Responsive image
博碩士論文 etd-0214112-222845 詳細資訊
Title page for etd-0214112-222845
論文名稱
Title
含有空缺及鎵的雜質的參雜鈷氧化鋅內鐵磁及反鐵磁耦合的相互競爭
Competition between ferromagnetic and anti-ferromagnetic couplings in Co doped ZnO with vacancies and Ga co-dopants
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
57
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-01-16
繳交日期
Date of Submission
2012-02-14
關鍵字
Keywords
鐵磁性、反鐵磁性、氧空缺、鋅空缺、磁性性質、氧化鋅
Zn vacancies, O vacancies, antiferromgnetism, magnetic properties, ferromagnetism, ZnO
統計
Statistics
本論文已被瀏覽 5662 次,被下載 488
The thesis/dissertation has been browsed 5662 times, has been downloaded 488 times.
中文摘要
本研究使用自旋極化的第一原理方法計算參雜鈷之氧化鋅(含鈷氧化鋅)之電子結構及系統總能以了解含有空缺及共同參雜鎵對於含鈷氧化鋅之磁性性質的影響。本研究顯示在順磁態,即鈷原子沒有磁矩,的情況下,含鈷氧化鋅的總能過高而且不穩定。由系統總能的計算結果也發現,含有鋅空缺及共同參雜鎵的含鈷氧化鋅其穩定態分別為反鐵磁態及鐵磁態,而含有氧空缺的含鈷氧化鋅其穩定態為弱鐵磁態。這些磁性特性可經由含有氧、鋅空缺及共同參雜鎵所產生的含鈷氧化鋅之電子結構的變化來了解,由這些變化知道鈷原子之間的反鐵磁偶合是藉由在價帶中氧的2p及鈷的自旋向上3d軌道的混成軌域所媒介;而鈷原子之間的鐵磁偶合為在氧化鋅的能隙中源自氧空缺的p狀態或是鎵的sp狀態所媒介。對於含有鋅空缺的含鈷氧化鋅,反鐵磁偶合較鐵磁偶合強而呈現反鐵磁態;對共同參雜鎵的含鈷氧化鋅而言剛好相反,而呈現鐵磁態;至於含氧空缺的含鈷氧化鋅,反鐵磁及鐵磁偶合增強的程度相當,而呈現弱鐵磁態。此研究顯示在含有氧、鋅空缺及共同參雜鎵的含鈷氧化鋅中有鐵磁偶合及反鐵磁偶合的競爭,它們之間的微細平衡決定這些材料的磁性特性。
Abstract
Spin-polarized first-principles electronic structure and total energy calculations have been performed to better understand the magnetic properties of Co doped ZnO (ZnO:Co) with vacancies and Ga co-dopants. The paramagnetic state of ZnO:Co, in which Co ions lose their magnetic moments, has been found to be unstable. The total energy results show that acceptor-like Zn vacancies and donor-like Ga co-dopants render the anti-ferromagnetic (AFM) and ferromagnetic (FM) states to be more favorable, respectively. With O vacancies, ZnO:Co has been found to be in the weak FM state. These magnetic properties can be understood by the calculated O- and Zn-vacancies and Ga-co-dopant induced changes of the electronic structure, which suggest that AFM and FM Co-Co couplings are mediated by O 2p-Co majority (↑)-spin 3d hybridized states in the valence band of ZnO and O-vacancy-derived p states or Ga sp states in the ZnO band gap, respectively. For ZnO:Co with Zn vacancies (Ga co-dopants) the AFM (FM) coupling outweighs the FM (AFM) coupling and results in the AFM (FM) state, while for ZnO:Co with O vacancies, both the FM and AFM couplings are enhanced by similar degrees and result in the weak FM state. This study reveals a competition between FM and AFM couplings in ZnO:Co with vacancies and Ga co-dopants, the detailed balancing between which determines the magnetic properties of these materials.
