Responsive image
博碩士論文 etd-0214108-121135 詳細資訊
Title page for etd-0214108-121135
論文名稱
Title
氮化銦薄膜載子鬆弛之研究
The Study of Carrier Relaxation in InN Thin Films
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
95
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-01-27
繳交日期
Date of Submission
2008-02-14
關鍵字
Keywords
螢光光譜、時間解析、氮化銦、載子冷卻、衰退率
recombination, carrier cooling, SRH, bimolecular, TRPL, PL, decay rate, Auger, InN
統計
Statistics
本論文已被瀏覽 5661 次,被下載 3306
The thesis/dissertation has been browsed 5661 times, has been downloaded 3306 times.
中文摘要
本論文利用超快時間解析設備對一系列生長於矽(111)基板的氮化銦薄膜研究載子動力學。在研究能量鬆弛上顯示熱聲子效應在光產生載子濃度大於4×10^18cm^-3是非常顯著的,當載子濃度小於7×10^17cm^-3則不明顯。本論文假設是載子與縱向光學聲子的交互作用支配了能量鬆弛過程,且從時間變化的載子溫度可得到有效聲子釋放時間的範圍是116到23飛秒。在研究載子結合方面,經由速率方程式分析在時間積分螢光光譜峰值能量上的時間解析螢光光譜,改變晶格溫度會變化衰退率,這些包含了非輻射與輻射係數,和螢光強度與光產生載子濃度的非線性關係。Shockley-Read-Hall速率隨著溫度增加,暗指著除了中間能隙缺陷狀態之外,在高晶格溫度下載子動能增加使得熱活化捕捉能力變得顯著。在低溫時主要是由輻射結合支配了結合過程,但到了高溫則不顯著。在35K的擬合輻射係數與理論預測值一致。Auger結合係數正比於載子濃度的二次方,且在高溫與高載子濃度時候此效應非常顯著。擬合的Auger結合係數可與能隙分布範圍在0.6-0.8eV的InGaAs和InGaAsP材料比較。
Abstract
This theses investigates the carrier dynamics in Indium Nitride thin films grown on Si(111) substrates by means of ultrafast time-resolved photoluminescence (TRPL) apparatus. The study of energy relaxation shows hot phonon effective is prominent at photogenerated carrier concentration above 4×10^18cm^-3 and become insignificant at carrier concentration below 7×10^17cm^-3. Effective phonon emission times in the range of 116 to 23 femtoseoncds are obtained from the time evolution of carrier temperature assuming that the carrier-LO-phonon interaction is the dominant energy relaxation process. In the study of carrier recombination, the TRPL’s are studied at the peak energies of the time-integrated PL at various lattice temperatures and are converted to decay rates with a rate equation, which includes the nonradiative and radiative coefficients, and a nonlinear dependence of PL intensity on the photogenerated carrier concentration. The increase with temperatures of the Shockley-Read-Hall rates implies that, in addition to the mid-gap defect states, a thermally activated trapping may become prominent at high lattice temperatures due to the increased kinetic energy gained by the carriers. The radiative recombination is the dominated recombination mechanism at low temperature but become trivial at high temperature. The fitted radiative coefficient at a temperature of 35K is consistent to the theoretical prediction. The Auger recombination exhibits a quadratic dependence on carrier concentration and becomes effective at high carrier concentration and at high temperature. The fitted Auger recombination coefficients are comparable to those of InGaAs and InGaAsP materials with band gap energies in the range of 0.6-0.8eV.
