Responsive image
博碩士論文 etd-0215101-141735 詳細資訊
Title page for etd-0215101-141735
論文名稱
Title
水溶性硬桿式聚電解質的合成與電性
Chemical Synthesis and Ionic Conductivity of Water-Soluble Rigid-Rod Polyelectrolyte
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
50
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2001-01-29
繳交日期
Date of Submission
2001-02-15
關鍵字
Keywords
非等向性、X射線散射、離子導電性、水溶性、導電性高分子、縮合聚合、聚電解質、硬桿式高分子
Rid-rod polymer, Ionic Conductivity, Anisotropic, X-ray Scattering, Water-soluble, Conducting Polymer, Polycondensation, Polyelectrolyte
統計
Statistics
本論文已被瀏覽 5662 次,被下載 35
The thesis/dissertation has been browsed 5662 times, has been downloaded 35 times.
中文摘要
全共軛高分子(poly-p-phenylenebenzobisimidazole,PBI)具有獨特之硬桿式主鏈,因而擁有高超的機械強度、熱抗氧化穩定性、和溶劑穩定性。這些穩定特性增加其加工上的困難度,因而限制此高分子在導電高分子、非線性光學、及聚電解質等關鍵技術上的應用。
本研究以2-磺酸對苯二甲酸 和1,2,4,5-四鹽酸氨基偶氮苯在聚磷酸中進行聚縮合成反應,產生PBI 衍生的sPBI 硬桿式高分子,並且測得此聚合物在30oC 甲磺酸中的極限黏度 [η] 為10.5 dL/g。其後將sPBI高分子溶於含有氫化鈉的二甲亞
Abstract
Poly(p-phenylenebenzobisimidazole), PBI, is a rigid-rod polymer with a fully conjugated backbone having superior mechanical properties, thermo-oxi- dative and solvent stabilities. The stabilities cause processing difficulties and in terms limit its applications in critical technologies, such as conducting polymers, nonlinear optics, and solid polyelectrolytes.
In this study, a chemical derivative of PBI, poly[1,7-dihydrobenzo[1,2- d:4,5-d’]diimidazo-2,6-diyl[2-(2-sulfo)-p-phenylene]], sPBI, was synthesized by polycondensation reaction of 1,2,4,5-tetraaminobenzene tetrahydrochloride with 2-sulfoterephthalic acid in poly(phosphoric acid). Isolated sPBI was measured in 30oC methanesulfonic acid for an intrinsic viscosity as high as 10.5 dL/g. sPBI polymer was then reacted with 1,3-propanesultone in dimethylsulfoxide containing sodium hydride for water-soluble rigid-rod polyelectrolyte, poly[1,7- dipropylsulfobenzo-[1,2-d:4,5-d’]diimidazo-2,6-diyl-[2,(2-sulfo)-p-phenylene]], sPBI-PS(Na+). sPBI-PS(Na+) was further converted to sPBI-PS(Li+) with hydrochloride and followed with lithium hydroxide. Various analyses were applied to ascertain chemical structure, purities and thermal properties of synthesized monomers and polymers. sPBI-PS(Li+) aqueous solutions were doped individually with lithium salts of LiI, LiBF4, and LiCF3SO3 at concentrations up to 1.7×10-5 wt./wt., which were cast into freestanding films of 10-25 μm in thickness. Direct-current conductivity measured at room- temperature parallel to the film surface was as large as 9.74×10-5 S/cm. The ionic nature of the conductivity was revealed by constant-voltage depletion measurements. X-ray scattering results suggested that the cast film was in-plane isotropic but out-of-the plane anisotropic with the rigid-rod backbone lying in the plane of the film.
目次 Table of Contents
LIST OF TABLES…………………………………………………………….. IV
LIST OF ILLUSTRATIONS…………………………………………………... V

CHAPTER 1 INTRODUCTION………………………………………... 1
1.1 Solid Polymer Electrolytes (SPEs)………………………………………. 1
1.2 Water Soluble Rigid-Rod Polyelectrolyte—sPBI-PS…………………… 2