目次 Table of Contents
論文審定書………………………………………..……...…..i
致謝………………………………………………..…...…….ii
摘要………………………………………………..…...……iii
Abstract………………………………………....………......iv
I. Introduction ...………………....………………………….1
II. Theory…………………....…………………………...…..4
2-1 The density functional theory (DFT)
with the local-density approximation (LDA)…...………..4
2-2 The pseudofunction (PSF) calculation method.…11
III. Structural models and calculation details….……...20
IV. Results and Discussion………………………………….......………...24
V. Conclusion………………...…………………………...30
References………………………………......…...……….32
Tables……..………………………………………………37
Figures Captions………………………………………………......38
參考文獻 References
[1.1]Y. Ohno, D.K. Young, B. Beschoten, F. Matsukura, H. Ohno, D.D.Awschalom, Nature 402 (1999) 790.
[1.2]H. Ohno, D. Chiba, F. Matsukura, T. Omiya, E. Abe, T. Dietl, Y.Ohno, K. Ohtani, Nature 408 (2000) 944.
[1.3]T. Dietl, Semicond. Sci. Technol. 17 (2002) 377.
[1.4]K Sato , H Katayama-Yoshida,Semicond. Sci. Technol. 17 (2002) 367–376
[1.5] Z. H. Zhang, X. Wang, J. B. Xu, S. Muller, C. Ronning and Q. Li, Nature Nanotechnology 181 (2009)
[1.6]H-J Lee, S-Y Jeong, C-R Cho, C-H Park,, Appl. Phys. Lett., Vol. 81, No. 21, (2002)
[1.7] K. Ueda, H. Tabata, and T. Kawai, Appl. Phys. Lett. 79, 988 2001.
[1.8] Z. W. Zhao, B. K. Tay, J. S. Chen, J. F. Hu, and B. C. Lim, Appl. Phys.
Lett. 90, 152502 2007.
[1.9] Y.-H. Lin, M. Ying, M. Li, X. Wang, and C.-W. Nan, Appl. Phys. Lett. 90, 2221102007.
[1.10] P. Sati, C. Deparis, C. Morhain, S. Schafer, and A. Stepanov, Phys. Rev.
Lett. 98, 137204 2007.
[1.11] T. Shi, S. Zhu, Z. Sun, S. Wei, and W. Liu, Appl. Phys. Lett. 90, 102108
2007.
[1.12] S. Yin, M. X. Xu, L. Yang, J. F. Liu, H. Rosner, H. Hahn, H. Gleiter, D. Schild, S. Doyle, T. Liu, T. D. Hu, E. Takayama-Muromachi, and J. Z.Jiang, Phys. Rev. B 73, 224408 2006.
[1.13] S. W. Yoon, S. –B. Cho, S. C. We, S. Yoon, B. J. Suh, H. K. Song, and Y. J. Shin, J. Appl. Phys. 93, 7879 (2003).
[1.14] P. Sati, C. Deparis, C. Morhain, S. Schafer, and A. Stepanov, Phys. Rev.
Lett. 98, 137204 (2007).
[1.15] M. Naeem, S. K. Hasanain, M. Kobayashi, Y. Ishida, A. Fujimori, S.
Buzby, and S. I. Shah, Nanotechnology 17, 2675 2006.
[1.16] V. K. Sharma and G. D. Varma, J. Appl. Phys. 102, 056105 2007.
[1.17 ]M. Venkatesan, C. B. Fitzgerald, J. G. Lunney, and J. M. D. Coey, Phys.
Rev. Lett. 93, 177206 2004.
[1.18] J. L. MacManus-Driscoll, N. Khare, Y. Liu, and M. E. Vickers, Adv.Mater. Weinheim, Ger.19, 2925 2007.
[1.19] H. S. Hsu, J. C. A. Huang, S. F. Chen, and C. P. Liu, Appl. Phys. Lett. 90,
102506 2007.
[1.120] S. Deka and P. A. Joy, Appl. Phys. Lett. 89, 032508 2006.
[1.21] M. Venkatesan, P. Stamenov, L. S. Dorneles, R. D. Gunning, B. Bernoux,
and J. M. D. Coey, Appl. Phys. Lett.90, 242508 2007.
[1.22] C. H. Patterson, Phys. Rev. B 74, 144432 2006.
