Responsive image
博碩士論文 etd-0214108-144705 詳細資訊
Title page for etd-0214108-144705
論文名稱
Title
自製管狀氧化鈦/氧化鋁複合膜同步電混凝/電過濾處理 化學機械研磨廢水之效能評估
Performance Evaluation of Treating Chemical Mechanical Polishing Wastewaters by a Simultaneous Electrocoagulation/Electrofiltration Process Using Laboratory-Prepared Tubular Composite Membranes
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
105
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-01-30
繳交日期
Date of Submission
2008-02-14
關鍵字
Keywords
電過濾、化學機械研磨廢水、電混凝、管狀無機複合膜
chemical mechanical polishing wastewater, electrofiltration, electrocoagulation, Tubular inorganic composite membrane
統計
Statistics
本論文已被瀏覽 5670 次,被下載 2378
The thesis/dissertation has been browsed 5670 times, has been downloaded 2378 times.
中文摘要
本研究旨在利用自製氧化鈦/氧化鋁無機複合膜,進行同步電混凝/電過濾程序處理半導體廠之晶圓研磨廢水。首先,利用溶膠-凝膠法製備二氧化鈦漿液,並加入重量百分濃度為1 wt%的玉米澱粉溶液以形成浸鍍液,再利用浸漿成膜法將浸鍍液披覆於自製的管狀無機支撐體上,接著,高溫燒結以獲得氧化鈦/氧化鋁無機複合膜。將製備好之氧化鈦/氧化鋁無機複合膜以同步電混凝/電過濾程序處理晶圓廠之二種化學機械研磨廢水(水樣A為Cu-CMP廢水;水樣B為Mixed-CMP廢水),並評估其濾液品質,研究亦討論出流水迴流與否對濾速及濾液品質之影響,最後探討不同逆洗時間與週期對薄膜濾速之影響。
研究結果顯示,當二氧化鈦漿液與玉米澱粉溶液體積比為3:1時,所製備出的薄膜孔徑會較大(15 nm)且薄膜厚度較厚(13 μm)。而在CMP廢水處理方面,隨電場強度增強,水樣A中銅離子與TOC去除率會逐漸上升,其他水質項目則無明顯之關係,在最佳的操作條件下,水樣A的濁度去除率可達到98%以上,而TOC去除率也可達90%以上,同樣地,水樣B的濁度去除率也有99%以上,濁度可降至1 NTU以下;而在出流水迴流與否操作程序方面,以出流水迴流最佳操作條件進行出流水不迴流實驗,水樣A之初始濾液通量分別為300 L/h•m2 (出流水迴流操作)和280 L/h•m2 (出流水不迴流操作),水様B之初始濾液通量分別為360 L/h•m2 (出流水迴流操作)和370 L/h•m2 (出流水不迴流操作);而在濾液品質方面,水樣A出流水迴流操作對總固體物含量、矽含量、銅離子、TOC和濁度去除率分別為71%、85%、72%、90%及99%,在出流水不迴流操作方面,固體物含量、矽含量、銅離子、TOC和濁度去除率分別則分別為68%、88%、78%、90%及99%;水樣B出流水迴流操作對總固體物含量、矽含量、TOC和濁度去除率分別為76%、84%、78%及99%,在出流水不迴流操作方面,總固體物含量、矽含量、TOC和濁度去除率分別為78%、86%、72%及99%。從上述結果來看,出流水迴流操作與否對濾液通量及濾液品質的影響並無明顯之關係存在;但在濾液品質方面可適用於灌溉用水及循環式冷卻補充水;另外在逆洗週期與頻率方面,發現經由規律的反沖洗可降低薄膜阻塞的現象,且經由逆洗程序也可延長薄膜使用壽命。
Abstract
In this study, two types of chemical mechanical polishing wastewaters (designated Cu-CMP wastewater and mixed-CMP wastewater, respectively) from a wafer fabrication plant was treated by a simultaneous electrocoagulation/electrofiltration (EC/EF) process using laboratory-prepared TiO2/Al2O3 composite membranes. First, tubular membrane supports of Al2O3 were prepared by the extrusion method. Then the slip composed of nanoscale TiO2 (prepared by sol-gel process) and 1 wt% of corn starch was applied on the aforementioned tubular membrane supports by the dip-coating method, followed by sintering to obtain tubular TiO2/Al2O3 composite membranes. These tubular inorganic composite membranes then were incorporated into an EC/EF treatment module for the treatment of CMP wastewaters. The permeate qualities were evaluated. In addition, the effects of different operating modes (i.e., the flow-through mode and recirculation mode) on membrane flux and permeate quality were conducted. Finally, the effects of changing the backwash time and backwash cycle on the membrane flux were also investigated.