CHAPTER 2 EXPERIMENTAL………………………………………... 6
2.1 Chemical Syntheses and Preparation……………………………………. 6
2.1.1 Monomers Syntheses…………………………………………… 6
2.1.1.1 1,2,4,5-Tetraaminobenzene Tetrahydrochloride
(TABTHC)…………………………………………... 6
2.1.1.2 2-Sulfoterephthalic Acid (STPA)…………………… 8
2.1.2 Solvents for sPBI Polymer……………………………………. 10
2.1.2.1 Polymerization Medium—Poly(phosphoric acid)
(PPA)………………………………………………. 10
2.1.2.2 Solvent—Methanesulfonic Acid (MSA)…………... 10
2.1.3 Polymer Syntheses…………………………………………….. 10
2.1.3.1 Poly[1,7-dihydrobenzo[1,2-d:4,5-d’] diimidazo-2,6-
diyl [2-(2- sulfo)-p-phenylene]] (sPBI)……………. 12
2.1.3.2 Poly[1,7-dipropylsulfobenzo[1,2-d:4,5-d’] diimidazo-
2,6- diyl [2,(2-sulfo)-p-phenylene]] (sPBI-PS(Na+))
……………………………………………………... 12
2.1.3.3 Poly[1,7-dipropylsulfobenzo[1,2-d:4,5-d’] diimidazo-
2,6-diyl [2,(2-sulfo)-p-phenylene]] (sPBI-PS(Li+))…..
……………………………………………………...13
2.2 Fractionation by Dialysis………………………………………………. 13
2.3 Solvation of Polyelectrolytes…………………………………………... 14
2.4 Film Fabrication ……………………………………………………….. 14
2.5 Chemical Analyses……………………………………………………... 14
2.5.1 Nuclear Magnetic Resonance (NMR)………………………… 14
2.5.2 Fourier Transform Infrared Absorption (FTIR)………………. 15
2.5.3 Elemental Analyzer (EA)……………………………………... 15
2.5.3 Mass Spectrometry (MS)……………………………………… 16
2.6 Thermal Analyses………………………………………………………. 17
2.6.1 Thermogravimetric Analyzer (TGA)…………………………. 17
2.6.2 Differential Scanning Calorimeter (DSC)…………………….. 17
2.7 Conductivity Measurement…………………………………………….. 18
2.8 Morphology and Microstructure……………………………………….. 18
2.8.1 Polarized Light Microscope (PLM)……………………………20
2.8.2 X-ray Scattering……………………………………………….. 20
2.8.3 Scanning Electron Microscope (SEM)………………………... 20

CHAPTER 3 THEORETICAL CONSIDERATIONS…………………. 22
3.1 P2O5 Adjustment Method………………………………………………. 22
3.2 Polymerization Control………………………………………………… 25
3.3 Salt and Polymer Solvation…………………………………………….. 27

CHAPTER 4 RESULTS AND DISCUSSION………………………… 30
4.1 Chemical Synthises and Analyses……………………………………… 30
4.1.1 Monomers……………………………………………………... 30
4.1.1.1 1,2,4,5-Tetraaminobenzene Tetrahydrochloride
(TABTHC)…………………………………………. 30
4.1.1.2 2-Sulfoterephthalic Acid (STPA)………………….. 32
4.1.2 Polymers………………………………………………………. 33
4.1.2.1 sPBI Rigid-rod Polymer…………………………… 33
4.1.2.2 sPBI-PS(Na+)……………………………………….34
4.1.2.3 sPBI-PS(Li+)……………………………………….. 34
4.2 Electrical Conductivity…………………………………………………. 38
4.3 Morphology and Microstructure……………………………………….. 38

CHAPTER 5 CONCLUSIONS………………………………………... 46

LIST OF REFERENCES ……………………………………………………... 48












LIST OF ILLUSTRATIONS

Figure 1.1 Characteristic of electrochemical cells for three batteries
technologies at a power density > 100 W dm.-3……………… 3
Figure 1.2 Chemical structure of PBX rigid-rod molecules……………...5
Figure 2.1 Chemical reaction steps from 1,3-dichlorobenzene to TAB- THC…………………………………………………………...7
Figure 2.2 STPA protection and purification scheme…………………….9
Figure 2.3 Glass distiller for vacuum-distillation system……………….11
Figure 2.4 Polymerization scheme for synthesizing sPBI-PS(X+)……... 11
Figure 2.5 Schematic diagram of eight-probe DC conductivity measurement module……………………………………….. 19
Figure 3.1 The mechanism scheme of PPA catalyzing sPBI……………23
Figure 4.1 The sPBI rigid-rod polymer exhibits an intrinsic viscosity
[η] of 10.5 dL/g in MSA at 30°C…………………………….35
Figure 4.2 Thermogravimetric decomposition curve for sPBI rigid-rod polymer……………………………………………………... 36
Figure 4.3 Thermogravimetric decomposition curve for sPBI-PS(Na+) polyelectrolyte…………………………………………….… 37
Figure 4.4 Four-probe voltage-current data of sPBI-PS(Li+) doped with LiCF3SO3 at a concentration of 1.71×10-5 wt./wt. indicating
a DC electric conductivity of 9.74×10-5 S/cm………………. 40
Figure 4.5 Variation in DC conductivity for sPBI-PS(Li+) doped with three different Li salts………………………………………. 41
Figure 4.6 Constant-voltage depletion measurement on cast films of sPBI- PS(Li+) doped with different Li salts at a constant concentration of 1.71´10-5 wt./wt. …………………………. 42
Figure 4.7 X-ray scattering pattern nomal to the edge of sPBI-PS(Li+)
freestanding film……………………………………………. 43
Figure 4.8 Line scans of X-ray intensity measured normal to the edge of sPBI-PS(Li+) freestanding film……………………………... 44
LIST OF TABLES

