效應…………………………….. 80
4-1-1-2 反應劑莫耳比之效應……………………….. 81
4-1-1-3 添加水量之效應…………………………….. 82
4-1-2 奈米級MgO活化……….......................... 83
4-1-2-1 迴流加熱時間與活化後之乾燥方法之效應.. 84
4-2 合成粉末之基本性質分析….................. 87
4-2-1 X-光繞射分析儀………………………………………. 87
4-2-2 熱重分析儀……………………………………………. 88
4-2-3 掃描式電子顯微鏡……………………………………. 90
4-3 奈米級MgO與RB-5之反應實驗…………………………… 92
4-3-1 攪拌時間之效應…………………………………… 92
4-3-1-1 ADMI分析………………………………… 92
4-3-1-2 COD分析…………………………………… 93
4-3-1-3 TOC分析…………………………………… 94
4-3-1-4 UV-vis分析……………………………… 95
4-3-1-5 吸附反應動力模式……………………… 96
4-3-1-6 綜合分析………………………………… 98
4-3-2 奈米級MgO添加量之效應……...…………….…… 99
4-3-2-1 ADMI分析…………………………………. 100
4-3-2-2 COD分析…………………………………… 101
4-3-2-3 TOC分析…………………………………… 101
4-3-2-4 UV-vis分析……………………………… 102
4-3-2-5 綜合分析…………………………………. 103
4-3-3 初始濃度之效應…………………………………… 104
4-3-3-1 ADMI分析………………………………… 105
4-3-3-2 COD分析…………………………………… 105
4-3-3-3 TOC分析…………………………………… 106
4-3-3-4 UV-vis分析……………………………… 107
4-3-3-5 等溫吸附模式…………………………… 108
4-3-3-6 綜合分析…………………………………. 112
4-3-4 初始pH值之效應……………………………………. 113
4-4 奈米級MgO與RB-19之反應實驗…………………………. 115
4-4-1 攪拌時間之效應…………………………………… 115
4-4-1-1 ADMI分析…………………………………. 115
4-4-1-2 COD分析…………………………………… 116
4-4-1-3 TOC分析…………………………………… 117
4-4-1-4 UV-vis分析……………………………… 118
4-4-1-5 吸附反應動力模式……………………… 119
4-4-1-6 綜合分析………………………………… 120
4-4-2 奈米級MgO添加量之效應……...…………….…… 120
4-4-2-1 ADMI分析…………………………………. 121
4-4-2-2 COD分析…………………………………… 121
4-4-2-3 TOC分析…………………………………… 122
4-4-2-4 UV-vis分析……………………………… 123
4-4-2-5 綜合分析…………………………………. 124
4-4-3 初始濃度之效應………………………………………. 125
4-4-3-1 ADMI分析………………………………….. 125
4-4-3-2 COD分析…………………………………… 126
4-4-3-3 TOC分析…………………………………… 127
4-4-3-4 UV-vis分析……………………………… 128
4-4-3-5 等溫吸附模式…………………………… 129
4-4-3-6 綜合分析…………………………………. 131
4-4-4 初始pH值之效應…………………………………… 131
4-5 奈米級MgO破壞性吸附RB-5之反應機制………………… 132
4-5-1 不同奈米級MgO劑量與RB-5反應之UV-vis全波長掃瞄分析………………………………………………............. 133
4-5-2 MALDI-TOF/MS分析…...…………………………… 135
4-5-3 GC/MS分析…...……………….……..…………… 137
4-5-4 奈米級MgO破壞性吸附RB-5之反應途徑………… 140
4-5-5 綜合分析…………………………………………… 142
4-6 奈米級MgO破壞性吸附RB-19之反應機制………………… 149
4-6-1 不同奈米級MgO之劑量與RB-19反應之UV-vis全波長掃瞄分析………………………………………….................. 150
4-6-2 MALDI-TOF/MS分析…...…………………………… 151
4-6-3 GC/MS分析...………………….……..…………… 152
4-6-4 奈米級MgO破壞性吸附RB-19之反應途徑.………. 153
4-6-5 綜合分析…………………………………………… 155
4-7 與其他吸附劑比較………………………………………… 158
4-8 綜合討論…………………………………………………… 161


第五章 結論與建議……………………………………………… 164
5-1 結論………………………………………………………… 164
5-2 建議………………………………………………………… 167

參考文獻………………………………………………………… 168

附錄………………………………………………………………… 177

碩士在學期間發表之學術論文……………………………… 185
參考文獻 References
1. 印染整理業行業污染特性技術手冊,12版http://waste3.epa.gov.tw/download/iwms/fac_2005/1050%E5%8D%B0%E6%9F%93%E6%95%B4%E7%90%86%E6%A5%AD(89.12%E7%89%88).doc(2000)。
2. 游勝傑、歐尚鑫、曾迪華,“薄膜生物反應槽處理含染整工業廢水之研究”,第九屆水再生及再利用研討會論文集,第245-256頁,中壢市(2004)。
3. 顏上惟,“紡織染整業推行ISO 14001環境管理系統之先期審查”,品質月刊,http://she.moeaidb.gov.tw/subject/session-10.htm(2000)。