Experimental results have shown that the slip containing 75 v/v% of TiO2 sol and 25 v/v% of corn starch solution would yield a membrane layer with a thickness of 13 μm and a pore size of 15 nm. On the CMP wastewater treatment, the removal efficiencies of copper ion and total organic carbon (TOC) were found to increase with the increasing electric field strength. This relationship, however, did not apply to other water quality items. Under the optimal operating conditions of using the recirculation mode, the removal efficiencies for turbidity and TOC for Cu-CMP wastewater were determined to be 98% and 90%, respectively. Similarly, a turbidity of < 1 NTU (a removal efficiency of 99%) was obtained for mixed-CMP wastewater. By using the same optimal operating conditions for the recirculation mode to treat Cu-CMP wastewater, initial fluxes of 300 L/h•m2 and 280 L/h•m2 were obtained for the flow-through mode and recirculation mode, respectively. The corresponding initial fluxes for mixed-CMP wastewater were 370 L/h•m2 and 360 L/h•m2, respectively. For the case of the recirculation mode, the removal efficiencies of total solids content, silicon, copper ion, TOC, and turbidity for Cu-CMP wastewater were 71%, 85%, 72%, 90% and 99%, respectively. The corresponding removal efficiencies of 68%, 88%, 78%, 90% and 99%, respectively were determined for the case of the flow-through mode. On the other hand, the removal efficiencies of total solids content, silicon, TOC, and turbidity for mixed-CMP wastewater using the recirculation mode were 76%, 84%, 78% and 99%, respectively; whereas 78%, 86%, 72% and 99%, respectively for the flow-through mode. Based on the above findings, the operating mode is not a significant parameter in influencing the membrane flux and quality. Permeate obtained in this work was found to be recyclable for the use in irrigation and make-up water for cooling towers. Backwashing was found to be important to the membrane flux in this study.
目次 Table of Contents
聲明切結書 i
謝誌 ii
摘要 iii
Abstract v
目錄 vii
表目錄 xii
圖目錄 xiii
照片目錄 xv
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
1.3 研究項目 3
第二章 文獻回顧 6
2.1 化學機械研磨製程簡介 6
2.1.1化學機械研磨技術 6
2.1.2 CMP硬體設備與操作流程 7
2.1.3 CMP製程研磨液特性與種類 7
2.1.4 CMP製程廢水及其處理技術 8
2.2 電混凝 14
2.2.1 電混凝基本原理 14
2.2.2 電混凝程序之相關研究 16
2.3 薄膜單元 18
2.3.1薄膜定義與特性 18
2.3.2 薄膜分離程序 18
2.3.3 薄膜組件之形式 20
2.4 薄膜程序過濾方式 22
2.4.1掃流薄膜電過濾 23
2.5 無機薄膜介紹 25
2.5.1 無機薄膜特性 25
2.5.2 管狀無機濾膜之應用 25
第三章 實驗材料、設備與方法 27
3.1 實驗材料 27
3.1.1 化學機械研磨廢水 27
3.1.2 其它試藥及材料 27
3.2 實驗設備 29
3.2.1 蒸氣壓氣體滲透偵測裝置 29
3.2.2 同步電混凝/電過濾處理模組裝置 29
3.2.3 其他設備及儀器 31
3.3 實驗方法 32
3.3.1 管狀無機濾膜之製備 32
3.3.2同步電混凝/電過濾處理系統之操作 33
3.3.2 同步電混凝/電過濾處理模組之濾膜逆洗 35
3.4 管狀無機膜性質分析 35
3.4.1 掃描式電子顯微鏡 35
3.4.2 管狀無機濾膜之孔徑分布測定 36
3.4.3 阻截分子量測定 36
3.5 CMP廢水、濾液品質分析方法 37
第四章 結果與討論 38
4.1 管狀無機複合膜製備及性質分析 38
4.1.1 過濾層厚度 38
4.1.2 孔徑分佈 41
4.1.3 阻截分子量 43
4.2 廢水基本性質分析 45
4.2.1 顆粒粒徑分析 45
4.2.2 掃描式電子顯微鏡-能量分散光譜分析(SEM-EDS) 46
4.2.3 顆粒界達電位之量測 49
4.2.4 其它水質項目特性分析 51
4.3 同步電混凝/電過濾處理模組之操作條件探討 53
4.3.1 電場強度對濾液通量及濾液品質之影響 53
4.3.2 理論臨界電場強度 59
4.3.3 過濾壓差對濾液通量之影響 59
4.3.4 掃流速度對濾液通量之影響 62
4.3.5最佳操作條件對CMP廢水之處理效果 65
4.4出流水迴流與否對濾液通量之影響及濾液品質分析 67
4.5逆洗週期與逆洗時間 72
第五章 結論與建議 75
5.1 結論 75
5.2建議 76
參考文獻 77
碩士在學期間發表之學術論文 89
參考文獻 References
[1] Bhave, R. R., Inorganic Membranes: Synthesis, Characteristics and Applications, Van Nostrand Rehinhold, New York, U.S.A. (1991).
