Responsive image
博碩士論文 etd-0214108-203346 詳細資訊
Title page for etd-0214108-203346
論文名稱
Title
數位調變光源於多重螢光電泳系統之應用
Digitally Modulated Light for Multiple Fluorescence Excitation in Capillary Electrophoresis Detection System
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
91
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-01-30
繳交日期
Date of Submission
2008-02-14
關鍵字
Keywords
混色光源、LCD投影機、多樣本螢光偵測、電泳、數位調變光源
mixed-color light, LCD projector, electrophoresis, multi-sample fluorescence detection, digitally-filtered light source
統計
Statistics
本論文已被瀏覽 5666 次,被下載 0
The thesis/dissertation has been browsed 5666 times, has been downloaded 0 times.
中文摘要
本研究發展出一套數位調變式光源系統,利用一LCD投影機取代傳統螢光顯微鏡的汞燈光源,藉由內部兩片分光鏡與多片反射鏡將汞燈光源分成RGB三原色,並配合由電腦操控作為遮光層的LCD面板來做即時的切換,並進行晶片電泳的螢光偵測,再由後端的光譜儀與電腦進行光訊號的轉換、紀錄與分析。本系統最大的優點在於可隨意切換所需之激發光波段,也捨棄使用傳統濾鏡輪(filter wheel)切換激發光的複雜機構,亦避開震動所造成的影響。利用不同激發和發射波長的螢光染劑(Atto 647N, Rhodamine B, FITC),測試此系統在不同螢光發射波段的最佳偵測波長,並利用此架構偵測一混合螢光染料,成功且有效的於單次單管的電泳實驗中將三種螢光訊號分離出來。研究中,亦利用投影機中特殊的混色光源-紫光,此光同時帶有兩種單色光的特徵波長,並進行兩種混合螢光染料的電泳偵測,實驗結果顯示此兩種螢光樣本可同時且成功的偵測與分析。最後,將本系統應用於單股DNA(single-strand DNA)的生物樣本,可成功偵測其螢光訊號並分析之。本系統成功\展示出數位調變光源的概念,未來利用即時調變技術,並配合偵測後的訊號分析,將可應用在多樣本螢光偵測的電泳技術上,並增加偵測及分析速度。
Abstract
This research has successfully developed a multiple fluorescence detection method for high throughput capillary electrophoresis detection using a digitally-modulated light source and a spectrum detection system. A commercial available LCD (liquid crystal device) projector is adoped to replace the spacially-filttered light source (Hg lamp) in a conventional fluorescence microscopy. The LCD projector can be digitally controlled by a computer to create the three primary colors of RGB (red, green, and blue) for fluorescence excitation in the analytes. The emitted light from the fluorescent samples is then collected using a UV-VIS-NIR spectrometer through a ultimode fiber. Delicate optical components, such as filter wheel or acousto-optic filtering system, for filtering different excitation light sources can be excluded with this simple and novel approach. In addition, the desired wavelength for the excitation light can be selected quickly and smoothly without vibration problems come with the mechanical optical components. Three fluorescent dyes (Atto 647N, Rhodamine B, Fluorescein) with different excitation and emission wavelength has been used to demonstrate the proposed digitally-modulated light source system for high throughput CE system. The optimal operation conditions for obtaining best detection signal-to-noise ratio for different fluorescence dyes are firstly determined. In addition, the current study proposes a mixed-color light (visually in purple) composed of two specific primary lights (red and blue) to simultaneously excite a mixed sample composed of two fluorescent dyes (Atto 647N and FITC). Separation and detection of the mixed fluoresce samples using a single excitation illumination using the proposed digital-modulated CE system is successfully demonstrated. Finally, a single-strand DNA biosample is used to confirmed the proposed system is feasible of adopting in the bio-analytical applications. The technique proposed in this study has shown its potential to be a high throughput CE detection system.