4. Reife, A and H. S. Freeman, Environmental Chemistry of Dyes and Pigments, John Wiley & Sons, New York (1996).
5. Klabunde, K. J., Ed., Nanoscale Materials in Chemistry, Wiley-Interscience, New York (2001).
6. Koper, O. B., S. Rajagopalan, S. Winecki, and K. J. Klabunde, “Nanoparticles as Destructive Adsorbents for Environmental Remediation,” EnvironNano 2006環境奈米技術之進展:第三屆環境保護與奈米科技學術研討會論文集(楊金鐘主編),第1-15頁,高雄市(2006)。
7. 毛乃真,“台灣創匯的重要功臣-染整業小兵立大功”,經濟部產業 技術資訊服務推廣計劃產業評析專欄,http://www.itis.org.tw/viewreporter.jhtm?WSOPTION=searchRpt&dip=1&search=%ACV%BE%E3#(2003)。
8. 郭啟祥,“以電聚浮除法處理Acid Orange 6廢水之效能評估探討”,碩士論文,國立台灣大學環境工程研究所(2003)。
9. 行政院環境保護署,水污染防治法第七條第二項,http://w3.epa.gov.tw/epalaw/search/LordiDispFull.aspx?ltype=06&lname=0010。
10. 王美雲,“以菌種突變與混合菌相策略進行生物褪色動力學之研究鋁渣資源化剩餘物之再利用探討”,碩士論文,國立成功大學化學工程學系(2003)。

11. 林永盛,“生長與染料褪色過程代謝產物促進染料生物褪色之探討”,碩士論文,私立逢甲大學化學工程學系(2002)。
12. 喻家駿,“利用UV/H2O2、O3及UV/O3光化學氧化法處理反應性染料廢水之研究”,碩士論文,私立逢甲大學環境工程與科學研究所(2001)。
13. Green, F. J., “The Sigma-Aldrich Handbook of Stains, Dyes and Indicators,” Milwaukee, Wisconsin, Aldrich Chemical Company, Inc. (1990).
14. Sigma-Aldrich, http://www.sigmaaldrich.com/catalog/search/AdvancedSearchPage, retrieved 2006/4/28.
15. Rott, U. and R. Minke, “Overview of Wastewater Treatment and Recycling in the Textile Processing Industry,” Water Science and Technology, 40, 137-144 (1999).
16. Buckley, C. A., “Membrane Technology for the Treatment of Dyehouse Effluents,” Water Science and Technology, 25, 203-209 (1992).
17. 冬龍,“珍惜資源保護環境-印染污水處理新方法簡介”,經濟日報第三版,http://www.cdpa.org.cn/tempfile.asp?id=512(2004)。
18. Eren, Z. and F. N. Acar, “Adsorption of Reactive Black 5 from an Aqueous Solution: Equilibrium and Kinetic Studies,” Desalination, 194, 1-10 (2006).
19. Ozdemir, O., B. Armagan, M. Turan, and M. S. Celik, “Comparison of the Adsorption Characteristics of Azo-Reactive Dyes on Mezoporous Minerals,” Dyes and Pigments, 62, 49-60 (2004).
20. Armagan, B., M. Turan, and M. S. Celik, “Equilibrium Studies on the Adsorption of Reactive Azo Dyes into Zeolite,” Desalination, 170, 33-39 (2004).
21. Lee, J. W., S. P. Choi, R. Thiruvenkatachari, W. G. Shim, and H. Moon, “Evaluation of the Performance of Adsorption and Coagulation Processes for the Maximum Removal of Reactive Dyes,” Dyes and Pigments, 69, 196-203 (2006).