[2] Bae, D. S., D. S. Cheong, K. S. Han, and S. H. Choi, “Fabrication and Microstructure of TiO2 -Al2O3 Composite Membranes with Ultrafine Pores,” Ceramics International, Vol. 24, pp. 25-30 (1998).
[3] Maria, D. A. and B. Rodrigo, “Review of the Treatment of Seafood Processing Wastewaters and Recovery of Proteins Therein by Membrane Separation Processes-Prospects of the Ultrafiltration of Wastewaters from the Fishmeal Industry,” Desalination, Vol. 142, pp. 29-45 (2002).
[4] Yang, G. C. C. and T. Y. Yang, “Reclamation of High Quailty Water from Treating CMP Wastewater by a Novel Crossflow Electrofiltration/Electrodialysis Precess,” Journal of Membrane Science, Vol. 233, pp. 151-159 (2004).
[5] Yang, G. C. C. and C. J. Li, “Preparation of Tubular TiO2/Al2O3 Composite Membranes and Their Performance in Electrofiltration of Oxide-CMP Wastewater,” Desalination, Vol. 200, pp. 74-76 (2006).
[6] 楊金鐘、李權家,“管狀無機濾膜製備及其處理Oxide-CMP廢水初步探討”,第三十屆廢水處理技術研討會論文集光碟,中壢市 (2004)。
[7] Yang, G. C. C. and C. J. Li, “Electrofiltration of Silica Nanoparticle Containing Wastewater Using Tubular Ceramic Membranes,” Separation and Purification Technology, Vol. 58, pp. 159-165 (2007).
[8] Sonawane, R. S., S. G. Hegde, and M. K. Dongare, “Preparation of Titanium(IV) Oxide Thin Film Photocatalyst by Sol-Gel Dip Coating,” Materials Chemistry and Physics, Vol. 77, pp. 744-750 (2002).
[9] Wu, L. Q., P. Huang, N. Xu, and J. Shi, “Effect of Sol Properties and Calcinations on the Performance of Titania Tubular Membranes,” Journal of Membrane Science, Vol. 173, pp. 267-273 (2000).
[10] Ha, H. Y., S. W. Nam, I. H. Oh, and S. A. Hong, “Preperties of the TiO2 Membranes Prepared by CVD of Titanium Tetraisopropoxide,” Journal of Membrane Science, Vol. 111, pp. 81-92 (1996).
[11] Wang, Y. L. and S. W. Nam, “Study of the Growth Morphology of TiO2 Thin Films by AFM and TEM,” Surface and Coatings Technology, Vol. 140, pp. 155-160 (2000).
[12] Takeda, S., S. Suzuki, H. Odaka, and H. Hosono, “Photocatalytic TiO2 Thin Film Deposited onto Glass by DC Magnetron Sputtering,” Thin Solid Films, Vol. 392, pp. 338-344 (2001).
[13] Guo, B., Z. L. Liu, L. Hong, and H. Jiang, “Sol-Gel Derived Photocatalytic Porous TiO2 Thin Films,” Surface & Coatings Technology, Vol. 198, pp. 24-29 (2005).
[14] Hunag, X. R., G. L. Meng, Z. T. Huang, and J. M. Geng, “Preparation of Unsupported Alumina Membrane by Sol-Gel Techniques,” Journal of Membrane Science, Vol. 133, pp. 145-150 (1997).
[15] Ding, X. B., Y. Fan, and N. Xu, “A New Route for the Fabrication of TiO2 Ultrafiltration Membranes with Suspension Derived from a Wet Chemical Synthesis,” Journal of Membrane Science, Vol. 270, pp. 179-186 (2006).
[16] Karin, L. and E. Liden, “Preparation of Alumina Membrane by Tape Casting and Dip Coating,” Journal of the European Ceramic Society, Vol. 17, pp. 359-366 (1997).