目次 Table of Contents
目錄...........................................................................................................I
圖目錄......................................................................................................IV
表目錄...................................................................................................VII
中文摘要……………………………………………………….……VIII
Abstract……………………………………………………………….IX
第一章 緒論…………………………………………………………1
1-1 微全分析系統 (Micro Total Analysis System, μ-TAS)…1
1-2 毛細管電泳的發展………………………………………...2
1-3 平行化偵測(Parallel Detection)毛細管電泳的發展……5
1-4 研究動機與目的…………………………………………...7
1-5 論文架構…………………………………………….……10
第二章 理論基礎與文獻回顧………………………..……………12
2-1 毛細管電泳的原理…………………………………….....12
2-1-1 電泳現象 (Electrophoresis Phenomenon)……..13
2-1-2 電滲現象 (Electroosmosis Phenomenon)………15
2-2 螢光的理論與應用…………………………….…………20
2-3 現有的多樣本螢光偵測技術…………………………….24
2-4 調變式濾鏡應用於多重螢光偵測之優點……………….40
第三章 實驗架構與方法…………………………………….…….42
3-1 晶片製作………………………………………………….42
3-1-1 光罩製作……………………………………...43
3-1-2 晶片清洗……………………………………...43
3-1-3 微影…………………………………………...44
3-1-4 蝕刻…………………………………………...45
3-1-5 鑽孔…………………………………………...45
3-1-6 晶片接合……………………………………...46
3-2 實驗藥品………………………………………………..47
3-3 實驗架設………………………………………………..48
3-4 實驗參數………………………………………………..49
第四章 結果與討論………………………………………………..54
4-1 訊號與雜訊比(Signal to Noise Ratio, SNR)的分析…54
4-2 混合染料測試………………………………………….…64
4-3 混合光源測試…………………………………………….65
4-4 生物樣本測試…………………………………………….67
第五章 結論與未來展望………………………………..…………69
5-1 結論………………………………………………….……69
5-2 未來展望………………………………………….………70
參考文獻…………………………..……………………………………73
圖目錄
圖2.1 毛細管電泳裝置圖…………..………………………….………13
圖2.2 矽醇基解離示意圖………………..…………………….………15
圖2.3 電雙層與電位分佈示意圖…………………………...…………16
圖2.4 電解液受電場影響所產生之流動……………………...………17
圖2.5 (A)由壓力流推動的拋物線流動剖面 (B)由電滲透流推動的平
面流動剖面..…………………………....………………………..18
圖2.6 電泳及電滲流對帶電荷或中性粒子在毛細管電泳的影響…...20
圖2.7 激發光與發射光強弱之對照圖………….………….………….22
圖2.8 螢光顯微鏡之元件與光路圖……………………..……………..24
圖2.9 利用多管光纖導入激發光之多管道毛細管電泳偵測架構…...26
圖2.10 利用雷射光源結合菱鏡組之多管道毛細管電泳偵測架構…..26
圖2.11 利用馬達旋轉掃描之多管道毛細管偵測架構………………..27
圖2.12 利用兩組平凸透鏡之多管道毛細管電泳偵測架構………..…27
圖2.13 共焦掃描式多管道毛細管電泳偵測架構…..……………..…..28
圖2.14 利用邊鞘流結合微細加工之多管道毛細管電泳偵測架構…..28
圖2.15 利用光纖結合PDMS 製程之多波長毛細管電泳系統架構….30
圖2.16 利用多波長脈衝激發之毛細管電泳系統架構…………..……30
圖2.17 市售商業化濾鏡輪實體圖…………………………………….32
圖2.18 利用濾鏡輪篩選激發光之多樣本螢光偵測架構圖….......…..32
圖2.19 利用濾鏡輪篩選發射光之多樣本螢光偵測架構圖........….…33
圖2.20 AOTF 剖面圖與繞射過程……..……..………………...………35
圖2.21 利用AOD於多管道多波長的偵測實驗架構圖…….....……..37
圖2.22 利用AOTF 於單管道多波長的偵測架構圖…………....…….37
圖3.1 晶片製程示意圖……………………….………………………..42
圖3.2 晶片實體圖…………………………………….………………..46