目次 Table of Contents
摘要…………………………………………………………I
Abstract……………………………………………………II
目錄…………………………………………………………II
圖目錄………………………………………………………V
表目錄………………………………………………………X
第一章 導論………………………………………………01
1-1 氮化銦的發展簡史…………………………………02
1-2 文獻回顧與動機……………………………………04
1-3 論文架構……………………………………………07
第二章 樣品介紹…………………………………………09
第三章 實驗原理與架設…………………………………13
3-1 Sum-Frequency Generation………………………13
3-2 和頻光與相位匹配角度……………………………16
3-3 實驗架構……………………………………………21
第四章 載子動力學………………………………………26
4-1 傳導帶載子之非結合與能量釋放機制……………26
4-2 傳導帶載子之結合與能量釋放機制………………28
4-3 載子結合率與衰退率………………………………31
第五章 實驗結果與討論…………………………………36
5-1 光產生載子濃度分析………………………………36
5-2 光激發螢光光譜……………………………………41
5-3 載子溫度分析………………………………………52
5-4 衰退率分析…………………………………………60
5-5 內部發光效率分析…………………………………71
5-6 上升時間數據分析…………………………………73
第六章 結論………………………………………………79
參考文獻……………………………………………………81
參考文獻 References
1. S. Strite and H. Morkoc, J. Vac. Sci. Technol. B10 1237 (1992).
2. V. W. L. Chin, T. L. Tansely, T. Osotchan, J. Appl. Phys. 75 7365 (1994).
3. A. G. Bhuiyan, A. Hashimoto, and A. Yamamoto, J. Appl. Phys. 94 2779 (2003).
4. J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager III, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and Sarah Kurtz, J. Appl. Phys. 94 6477 (2003).
5. D. J. Jang, G. T. Lin, C. L. Wu, C. L. Hsiao, L. W. Tu, and M. E. Lee, Appl. Phys. Lett. 91 092108 (2007);D. J. Jang, G. T. Lin, C. L. Hsiao, L. W. Tu, and M. E. Lee, Appl. Phys. Lett. 92 042101 (2008).
6. R. Juza, and H. Hahn, Z. Anorg. Allg. Chem. 239 282 (1938).
7. H. J. Hovel, and J. J. Cuomo, Appl. Phys. Lett. 20 71 (1972).
8. J. W. Trainor, and K. Rose, J. Electron. Mater. 3 821 (1974).
9. T. L. Tansley, and C. P. Foley, Electron. Lett. 20 1066 (1984).
10. T. Inushima, V. V. Mamutin, V. A. Vekshin, S. V. Ivanov, T. Sakon, M. Motokawa and S. Ohoya, Journal of Crystal Growth 227-228 481 (2001).
11. V. Yu. Davydov, A. A. Klochikhin, V. V. Emtsev, D. A. Kurdyukov, S. V. Ivanov, V. A. Vekshin, F. Bechstedt, J. Furthmüller, J. Aderhold, J. Graul, A. V. Mudryi, H. Harima, A. Hashimoto, A. Yamamoto, and E. E. Haller, phys. Stat. sol. (b) 234 787 (2002).
12. W. Walukiewicz, J. W. Ager III, K. M. Yu, Z. Liliental-Weber, J. Wu, S. X. Li, R. E. Jones, and J. D. Denlinger, J. Phys. D: Appl. Phys. 39 R83-R99 (2006).
13. F. Chen, A. N. Cartwright, H. Lu, and W. J. Schaff, Phys. Stat. Sol. (a) 202 768 (2005).
14. Y. C. Wen, C. Y. Chen, C. H. Shen, S. Gwo, and C. K. Sun, Appl. Phys. Lett. 89 232114 (2006).
15. T. R. Tsai, C. F. Chang, and S. Gwo, Appl. Phys. Lett. 90 252111 (2007).
16. F. Chen, A. N. Cartwright, H. Lu, and W. J. Schaff, Appl. Phys. Lett. 83 4984 (2003).
17. D. Zanato, N. Balkan, B. K. Ridley, G. Hill, and W. J. Schaff, Semicond. Sci. Technol. 19 1024 (2004).
18. R. Ascázubi, I. Wilke, S. Cho, H. Lu, and W. J. Schaff, Appl. Phys. Lett. 88 112111 (2006).
19. A. Dmitriev, and A. Oruzheinikov, J. Appl. Phys. 86 3241 (1999).
20. W. Bardyszewski, and D. Yevick, J. Appl. Phys. 58 2713 (1985).
21. W. K. Metzger, M. W. Wanlass, R. J. Ellingson, R. K. Ahrenkiel, and J. J. Carapella, Appl. Phys. Lett. 79 3272 (2001).