22. Akkaya, G., I. Uzun, and F. Guzel, “Kinetics of the Adsorption of Reactive Dyes by Chitin,” Dyes and Pigments, 73, 168-177 (2007).

23. Uzun, I., “Kinetics of the Adsorption of Reactive Dyes by Chitosan,” Dyes and Pigments, 70, 76-83 (2006).
24. Ozcan, A., C. Omeroglu, Y. Erdogan, and A. S. Ozcan, “Modification of Bentonite with a Cationic Surfactant: An Adsorption Study of Textile Dye Reactive Blue 19,” Journal of Hazadous Materials, In Press (2006).
25. Andrzejewska, A., A. Krysztafkiewicz, and T. Jesionowski, “Treatment of Textile Dye Wastewater Using Modified Silica,” Dyes and Pigments, In Press, 1-9 (2006).
26. Jesionowski, T., “Influence of Aminosilane Surface Modification and Dyes Adsorption on Zeta Potential of Spherical Silica Particles Formed in Emulsion System,” Colloids and Surfaces B, 222, 87-94 (2003).
27. Shu, H. Y., M. C. Chang, and H. J. Fan, “Decolorization of Azo Dye Acid Black 1 by the UV/H2O2 Process and Optimization of Operating Parameters,” Journal of Hazardous Materials B, 113, 201-208 (2004).
28. 張博荀,“H2O2/Fe2+化學氧化法處理反應性-Black B之研究”,碩士學位論文,國立成功大學化學工程研究所,台南市(2004)。
29. 葉茂淞,“以天然與基因重組菌種進行偶氮染料褪色動力學之研究”,碩士學位論文,逢甲大學化學工程學系,台中市(2002)。
30. 徐永錢、吳昆鴻、陳佳存、曾俊貴,“以新型捲氣式反應器探討O3/H2O2處理數種染料水溶液之研究”,第二十五屆廢水處理技術研討會論文集,第586-591頁,高雄市(2000)。
31. 劉博文,“染整廢水及商用反應性染料之臭氧與紫外光脫色效應及經濟評估”,博士學位論文,國立中山大學環境工程研究所,高雄市(2004)。
32. Chen, C. C., H. J. Fan, C. Y. Jang, J. L. Jan, H. D Lin, and C. S. Lu,“ Photooxidative N-de-methylation of Crystal Violet Dye in Aqueous Nano-TiO2 Dispersions Under Visible Light Irradiation,” Journal of Photochemistry and Photobiology A: Chemistry, 184, 147–154 (2006).
33. 史惠祥、趙偉榮,“偶氮染料的臭氧氧化機理研究“,浙江大學學報,37,734-738(2003)。


34. Rajkumar, D., B. J. Song, and G. K. Jong, “Electrochemical Degradation of Reactive Blue 19 in Chloride Medium for the Treatment of Textile Dyeing Wastewater with Identification of Intermediate Compounds,” Dyes and Pigments, 72, 1-7 (2007).
35. 郭如新,“美國氧化鎂、氫氧化鎂生產應用與研究動向”,蘇鹽科技,4,3-6 (2002)。
36. 郭如新,“美國氧化鎂、氫氧化鎂生產現狀與研究動向”,蘇鹽科技,1,8-10 (2005)。
37. 郭如新,“日本氧化鎂、氫氧化鎂生產應用與研究動向”,蘇鹽科技,2,8-10 (2003)。
38. 周向陽、楊宇、劉宏專,“納米氧化鎂製備技術的展望”,材料導報,18,31-33(2004)。
39. Lee, M. H. and G. P. Dong, “Preparation of MgO with High Surface Area, and Modification of Its Pore Characteristics,” Bulletin of the Korean Chemical Society, 24, 1437-1440 (2003).
40. Narske, R. M., K. J. Klabunde, and S. Fultz, “Solvent Effect on the Heterogeneous Adsorption and Reaction of Ethyl Sulfide on Nanocrystalline Magnesium Oxide,” Langmuir, 18, 4819-4825 (2002).
41. Li, Y. X. and K. J. Klabunde, “Nanoscale Metal Oxide Particles as Chemical Reagents. Destructive Adsorption of a Chemical Agnent Simulant, Dimethyl Methylphosphonate on Heat-Treated Magnesium Oxide,” Langmuir, 7, 1388-1393 (1991).