[17] 陳仁仲,“力行工廠合理用水,安心度過旱季”,工業技術與資訊,第138期,第4-5頁 (2003)。
[18] 經濟部工業局,“經濟部舉辦半導體製造業高峰鼎談會”,網址:http://w2kdmz1.moea.gov.tw/user/news/detail-1.asp?kind=&id=14128 (2007)。
[19] 陳富政,“利用同步電混凝/電過濾技術處理化學機械研磨廢水”,碩士學位論文,國立中山大學環境工程研究所,高雄市(2003)。
[20] Yang, G. C. C. and C. M. Tsai, “Performance Evaluation of a Simultaneous Electrocoagulation and Electrofiltration Module for the Treatment of Cu-CMP and Oxide-CMP Wastewater,” Journal of Membrane Science, Vol. 286, pp. 36-44 (2006).
[21] Bhushon, M., R. Rouse, and J. E. Lukens, “Chemical-Mechanical Polishing in Semidirect Contact Mode,” Journal of the Electrochemical Society, Vol. 142, No. 11, pp. 3845-3851 (1995).
[22] Chang, C. Y. and S. M. Sze, ULSI Technology, McGraw-Hill, New York (1996)。
[23] 涂佳薇,“化學機械研磨(CMP)廢液之資源化處理研究”,碩士學位論文,國立成功大學資源工程研究所,台南市 (2001)。
[24] 黃信仁、劉志成,“化學機械研磨廢水的處理”,化工於污染防治專刊,第49卷,第2期,第111-116頁 (2002)。
[25] 張勁燕,“半導體製程設備”,五南圖書出版股份有限公司,台北市 (2005)。
[26] 劉訓瑜,“化學機械研磨廢水混凝沉澱效能之評估”,碩士學位論文,國立交通大學環境工程研究所,新竹市 (2000)。
[27] Lin, S. H. and C. R. Yang, “Chemical and Physical Treatments of Chemical Mechanical Polishing Wastewater from Semiconductor Fabrication,” Journal of Hazardous Materials, Vol. 108, pp. 103-109 (2004).
[28] Golden, J. H., R. Small, L. Pagan, C. Shang, and S. Raghvan, “Evaluating and Treating CMP Wastewater,” Semiconductor International, pp. 85-98 (2000).
[29] 黃信仁、劉志成、曾國佑,“以超過濾處理半導體工廠化學機械研磨(CMP)廢水之研究”,第二十六屆廢水處理技術研討會論文集,高雄縣(2001)。
[30] 李文亮、陳其華、錢中朋,簡文宏,“半導體業CMP廢水處理回收再利用實例介紹”,2002產業環保工程實務技術研討會,台北市 (2000)。http://proj.moeaidb.gov.tw/eta/mn10.htm
[31] 鄧宗禹、黃志彬、邱顯盛,“化學機械研磨廢液之處理與回收”,微毫米通訊,第9卷,第1期,第32-41頁(2002)。
[32] Lai, C. L. and K. S. Lin, “Sludge Conditioning Characteristics of Copper Chemical Mechanical Polishing Wastewaters Treated by Electrocoagulation,” Journal of Hazardous Materials B, Vol. 136, pp. 183-187 (2006).
[33] Lai, C. L. and S. H. Lin, “Electrocoagulation of Chemical Mechanical Polishing (CMP) Wastewater from Semiconductor Fabrication,” Chemical Engineering Journal, Vol. 95, pp. 205-211 (2003).
[34] Den, W. and C. Huang, “Electrocoagulation for Removal of Silica Nano-Particlaes from Chemical-Mechanical-Planarization Wastewater,” Colloids and Surfaces A, Vol. 254, pp. 81-89 (2005).
[35] 蔡秀惠,“利用外加電場掃流微過濾程序處理化學機械研磨廢水之研究”,碩士學位論文,國立中山大學環境工程研究所,高雄市 (2001)。
[36] 楊叢印,“結合電過濾/電透析技術處理CMP廢水並同步產製電解水之研究”,博士學位論文,國立中山大學環境工程研究所,高雄市 (2003)。
[37] Tasi, J. C., M. Kumar, S. Y. Chen, and J. G. Lin, “Nano-Bubble Floation Technology with Coagulation Process for the Cost-Effective Treatment of Chemical Mechanical Polishing Wastewater,” Spearation and Purification Technology, Vol. 58, pp. 61-67 (2007).
