Responsive image
博碩士論文 etd-0214108-141836 詳細資訊
Title page for etd-0214108-141836
論文名稱
Title
應用徑向基底類神經網路於風力發電系統之最大功率控制
Maximum Power Output Control for Wind Generation System using RBFNN
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
92
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-01-02
繳交日期
Date of Submission
2008-02-14
關鍵字
Keywords
風力發電系統、最大功率控制、徑向基底類神經網路、旋角控制系統、感應發電機、模型參考適應系統理論
none
統計
Statistics
本論文已被瀏覽 5654 次,被下載 4588
The thesis/dissertation has been browsed 5654 times, has been downloaded 4588 times.
中文摘要
由於風力渦輪發電機存在著非線性的特性,其最大功率點運轉位置將隨著風力狀況而改變而有所不同,為了使風力發電系統在任何風速下皆可操作在最大功率點,可從控制系統方面來操作到最大功率點。
影響風力發規主要有三個因素,風速、風力機的功率係數和葉片半徑。然而要獲得更大的能源,葉片半徑也要變大,但大尺寸的葉片勢必導致葉片成本增加,安裝難度加大。風力機的功率係數是隨著葉尖速率比和旋角而作變化。本文討論風力機的功率係數於旋角在某一弳度下,可獲得最大的功\率係數。其中葉片旋角控制器是利用徑向基底類神經網路控制器,由控制器輸出的旋角,輸入到風力渦輪機係統中,以及控制風速之比例積分控制器並結合模型參考適應理論為基礎之速度觀測器,來控制風力渦輪機的輸出功率及發電機輸出功率,以達到最大功率追蹤。
Abstract
The wind-turbine generation system (WTGS) exhibits a nonlinear characteristic, thus its maximum power point varies with changing atmospheric conditions. In order to operate the WTGS at maximum power output under various wind speeds, it is necessary to improve the controller system to operate the WTGS.
There are three factors to influence wind generator, the wind speed, power coefficient and the radius of blade. In order to capture more energy, the radius of blade should be larger, but larger radius brings higher costs and more difficulties to install. The objective of the thesis is to find the power coefficient of wind turbine for various pitch angle to obtain the maximum power output. The pitch angle control system uses RBFNN controller, the result is fed to the wind turbine system, and a proportional-integral controller is used to control wind turbine and combine the speed estimation algorithm, which is based on model reference adaptive system theory, to achieve the maximum power tracking.
目次 Table of Contents
摘要…………………………………………………………….....……..Ⅰ
Abstract………………………………………………………..…………Ⅱ
目錄............................................................................................................Ⅲ
圖目錄………………………………………………………...…….........Ⅶ
表目錄…………………………………………………………….......….Ⅹ

第一章 緒論……………………………………………………………….1
1-1 研究背景及動機……………………………………………..1
1-2 風力發電之發展近況………………………………………..2
1-3 國內外風力發電系統之比較………………………………..2
1-4 相關研究概況………………………………………………..5
1-5 論文架構……………………………………………………..5

第二章 風力感應發電機系統之介紹…………………………………….7
2-1 簡介…………………………………………………………..7
2-2 風能之來源…………………………………………………..7
2-3 風力發電機設置之場所……………………………………..8
2-4 風力機的種類與特色………………………………………10
2-5 風力發電系統的組成………………………………………12
2-6 風力機的安全設計…………………………………………14
2-6-1 安全對策……………………………………………14
2-6-2 保全對策………………………………………........15
第三章 風力感應發電機系統原理……………………………………..17
3-1 簡介………………………………………………………...17
3-2 風之數學模型……………………………………………...17
3-3 風渦輪機之數學模型……………………………………...19
3-4 感應發電機之向量控制原理...............................................21
3-4-1 感應發電機數學模型推導…………………………21
3-4-2 感應發電機之向量控制……………………………24