42. Jeevanandam, P. and K. J. Klabunde, “A Study on Adsorption of Surfactant Molecules on Magnesium Oxide Nanocrystals Prepared by an Aerogel Route,” Langmuir, 18, 5309-5313 (2002).
43. 李世濤,季學亮,陳建國,吳長東,梅冰,“納米氧化鎂及其複合材料的抗菌性能研究”,無機化學學報,11,1651-1656(2005)。
44. Wagner, G. W. and P. W. Bartram, “Reactions of VX, HD, and Their Simulants with NaY and AgY Zeolites. Desulfurization of VX on AgY,” Langmuir, 15, 8113 - 8118 (1999).
45. Wagner, G. W., P. W. Bartram, O. Koper, and K. J. Klabunde, “Reactions of VX, GD, and HD with Nanosize MgO,” The Journal of Physical Chemistry B, 103, 3225-3228 (1999).

46. Wagner, G. W., O. B. Koper, E. Lucas, S. Decker, and K. J. Klabunde, “Reactions of VX, GD, and HD with Nanosize CaO: Autocatalytic Dehydrohalogenation of HD,” The Journal of Physical Chemistry B, 104, 5118-5123 (2000).
47. Stoimenov, P. K., V. Zaikovski, and K. J. Klabunde, “Novel Halogen and Interhalogen Adducts of Nanoscale Magnesium Oxide,” Journal of the American Chemical Society, 125, 12907-12913 (2003).
48. Stoimenov, P. K., R. L. Klinger, G. L. Marchin, and K. J. Klabunde, “Metal Oxide Nanoparticles as Bactericidal Agents,” Langmuir, 18, 6679-6686 (2002).
49. 黄蕾,李殿卿,林彥軍,D. G. Evans,段雪,“納米MgO的可控製備及其對B. niger的殺滅性能”,科學通報,49,2294-2299(2004)。
50. Sawai, J., S. Shoji, H. Igarashi, A. Hashimoto, T. Kokugan, M. Shimizu, and H. Kojima, “Antibacterial characteristics of magnesium oxidepowder,” World Journal of Microbiology and Biotechnology, 16, 187-194 (2000).
51. Carter, D. E., “Oxidation-Reduction Reactions of Metal Ions,” Environmental Health Perspectives, 103, 17-19 (1995).
52. Huang, K. C., R. A. Couttenye, and G. E.Hoag, “Kinetics of Heat-Assisted Persulfate Oxidation of Methyl Tert-Butyl Ether,” Chemoshpere, 49, 413-420(2002).
53. Mishakov, I. V., D. S. Heroux, V. V. Chesnokov, S. G. Koscheev, M. S. Mel’gunov, A. F. Bedilo, R. A. Buyanov, and K. J. Klabunde, “Reaction of Nanocrystalline MgO with 1-Iodobutane,” Journal of Catalysis, 229, 344–351 (2005).
54. Mishakov, I. V., A. F. Bedilo, R. M. Richards, V. V. Chesnokov, A. M.Volodin, V. I. Zaikovskii, R. A. Buyanov, and K. J. Klabunde, “Nanocrystalline MgO as a Dehydrohalogenation Catalyst,” Journal of Catalysis, 206, 40-48 (2002).
55. Fenelonov, V. B., M. S. Mel’gunov, I. V. Mishakov, R. M. Richards, V. V. Chesnokov, A. M. Volodin, and K. J. Klabunde, “Change in Texture and Catalytic Activity of Nanocrystalline MgO during its Transformation to MgCl2 in the Reaction with 1-Chlorobutane,” The Journal of Physical Chemistry B, 105, 3937-3941 (2001).
56. Jiang, Y., S. Decker, C. Mohs, and K. J. Klabunde, “Catalytic Solid State Reactions on the Surface of Nanoscale Metal Oxide Particles,” Journal of Catalysis, 180, 24-35 (1998).
57. Choudary, B. M., R. S. Mulukutla, and K. J. Klabunde, “Benzylation of Aromatic Compounds with Different Crystallites of MgO,” Journal of the American Chemical Society, 125, 2020-2021 (2003).
58. Kakkar, R., P. N. Kapoor, and K. J. Klabunde, “Theoretical Study of the Adsorption of Formaldehyde on Magnesium Oxide Nanosurfaces : Size Effects and the Role of Low-Coordinated and Defect Sites,” The Journal of Physical Chemistry B, 108, 18140-18148 (2004).