[1.23]X. C. Liu, E. W. Shi, Z. Z. Chen, H. W. Zhang, B. Xiao, and L. X. Song,
Appl. Phys. Lett. 88, 252503 2006.
[1.24] X.-C. Liu, E.-W. Shi, Z.-Z. Chen, T. Zhang, Y. Zhang, B.-Y. Chen, W.
Huang, X. Liu, L.-X. Song, K.-J. Zhou, and M.-Q. Cui, Appl. Phys. Lett.
92, 042502 2008.
[1.25] E. C. Lee and K. J. Chang, Phys. Rev. B69 (2004) 085205.
[1.26] T. Dietl, H. Ohno, F. Matsukura, J. Cibert and D. Ferrand, Science 287 (2000) 1019.
[1.27] A. Kaminski and S. Das Sarma, Phys. Rev. Lett. 88 (2002) 247202.
[1.28] C. D. Pemmaraju, R. Hanafin, T. Archer, H. B. Braun, and S. Sanvito, Phys.
Rev. B78 (2008) 054428.
[1.29] E.-Z. Liu and J. Z. Jiang, J. Appl. Phys. 107 (2010) 023909.
[1.30] E-Z Liu, Y He, and J. Z. Jiang, Appl. Phys. Lett. 93 (2008) 132506.
[1.31] P. Gopal and N. A. Spaldin, Phys. Rev. B74 (2006) 094418.
[1.32] D. Iusan, R. Knut, B. Sanyal, O. Karis, O. Eriksson, V. A. Coleman, G. Westin, J. M. Wikberg, and P. Svedlindh, Phys. Rev. B78, 085319 (2008).
[2.1] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
[2.2] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
[2.3] L. Hedin and B. I. Lundqvist, J. Phys. C: Solid State Phys. 4, 2064 (1971).
[2.4] L. Hedin, Phys. Rev. 139, A796 (1965).
[2.5] A. D. Becke, Phys. Rev. A38, 3098 (1988).
[2.6] C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B37, 785 (1988).
[2.7] U. von Barth and L. Hedin, J. Phys. C: Solid State Phys. 5, 1629 (1972).
[2.8] Andreas Gorling. Phys. Rev Lett.83, 26 (1999)
[2.9] R. V. Kasowski, M. –H. Tsai, T. N. Rhodin, and D. Chambliss. Phys. Rev. B34, 2656 (1986).
[2.10] O. K. Andersen, Phys. Rev. B12, 3060 (1976).
[2.11] Solid State Physics vol.15, edited by F. Seitz and D. Turnbul, p.224.
[2.12] K. Kambe, Z. Naturforsch 22, 322 (1967); 22, 422 (1967); 23, 1280 (1968).
[2.13] J. B. Pendry, “Low Energy Electron Diffraction,” Academic Press, London,
1974 p.137.
[2.14] H. J. Monkhorst and J. D. Pack, Phys. Rev. B13, 5188 (1976).
[3.1] CRC Handbook of Chemistry and Physics, 80th edition, Edited in-chief, David R. Lide , Ph.D., Boca Raton London New York Washington, D.C. CRC Press (1999-2000).
[3.2]Y. He, P. Sharma, K. Biswas, E. Z. Liu, N. Ohtsu, A. Inoue, Y. Inada, M. Nomura, J. S. Tse, S. Yin, and J. Z. Jiang, Phys. Rev. B78, 155202 (2008).
[3.3] D. J. Chadi and M. L. Cohen, Phys. Rev. B8, 5747 (1973).
[3.4] H. J. Monkhorst and J. D. Pack, Phys. Rev. B13, 5188 (1976)
[4.1] H. A. Kramers, Physica 1, 182 (1934).
[4.2] P. W. Anderson, Phys. Rev. 79, 350 (1950).
[4.3] M. A. Ruderman and C. Kittel, Phys. Rev. 96, 99 (1954).
[4.4] T. Kasuya, Prog. Theor. Phys. 16, 45 (1956).
[4.5] K. Yosida, Phys. Rev. 106, 893 (1957).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code