[38] 蘇揚根,“奈米微氣泡浮除技術於半導體工業化學機械研磨廢水處理之應用”,碩士學位論文,國立交通大學環境工程研究所,新竹市 (2003)。
[39] 陳珮紋、秦靜如,“利用Fe3O4磁性奈米顆粒處理化學機械研磨廢水”,第二十九屆廢水處理技術研討會論文集光碟,台南市 (2004)。
[40] 萬騰州、彭舒維、李惠嬌,“磁化對奈米級廢水混凝沉澱處理影響之研究”,第四屆環境保護與奈米科技學術研討會論文集,台中市 (2007)。
[41] 李啟旻,“添加介面活性劑於電聚浮除法處理化學機械研磨(CMP)廢水之研究”,碩士學位論文,國立臺灣大學環境工程研究所,台北市 (2003)。
[42] 顏守盛,“聚電解質對電聚浮除法處理化學機械研磨廢水之影響”,碩士學位論文,國立屏東科技大學環境工程研究所,屏東市 (2005)。
[43] 楊金鐘,“利用同步電混凝/電過濾程序處理化學機械研磨廢水”,國科會化工及環工學門生質能源及薄膜技術聯合成果應用研討會,新竹市 (2004)。
[44] 李權家,“管狀無機膜製備及其於化學機械研磨廢水處理之應用”,碩士學位論文,國立中山大學環境工程研究所,高雄市 (2006)。
[45] 吳宏?痋A“以超過濾薄膜混合混凝前處理回收半導體工業之研磨廢水”,碩士學位論文,國立交通大學環境工程研究所,新竹市 (2001)。
[46] 邱顯盛,“以電化學法處理化學機械研磨水”,碩士學位論文,國立交通大學環境工程研究所,新竹市(2001)。
[47] 賴振立,“電解混凝沉澱程序處理半導體化學機械研磨廢水之研究”,博士學位論文,元智大學化學工程與材料科學學系,中壢市 (2005)。
[48] Drouiche, N., N. Ghaffour, H. Lounici, and M. Mameri, “Electrocoagulation of Chemical Mechanical Polishing Wastewater,” Desalination, Vol. 214, pp. 31-37 (2007).
[49] Kin, K. T., H. S. Tang, S. F. Chan, S. Raghavan, and S. Martinez, “Treatment of Chemical-Mechanical Planzrization Wastes by Electrocoagulation/Electrofenton Method,” IEEE Transcations on Semiconductor Manufacturing, Vol. 19, pp. 208-215 (2006).
[50] Mollah, M. Y. A., R. Schennach, J. R. Parga, and D. L. Coake, “Electrocoagulation (EC)-Science and Applications,” Journal of Hazardous Materials, Vol. B84, pp. 29-41 (2001).
[51] 徐毓蘭、巫鴻章,“化學機械研磨廢水處理與回收技術簡介”,台灣環保產業雙月刊,第29期,第13-16頁(2005)。
[52] Larry, D. B., J. F. Jukins, and B. L. Weand., Process Chemistry for Water and Wastewater Treatment, Prentice-Hall, New Jersey (1982).
[53] Larue, O. E., C. Vu. Vorobiev, and B. Durand, “Electrocoagulation and Coagulation by Iron of Latex Particles in Aqueous Suspensions,” Separation and Purification Technology, Vol. 31, pp. 177-192 (2003).
[54] Kobya, M., O. T. Can, and M. Bayramoglu, “Treatment of Textile Wastewaters by Electrocoagulation Using Iron and Aluminum Electrodes,” Journal of Hazardous Materials, Vol. B100, pp. 163–178 (2003).
[55] Hu, C. Y., S. L. Lo, and W. H. Kuan, “Effects of Co-Existing Anions on Fluoride Removal in Electrocoagulation (EC) Process Using Aluminum Electrodes,” Water Research, Vol. 37, pp. 4513–4523 (2003).
[56] 陳宏杰,“巨孔溫度敏感型水膠複合薄膜固定胰蛋白腜之研究”,碩士學位論文,長庚大學化學工程研究所,桃園市(2000)。
[57] Mulder, M., Basic Principles of Membrane Technology, Second Edition, Kluwer Academic Publishers, Dordrecht, The Netherlands, (1997).
[58] 鄭領英、王學松,“膜的高科技應用”,五南圖書出版股份有限公司,台北市 (2003)。
[59] 蔡杰裕,“鈀膜反應器進行乙醇脫氫反應之研究”,碩士學位論文,逢甲大學化學工程學系,台中市 (2002)。
[60] Jagannadh, S. N. and H. S. Muralidhara, “Electrokinetic Methods to Control Membrane Fouling,” Industrial and Engineering Chemistry Research,” Vol. 35, pp. 1133-1140 (1996).
[61] Huotari, H. M., I. H. Husman, and G. Tr
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code