圖3.3 系統架設與光路示意圖……………………….………………..49
圖3.4 RGB 三色16 段色階選用圖……………………..………………50
圖3.5 RGB 16 色階與光強度關係圖…………………….…………….51
圖3.6 實驗所選用的色階與光強度關係圖……………….…………..52
圖3.7 紫光光譜與光強度關係圖………………………….…………..52
圖3.8 double-L type….……...……….…………………………………53
圖4.1 Atto 647N 於濃度10-4 M 時各波段的電泳圖………….……….55
圖4.2 Atto 647N 於濃度10-4 M時各波段的細部電泳圖及SNR值…..57
圖4.3 Rhodamine B 於濃度5×10-5 M時各波段的電泳圖………….…58
圖4.4 Rhodamine B 於濃度5×10-5 M時各波段的細部電泳圖及SNR 值
..………..………………………………………………………..59
圖4.5 Fluorescein 在濃度5×10-5 M時各波段的電泳圖………………60
圖4.6 Fluorescein 於濃度5×10-5 M 時各波段的細部電泳圖及SNR 值
…………………………………………………………………61
圖4.7 三染料於各波段的SNR 比較圖……….………..………...…….62
圖4.8 單管單次偵測三種染料之電泳圖………………………………65
圖4.9 紫光同時偵測Atto 647N 與Fluorescein 之電泳圖…..…………66
圖4.10 ssDNA(Fluorescein 標定)樣本於530 nm 收光波長之電泳圖
……………………………………………………….…………68
表目錄
表格一 螢光發射於各階段之概要時間範圍…………………………23
參考文獻 References
[1] A. Manz, N. Graber, and H. M. Widmer, "Miniaturized Total Chemical-Analysis Systems - a Novel Concept for Chemical Sensing," Sensors and Actuators B-Chemical, vol. 1, pp. 244-248,1990.
[2] D. R. Reyes, D. Iossifidis, P. A. Auroux, and A. Manz, "Micro total analysis systems. 1. Introduction, theory, and technology," Analytical Chemistry, vol. 74, pp. 2623-2636, 2002.
[3] P. A. Auroux, D. Iossifidis, D. R. Reyes, and A. Manz, "Micro total analysis systems. 2. Analytical standard operations and applications," Analytical Chemistry, vol. 74, pp. 2637-2652, 2002.
[4] T. Vilkner, D. Janasek, and A. Manz, "Micro total analysis systems. Recent developments," Analytical Chemistry, vol. 76, pp. 3373-3385, 2004.
[5] A. Tiselius, "A New Apparatus for Electrophoretic Analysis of Colloidal Mixtures," Transactions of the Faraday Society vol. 33, pp. 524-531, 1937.
[6] S. Hjerten, "Free zone electrophoresis," Chromatogr.Rev., vol. 9, pp. 122-134, 1967.
[7] R. Virtanen, "Zone Electrophoresis in a Narrow-Bore Tube Employing Potentiometric Detection"Acta Polytech. Scand., vol. 123, pp. 1, 1974.
[8] J. W. Jorgenson and K. D. Lukacs, "Zone Electrophoresis in Open-Tubular Glass-Capillaries," Analytical Chemistry, vol. 53, pp. 1298-1302, 1981.
[9] J. W. Jorgenson and K. D. Lukacs, "High- Resolution Separations Based on Electrophoresis and Electroosmosis," Journal of Chromatography, vol. 218, pp. 209-216, 1981.
[10] S. Terabe, K. Otsuka, K. Ichikawa, A. Tsuchiya, and T. Ando, "Electrokinetic Separations with Micellar Solutions and Open-Tubular Capillaries," Analytical Chemistry, vol. 56, pp. 111-113, 1984.