22. R. W. Boyd, Nonlinear Optics, Academic press.
23. 朱育民, 國立高雄師範大學物理系研究所碩士論文 (2006).
24. J. Shah, IEEE J. Quant. Electron. 24 276 (1988).
25. F. Zernike, and J. E. Midwinter, Applied nonlinear optics, Wiley (1973).
26. J. Shah, Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures, Springer (1998).
27. 盧書楷, 國立中山大學物理系研究所碩士論文 (2006).
28. 陳文宇, 中原大學物理系研究所碩士論文 (2004).
29. E. F. Schubert, Light-Emitting Diodes, Cambridge University Press (2006).
30. W. Shockley, and T. Read, Phys. Rev. 87 835 (1952).
31. J. F. Watts, An Introduction To The Optical Spectroscopy Of Inorganic Solids, Oxford University Press (1990).
32. E. Hecht, Optics, Addison Wesley (2002).
33. J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager III, E. E. Haller, H. Lu, and W. J. Schaff, Phys. Rev. B 66 201403 (2002).
34. J. Wu, W. Walukiewicz, S. X. Li, R. Armitage, J. C. Ho, E. R. Weber, E. E. Haller, H. Lu, W. J. Schaff, A. Barcz, and R. Jakiela, Appl. Phys. Lett. 84 2805 (2004).
35. B. Arnaudov, T. Paskova, P. P. Paskov, B. Magnusson, E. Valcheva, B. Monemar, H. Lu, W. J. Schaff, H. Amano, and I. Akasaki, Phys. Rev. B 69 115216 (2004).
36. R. N. Hall, Phys. Rev. 87 387 (1952).
37. J. S. Im, A. Moritz, F. Steuber, V. Härle, F. Scholz, and A. Hangleiter, Appl. Phys. Lett. 70 631 (1997).
38. U. Strauss, W. W. Rühle, H. J. Queisser, K. NaKano, and A. Ishibashi, J. Appl. Phys. 75 8204 (1994).
39. V. Y. Davydov, A. A. Klochikhin, R. P. Seisyan, V. V. Emtsev et al., Phys. Stat. Sol. (b) 229 R1-R3 (2002).
40. P. Carrier, and S. H. Wei, J. Appl. Phys. 97 033707 (2005).
41. H. F. Yang, W. Z. Shen, Z. G. Qian, Q. J. Pang, H. Ogawa, and Q. X. Guo, J. Appl. Phys. 91 9803 (2002).
42. 吳佩芳, 中原大學物理系研究所碩士論文 (2007).
43. J. Wu, W. Walukiewicz, K. M. Yu, J.W. Ager III, and E. E. Haller, Appl. Phys. Lett. 80 3967 (2002).
44. W. Walukiewicz, S. X. Li, J. Wu, K. M. Yu, J. W. Ager III, E. E. Haller, Hai Lu, and William J. Schaff, Journal of Crystal Growth 269 119 (2004).
45. S. A. Lyon, J. Lumin. 35 121 (1986).
46. J. Shah, NATO ASI Ser. Ser. B 157 183 (1986).
47. J. W. Pomeroy, M. Kuball, H. Lu, W. J. Schaff, X. Wang, and A. Yoshikawa, Appl. Phys. Lett. 86 223501 (2005).
48. B. K. Ridley, Semicond. Sci. Technol. 4 1142 (1989).
49. Y. P. Varshni, Physica (Amsterdam) 34 149 (1967).
50. J. O. Drumm, B. Vogelgesang, G. Hoffmann, C. Schwender, N. Herhammer, and H. Fouckhardt, Semicond. Sci. Technol. 17 1115 (2002).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code