59. Klabunde, K. J., J. Stark, O. Koper, C. Mohs, D. G. Park, S. Decker, Y. Jiang, I. Lagadic, and D. Zhang, “Nanocrystals as Stoichiometric Reagents with Unique Surface Chemistry,” The Journal of Physical Chemistry , 100, 12142-12153 (1996).
60. 王志奎、楊榮棒、姜麗,“超細粉體氧化鎂的合成”,功能材料,30,557-559(1999)。
61. 酒金婷、李立平、葛鑰,“用高分子保護的納米MgO的合成”,無機化學學報,17,361-365(2001)。
62. 張近,“均勻沈澱法製備納米氧化鎂的研究”,功能材料,30,193-196 (1999)。
63. Yang, G. C. C. and C. M. Tsai, “A Study on the Operating Parameters for the Preparation of Nanoscale Magnesium Oxide,”第一屆環境保護與奈米科技學術研討會論文集,第51-56頁,新竹市(2004)。
64. 楊金鐘、蔡啟明,“利用均勻沈澱法製備奈米氧化鎂”,界面科學會誌,27,87-94(2005)。
65. Henrist, C. and J. P. Mathieu, “Morphological Study of Magnesium Hydroxide Nanoparticles Precipitated in Dilute Aqueous Solution,” Journal of Crystal Growth, 249, 321-325 (2003).
66. 戴焰林、洪玲、施利毅,“全返混均質乳化法製備納米氫氧化鎂工藝研究”,化工礦物與加工,8,8-11(2003)。
67. 梁桂勇、翟學良、秦冀廣,“超細粉末的液相製備技術及其比較”,河北師範大學學報(自然科學版),23,97-101(1999)。
68. Chhor, K., J. F. Boocquet, and C. Pommier, “Syntheses of Submicron Magnesium Oxide Powders,” Materials Chemistry and Physics, 40, 63-68 (1995).
69. Ding, Y., G., H. Zhang, B. Wu, L. H. Wang, and Y. Qian, “Nanoscale Magnesium Hydroxide and Magnesium Oxide Powders: Control over Size, Shape, and Structure via Hydrothermal Synthesis,” Chemistry of Materials, 13, 435-440 (2001).
70. 李春虎、趙九生,“納米MgO和MgAl2O4尖晶石的製備與表徵”,無機材料學報,3,557-560(1996)。
71. 朱亞先,“MgO納米粉製備及表徵”,廈門大學學報,6,1256-1259 (2001)。
72. Carnes, C. L., P. N. Kapoor, and K. J. Klabunde, “ Synthesis Characterization and Adsorption Studies of Nanocrystalline Aluminum Oxide and a Bimetallic Nanocrystalline Aluminum Oxide/Magnesium Oxide,” Chemistry of Materials, 14, 2922-2929 (2002).
73. Utamapanya, S., K. J. Klabunde, and J. R. Schlup, “Nanoscale Metal Oxide Particles/Clusters as Chemical Reagents. Synthesis and Properties of Ultrahigh Surface Area Magnesium Hydroxide and Magnesium Oxide,” Chemistry of Materials, 3, 175-181 (1991).
74. 廖莉玲、劉吉平,“固相法合成奈米氧化鎂“,精細化工,18,69-73 (2001)。
75. 周益明、忻新泉,“低溫固相合成化學“,無機化學學報,15,273-292 (1999)。
76. Takanori, W., Nakayoshi, and K. Akio, “Preparation of Submicron Magnesium Oxide Powders by Vapor Phase Reaction of Magnesium and Oxygen,” Journal of the Chemical Society of Japan, 6, 2468-2480 (1984).
77. 林孟芳,“開發以胰蛋白-磁性奈米粒子在高溫下對蛋白質進行快速消化反應之技術及以微酯體包覆受質結合質譜分析技術應用於極微量蛋白質的偵測”,碩士學位論文,國立中山大學化學研究所,高雄市(2006)。
78. 張景雯,“快速偵測尿液中微量蛋白質及血液質譜分析技術的開發”,碩士學位論文,國立中山大學化學研究所,高雄市(2006)。
79. 鄭淨月,“開發與蛋白質體學有關的新質譜游離技術”,博士學位論文,國立中山大學化學研究所,高雄市(2004)。
80. 陳玉青,“以質譜技術偵測血清中微量的反應蛋白C”,碩士學位論文,國立中山大學化學研究所,高雄市(2004)。
81. Plum, A. and R. Astrid, “Strategies for Continuous On-line High Performance Liquid Chromatography Coupled with Diode Array Detection and Electrospray Tandem Mass Spectrometry for Process Monitoring of Sulphonated Azo Dyes and Their Intermediates in Anaerobic–Aerobic Bioreactors,” Journal of Chromatography A, 1084, 119–133 (2005).