[11] A. S. Cohen and B. L. Karger, "High-performance sodium dodecyl sulfate polyacrylamide gel capillary electrophoresis of peptides and proteins," Journal of Chromatography A, vol. 397, pp. 409-417, 1987.
[12] K. Seiler, D. J. Harrison, and A. Manz, "Planar Glass Chips for 74 Capillary Electrophoresis - Repetitive Sample Injection, Quantitation, and Separation Efficiency," Analytical Chemistry, vol.
65, pp. 1481-1488, 1993.
[13] C. S. Effenhauser, A. Manz, and H. M. Widmer, "Glass Chips for High-Speed Capillary Electrophoresis Separations with Submicrometer Plate Heights," Analytical Chemistry, vol. 65, pp. 2637-2642, 1993.
[14] Z. Deyl and R. Struzinsky, "Capillary Zone Electrophoresis - Its Applicability and Potential in Biochemical-Analysis," Journal of Chromatography-Biomedical Applications, vol. 569, pp. 63-122,
1991.
[15] J. M. Karlinsey and J. P. Landers, "Multicolor Fluorescence Detection on an Electrophoretic Microdevice Using an Acoustooptic Tunable Filter," Analytical Chemistry, vol. 78, pp. 5590-5596, 2006.
[16] L. Alaverdian, S. Alaverdian, O. Bilenko, I. Bogdanov, E. Filippova, D. Gavrilov, B. Gorbovitski, M. Gouzman, G. Gudkov, S. Domratchev, O. Kosobokova, N. Lifshitz, S. Luryi, V. Ruskovoloshin, A. Stepoukhovitch, M. Tcherevishnick, G. Tyshko,
and V. Gorfinkel, "A family of novel DNA sequencing instruments based on single-photon detection," Electrophoresis, vol. 23, pp. 2804-2817, 2002.
[17] G. Y. Jung, T. H. Kim, and H. B. Lim, "Separation of morpholine, N-methylmorpholine and N-methylmorpholine-N-oxide by indirect UV absorption capillary electrophoresis," Analytical Sciences, vol.
12, pp. 367-370, 1996.
[18] J. Caslavska, E. Gassmann, and W. Thormann, "Modification of a Tunable Uv-Visible Capillary Electrophoresis Detector for Simultaneous Absorbency and Fluorescence Detection - Profiling
of Body-Fluids for Drugs and Endogenous Compounds," Journal of Chromatography A, vol. 709, pp. 147-156, 1995.
[19] L. N. Amankwa, M. Albin, and W. G. Kuhr, "Fluorescence Detection in Capillary Electrophoresis," Trac-Trends in Analytical Chemistry, vol. 11, pp. 114-120, 1992.
[20] M. C. Roach, P. Gozel, and R. N. Zare, "Determination of Methotrexate and Its Major Metabolite, 7-Hydroxymethotrexate, Using Capillary Zone Electrophoresis and Laser-Induced Fluorescence Detection," Journal of Chromatography-Biomedical 75 Applications, vol. 426, pp. 129-140, 1988.
[21] R. D. Smith, H. R. Udseth, J. A. Loo, B. W. Wright, and G. A. Ross, "Sample Introduction and Separation in Capillary Electrophoresis, and Combination with Mass-Spectrometric Detection," Talanta, vol. 36, pp. 161-169, 1989.
[22] J. A. Olivares, N. T. Nguyen, C. R. Yonker, and R. D. Smith, "Online Mass-Spectrometric Detection for Capillary Zone Electrophoresis," Analytical Chemistry, vol. 59, pp. 1230-1232, 1987.
[23] P. D. Curry, C. E. Engstromsilverman, and A. G. Ewing, "Electrochemical Detection for Capillary Electrophoresis," Electroanalysis, vol. 3, pp. 587-596, 1991.
[24] R. A. Wallingford and A. G. Ewing, "Capillary Zone
Electrophoresis with Electrochemical Detection in 12.7-Mu-M Diameter Columns," Analytical Chemistry, vol. 60, pp. 1972-1975, 1988.