第四章 風力感應發電機併聯市電之相關問題………………………..28
4-1 簡介………………………………………………………...28
4-2 定速型風力發電組系統之架構…………………………...28
4-3 變速型風力發電組系統之架構…………………………...29
4-4 風力發電組併聯電力系統之影響………………………...31
4-4-1 輸配電系統電壓控制之影響………………………31
4-4-2 系統穩定度之影響…………………………………32
4-4-3 電壓閃爍……………………………………………33
4-4-4因獨立運轉所導致之共振過電壓問題……………34
4-4-5 諧波…………………………………………………34
4-4-6 線路負載潮流………………………………………34

第五章 類神經網路之理論基礎………………………………………...36
5-1 簡介…………………………………………………………36
5-2 神經元模型…………………………………………………36
5-3 類神經網路的連接方式……………………………………40
5-3-1 類神經網路的構成…………………………………40
5-3-2 網路架構…………………………………………....40
5-3-3 類神經網路學習策略……………………………....42
5-3-4 類神經網路的特性………………………………....42
5-4 倒傳遞類神經網路…………………………………………43
5-5 線上倒傳遞類神經網路架構………………………………45
5-6 類神經網路控制架構………………………………………46
5-7 徑向基底類神經網路原理及架構…………………………49
5-7-1 徑向基底類神經網路原理…………………………49
5-7-2 徑向基底類神經網路架構…………………………50

第六章 風力發電機之控制系統………………………………………...53
6-1 簡介…………………………………………………………53
6-2 旋角控制器系統……………………………………………53
6-2-1 旋角的定義…………………………………………53
6-2-2 風力發電機之組成架構與旋角系統………………54
6-3 利用旋角控制器以達到最大功率追蹤…………………...55
6-4 以模型參考適應系統為基礎之速度觀測器……………...56

第七章 模擬結果與討論………………………………………………...61
7-1 簡介………………………………………………………....61
7-2 模擬結果……………………………………………………61
7-2-1 隨機變化之風速模擬………………………………61
7-2-2 緩慢變化之弦波風速模擬…………………………66
7-2-3 變化較大的弦波之風速模擬………………………70

第八章 結論與未來研究方向…………………………………………...74
8-1 結論…………………………………………………………74
8-2 未來研究方向………………………………………………75