82. Epolitoa, W. J., Y. H. Lee, L. A. Bottomley, and S. G. Pavlostathisa, “Characterization of the Textile Anthraquinone Dye Reactive Blue 4,” Dyes and Pigments, 67, 35-46 (2005).
83. Khalell, A. and A. Dellinger, “FTIR Investigation of Adsorption and Chemical Decomposition of CCl4 by High Surface-Area Aluminum Oxide,” Environmental Science and Technology, 36, 1620-1624 (2002).
84. 薛舒珮,“利用鎂合金精煉浮渣製備奈米級氧化鎂”,碩士學位論文,國立中山大學環境工程研究所,高雄市(2006)。
85. Khraisheh, M. A. M., M. A. Al-Ghouti, S. J. Allen, and M. N. Ahmad, “Effect of OH and Silanol Groups in the Removal of Dyes from Aqueous Solution Using Diatomite,” Water Research, 39, 922-932 (2005).
86. Morris, R. M., R. A. Kaba, T. G. Groshens, K. J. Klabunde, R. J. Baltisberger, N. F. Woolsey, and V. I. Stenberg, “Paramagnetic Carbon Monoxide on Magnesium Oxide,” Journal of the American Chemical Society, 102, 3419-3424 (1980).
87. Li, W., “Distinct Properties and Specific Applications of Nanocrystalline Metal Oxides as Air Pollution Control Substances,” Ph.D. Dissertation, Department of Chemistry, College of Arts and Science, Kansas State University, Manhattan (2001).
88. Ho, Y. S. and G. McKay, “Sorption of Dye from Aqueous Solution by Peat,” Chemical Engineering Journal, 70, 115–124 (1998).
89. Weber, W. J. and J. C. Morriss, “Kinetics of Adsorption on Carbon from Solution,” Journal of the Sanitary Engineering Division of the American Society of Civil Engineers, 89, 31–60 (1963).
90. 林文超,“廢棄活性白土對水溶液中染料之吸附特性研究”,碩士學位論文,義守大學材料科學與工程學系,高雄縣(2005)。
91. 吳淦任,“以戊二醛交聯幾丁聚醣圓珠吸附水溶液中Potassium Indigotrisulfonate之研究”,碩士學位論文,國立高雄師範大學化學系,高雄市(2002)。

92. 郭淑慧,“以奈米碳管對水中偶氮染料之吸脫附行為探討”,碩士學位論文,國立雲林科技大學環境與安全衛生工程系,雲林縣(2006)。
93. Tari, G., J. M. F. Ferreira, and O. Lyckfeldt, “Influence of Magnesia on Collidal Processing of Alumina,” Journal of the Europeam Ceramic Society, 17, 1341-1350 (1996).
94. Bourikas, K., J. Vakros, C. Kordulis, and A. Lycourghiotis, “Potentiometric Mass Titrations: Experimental and Theoretical Establishment of a New Technique for Determining the Point of Zero Charge (PZC) of Metal (Hydr) Oxides,” The Journal of Physical Chemistry B, 107, 9441-9451 (2003).
95. Lucas, E., S. Decker, A. Khaleel, A. Seitz, S. Fultz, A. Ponce, W. Li, C. Carnes, and K. J. Klabunde, “Nanocrystalline Metal Oxides as Unique Chemical Reagents/Sorbents,” Chemistry: A European Journal, 7, 2505-2510 (2001).
96. Blackburn, R. S., “Natural Polysaccharides and Their Interactions with Dye Molecules: Application in Effluent Treatment,” Environmental Science and Technology, 38, 4905-4909 (2004).
97. 許菁珊,“沸石對於光電產業揮發性有機化合物之吸/脫附研究”,碩士學位論文,國立中山大學環境工程研究所,高雄市(2006)。
98. Tanthapanichakoona, W., P. Ariyadejwanichb, P. Japthongb, K. Nakagawac, S. R. Mukaic, and H. Tamonc, “Adsorption–Desorption Characteristics of Phenol and Reactive Dyes from Aqueous Solution on Mesoporous Activated Carbon Prepared from Waste Tires,” Water Research, 39, 1347-1353 (2005).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code