[25] R. A. Wallingford and A. G. Ewing, "Capillary Zone
Electrophoresis with Electrochemical Detection," Analytical Chemistry, vol. 59, pp. 1762-1766, 1987.
[26] T. Kaneta, S. Tanaka, and H. Yoshida, "Improvement of Resolution in the Capillary Electrophoretic Separation of Catecholamines by
Complex-Formation with Boric-Acid and Control of
Electroosmosis with a Cationic Surfactant," Journal of
Chromatography, vol. 538, pp. 385-391, 1991.
[27] C. S. Lee, D. Mcmanigill, C. T. Wu, B. Patel, " Factors Affecting Direct Control of Electroosmosis Using an External Electric-Field in Capillary Electrophoresis," Analytical Chemistry, vol. 63, pp.
1519-1523, 1991.
[28] R. J. Hunter, "Zeta Potential in Colloid Science: Principles and Applications," Academic Press, New York, pp. 1-58, 1981.
[29] P. Richard, "A Guide to Fluorescent Probes and Labeling Technologies-The Handbook", 10th Edition, Invitrogen, 2005.
[30] P. Gozel, E. Gassmann, H. Michelsen, and R. N. Zare, "Electrokinetic Resolution of Amino-Acid Enantiomers with Copper(Ii) Aspartame Support Electrolyte," Analytical Chemistry, vol. 59, pp. 44-49, 1987.
[31] J. A. Taylor and E. A. Yeung, "Multiplexed Fluorescence Detector for Capillary Electrophoresis Using Axial Optical Fiber 76 Illumination," Analytical Chemistry, vol. 65, pp. 956-960, 1993.
[32] T. Anazawa, S. Takahashi, and H. Kambara, "A capillary array gel electrophoresis system using multiple laser focusing for DNA sequencing," Analytical Chemistry, vol. 68, pp. 2699-2704, 1996.
[33] B. M. Paegel, C. A. Emrich, G. J. Weyemayer, J. R. Scherer, and R. A. Mathies, "High throughput DNA sequencing with a microfabricated 96-lane capillary array electrophoresis bioprocessor," Proceedings of the National Academy of Sciences of the United States of America, vol. 99, pp. 574-579, 2002.
[34] K. Ueno and E. S. Yeung, "Simultaneous Monitoring of DNA Fragments Separated by Electrophoresis in a Multiplexed Array of 100 Capillaries," Analytical Chemistry, vol. 66, pp. 1424-1431, 1994.
[35] X. H. C. Huang, M. A. Quesada, and R. A. Mathies, "DNA Sequencing Using Capillary Array Electrophoresis," Analytical Chemistry, vol. 64, pp. 2149-2154, 1992.
[36] H. J. Crabtree, S. J. Bay, D. F. Lewis, J. Z. Zhang, L. D. Coulson, G. A. Fitzpatrick, S. L. Delinger, D. J. Harrison, and N. J. Dovichi, "Construction and evaluation of a capillary array DNA sequencer
based on a micromachined sheath-flow cuvette," Electrophoresis, vol. 21, pp. 1329-1335, 2000.
[37] S. Iyer, P. Stark, and J. Olivares, "Two-Color Capillary Electrophoresis with On-Column Excitation and Wave-Guide Based Fluorescent Detection," Journal of the Association for Laboratory Automation, vol. 8, pp. 41-45, 2003.
[38] S. K. Hsiung, C. H. Lin, and G. B. Lee, "A microfabricated capillary electrophoresis chip with multiple buried optical fibers and microfocusing lens for multiwavelength detection," Electrophoresis, vol. 26, pp. 1122-1129, 2005.
[39] E. K. Lewis, W. C. Haaland, F. Nguyen, D. A. Heller, M. J. Allen, R. R. MacGregor, C. S. Berger, B. Willingham, L. A. Burns, G. B. I. Scott, C. Kittrell, B. R. Johnson, R. F. Curl, and M. L. Metzker, "Color-blind fluorescence detection for four-color DNA sequencing," Proceedings of the National Academy of Sciences of the United States of America, vol. 102, pp. 5346-5351, 2005.