參考文獻………………………………………………………………….76
參考文獻 References
[[1] S. R. Bull, “Renewable Energy Today and Tomorrow,” Proceedings of the IEEE, vol. 89, Issue. 8, pp. 1216-1226, 2001
[2] 工研院,http://newwww.itri.org.tw/
[3] 氣象局,http://www.cwb.gov.tw/
[4] 賴耿陽,小型風車設計及製造,復漢出版社有限公司,2001年
[5] 再生能源.風力發電,http://wind,erl,itri.org.tw/
[6] P. M. Anderson and A. Bose, “Stability Simulation of Wind Turbine Systems,” IEEE Trans. Power Apparatus and Systems, vol. 102, no. 12, Dec. 1983, pp.3791-3795.
[7] J. G. Slootweg, S.W. H. de Hann, H. Polinder, W. L. Kling, “General Model for Representing Variable Speed Wind Turbines in Power System Dynamics Simulations,” IEEE Trans. Power Systems, vol. 18, no. 1, Feb. 2003, pp. 144-151.
[8] A. Grauers, “Efficiency of Three Wind Energy Generator Systems,” IEEE Trans. Energy Conversion, vol. 11, no. 3, pp. 650-657, 1996.
[9] 李元芳, “利用智慧型控制之風力驅動三相感應發電機系統之模擬與實作”,國立東華大學電機系碩士論文,民國九十四年六月
[10] 黃?畯菕A“風力發電之網路連接動態模擬”,國立中山大學電機系碩士論文,民國九十三年六月
[11] S. muller et al, “Adjustable Speed Generators for Wind Turbines Bases on Doubly-Fed Induction Machines and 4-Quadrant IGBT Converters Linked to The Rotor,” Proceedings of IEEE Industry Applications Conference, vol. 4, Oct. 2000, pp. 2249-2254.
[12] J. Usaola, P. Ledesma, “Dynamic Incidence of Wind Turbines in Networks with High Wind Penetration,” Proceedings of Power Engineering Society Summer Meeting, 2001, vol. 2, July 2001, pp.15-19.
[13] R. C. Dugan, Distributed Generation and Power Quality, McGraw-Hill Book Co. New York, 1996.
[14] 杜耿邦,“應用人工智慧電力系統諧波源與位置之偵測”,國立中山大學電機系碩士論文,民國九十二年五月
[15] 周鵬程,“類神經網路入門”,全華科技圖書股份有限公司,民國 九十五年一月
[16] 葉怡成,“類神經網路模式應用與實作”,儒林圖書有限公司,民九十三年九月
[17] 張斐章、張麗秋、黃浩倫,“類神經網路-理論與實務”,東華書局,民國九十三年三月
[18] D. Psaltis, A. Sideris, A.A. Yamamura, “A Multilayered Neural Network Controller,” IEEE Control Systems Magazine, vol. 82, April 1988, pp. 17-21.
[19] R. Sakamoto and T. Senjyu, “Output Power Leveling of Wind Turbine Generator by Pitch Angle Control Using Adaptive Control Method,” in Proc, 2004 International Conf., Power System Technology, vol. 1, Nov. 2004, pp. 834-839.
[20] W. Xueguang, W. Weisheng, D. Huizhu, C. Yunping, “Application of Models of The Wind Energy Conversion System to Wind Power Dynamic Analysis,” IEEE Power System Technology, vol. 2, Aug 1998, pp. 1406-1411.
[21] S. Heier, and R. Waddington, “Grid Integration of Wind Energy Conversion System,” John Wiley& Sons Ltd, 1998.
[22] C. Schauder, “Adaptive Speed Identification for Vector Control of Induction Motors without Rotational Transducers,” IEEE Trans. Ind. Appl., vol. 28, no. 5, pp. 1054-1061, 1992.
[23] H. Tajima, and Y. Hori, “Speed Sensorless Field Orientation Control of The Induction Machine,” IEEE Trans. Ind. Appl., vol. 29, no.1, pp. 175-180, 1993.
[24] G. Yang, and T. H. Chin, “Adaptive-speed Identification Scheme for A Vector-Controlled Speed Sensorless Inverter-induction Motor Drive,” IEEE Trans. Ind. Appl., vol. 29, no. 4, pp. 820-825, 1993.
[25] F. Z. Peng, and T. Fufao, “Robust Speed Identification for Speed-Sensorless Vector Control of Induction Motors,” IEEE Trans. Ind. Appl., vol. 30, no. 5, pp. 1234-1240, 1994.
[26] Y. D. Landau, Adaptive Control – The Model Reference Approach, Marcel Dekker, New York, 1979.
[27] F. J. Lin, R. J. Wai, and P. C. Lin, “Robust Speed Sensorless Induction Motor Drive,” IEEE Trans. Aerosp. Electron. Systems, vol. 35, no. 2, pp. 532-542, 1998.
[27] R. Cardenas, R. Pena, J. Proboste, G. Asher, and J. Clare, “MRAS Observer for Sensorless Control of Standalone Doubly Fed Induction Generators,” IEEE Trans. Energy Convers., vol. 20, no. 4, pp. 710-718, Dec 2005
[28] T. Senjyu, S. Tamaki, N. Urasaki, and K. Uezato, H. Higa, T. Funabashi, H. Fujita, and H. Sekine, “Wind Velocity and Rotor Position Sensorless Maximum Power Point Tracking Control for Wind Generation System,” 35th Annual IEEE Power Electron. Specialists Conf., pp. 2023-2028, 2004
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code