[40] http://www.optecinc.com/optec_021.htm.
[41] J. Zhang, K. O. Voss, D. F. Shaw, K. P. Roos, D. F. Lewis, J. Yan, R. Jiang, H. Ren, J. Y. Hou, Y. Fang, X. Puyang, H. Ahmadzadeh, and 77
N. J. Dovichi, "A multiple-capillary electrophoresis system for small-scale DNA sequencing and analysis," Nucleic Acids Research, vol. 27, pp. e36-, 1999.
[42] http://www.olympusconfocal.com/theory/aotfintro.html.
[43] I. Kurtz, R. Dwelle, and P. Katzka, "Rapid Scanning Fluorescence Spectroscopy Using an Acoustooptic Tunable Filter," Review of Scientific Instruments, vol. 58, pp. 1996-2003, 1987.
[44] I. Kurtz, R. Dwelle, and P. Katzka, "Rapid Fluorescent Excitation Spectroscopy Using an Acoustooptic Tunable Filter," Biophysical Journal, vol. 51, pp. A287-a287, 1987.
[45] E. N. Lewis, P. J. Treado, and I. W. Levin, "Visible/near-Infrared Imaging Spectrometry - Applications of an Acoustooptic Tunable Filter (Aotf) to Biological Microscopy," Faseb Journal, vol. 6, pp.
A34-a34, 1992.
[46] P. J. Treado, I. W. Levin, and E. N. Lewis, "High-Fidelity Raman Imaging Spectrometry - a Rapid Method Using an Acoustooptic Tunable Filter," Applied Spectroscopy, vol. 46, pp. 1211-1216, 1992.
[47] D. M. Hueber, C. L. Stevenson, and T. Vodinh, "Fast Scanning Synchronous Luminescence Spectrometer Based on Acoustooptic Tunable Filters," Applied Spectroscopy, vol. 49, pp. 1624-1631, 1995.
[48] M. S. Baptista, C. D. Tran, and G. H. Gao, "Near-infrared detection of flow injection analysis by acoustooptic tunable filter-based spectrophotometry," Analytical Chemistry, vol. 68, pp. 971-976, 1996.
[49] Z. Huang, N. Munro, A. F. R. Huhmer, and J. P. Landers, "Acousto-optical deflection-based laser beam scanning for fluorescence detection on multichannel electrophoretic microchips," Analytical Chemistry, vol. 71, pp. 5309-5314, 1999.
[50] H. R. Morris, C. C. Hoyt, and P. J. Treado, "Imaging Spectrometers for Fluorescence and Raman Microscopy: Acousto-Optic and
Liquid Crystal Tunable Filters," Applied Spectroscopy, vol. 48, pp. 857-866, 1994.
[51] N. Gat, "Imaging spectroscopy using tunable filters: a review," Opto-Knowledge Systems Inc. , vol. 4056, pp. 50-64, 2000.
[52] D. N. Stratis, K. L. Eland, J. C. Carter, S. J. Tomlinson, and S. M. Angel, "Comparison of acousto-optic and liquid crystal tunable 78
filters for laser-induced breakdown spectroscopy," Applied Spectroscopy, vol. 55, pp. 999-1004, 2001.
[53] S. C. Gebhart, R. C. Thompson, and A. Mahadevan-Jansen, "Liquid-crystal tunable filter spectral imaging for brain tumor demarcation," Applied Optics, vol. 46, pp. 1896-1910, 2007.
[54] C. H. Lin, G. B. Lee, Y. H. Lin, and G. L. Chang, "A fast prototyping process for fabrication of microfluidic systems on soda-lime glass," Journal of Micromechanics and Microengineering, vol. 11, pp. 726-732, 2001.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.135.185.194
論文開放下載的時間是 校外不公開

Your IP address is 3.135.185.194
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code