Table 3.1 Equilibrium compositions of PPA, Hn+2PnO3n+1…………….24
Table 4.1 Freestanding film thickness of sPBI-PS(Li+) doped with various salts…………………………………………………39
參考文獻 References
1. P. V. Wright, Br. Polym. J., 7, 319 (1975).
2. M. B. Armand, Annu. Rev. Mater. Sci., 16, 245 (1986).
3. D. Fauteux, A. Massucco, M. Mclin, M. V. Buren, and J. Shi, Electrochem. Acta, 40, 2185 (1995).
4. K. Murata, Electrochem. Acta, 40, 2117 (1995).
5. F. M. Gray, "Solid Polymer Electrolytes," VCH Publisher, Inc., New York, New York, 1991.
6. M. Gauthier, M. Armand, and D. Muller, "Electroresponsive Molecular and Polymeric System," in Vol. 1, T. A. Skotheim, Eds, Marcel Dekker Inc., New York, New York, 1988.
7. D. W. Kim, J. K. Park, J. S. Bae, and S. I. Pyun, J. Polym. Sci.; Polym. Phys. Ed., B34, 2127 (1996).
8. A. Buckley, D. E. Stuetz, and G. A. Serad, "Polybenzoimidazoles," pp. 572 in "Encyclopedia of Polymer Sience and Engineering," Vol. 11, H. F. Mark, N. M. Bikales, C. G. Overberger, and G. Menges, Eds, John Wiley & Sons, Inc., New York, New York, 1988.
9. T. D. Dang, S. J. Bai, D. P. Heberer, F. E. Arnold, and R. J. Spry, J. Polym. Sci.; Polym. Phys. Ed., 31, 1941 (1993).
10. J. J. Fitzgerald and R. A. Weiss, J. Macromol. Sci., Rev. Marcomol. Chem. Phys., C28, 99 (1988).
11. U.S. Pat. 4,880,508 (Nov. 14, 1989), Aldissi, M. (to the United State of America as represented by the Department of Energy).
12. U.S. Pat. (May. 29, 1990), Aldissi, M. (to the United State of America as represented by the Department of Energy).
13. T. D. Dang and F. E. Arnold, Polym. Prep., 33, 912 (1992).
14. J. R. Reynolds, Y. Lee, S. Kim, R. L. Bartling, M. B. Gieselman, and C. S. Savage, Polym. Prep., 34, 1065 (1993).
15. R. J. Spry, M. D. Alexander, Jr., S. J. Bai, T. D. Dang, G. E. Price, D. R. Dean, B. Kumar, J. S. Solomon, and F. E. Arnold, J. Polym. Sci.; Polym. Phys. Ed., 35, 2925 (1997).
16. U. S. Pat. 4,225,700 (Sept. 30, 1980), J. F. Wolfe and B. H. Loo (to SRI International).
17. J. F. Wolfe and F. E. Arnold, Macromolecules, 14, 909 (1981).
18. J. F. Wolfe, B. H. Loo, and F. E. Arnold, Macromolecules, 14, 915 (1981).
19. T. D. Dang, C. S. Wang, W. E. Click, H. H. Chuah, T. T. Tsai, D. M. Husband, and F. E. Arnold, Polymer, 38, 621 (1997).
20. J. F. Wolfe, "Polybenzothiazoles and Polybenzoxazoles," pp. 601-635 in "Encyclopedia of Polymer Sience and Engineering," Vol. 11, H. F. Mark, N. M. Bikales, C. G. Overberger, and G. Menges, Eds, John Wiley & Sons, Inc., New York, New York, 1988.
21. Y. H. So, J. P. Heeschen, B. Bell, P. Bonk, M. Briggs, and R. Decaire, Macromolecules, 31, 5229-5239 (1998).
22. D. A. Rowlands, "Sythetic Reagents," Ellis Horwood Ltd., Chichester, England, 1985.
23. U. S. Pat. 4,533,692 (Aug. 6, 1985), J. F. Wolfe, P. D. Sybert, and J. R. Sybert (to SRI International).
24. U. S. Pat. 4,533,693 (Aug. 6, 1986), J. F. Wolfe, P. D. Sybert, and J. R. Sybert (to SRI International).
25. U. S. Pat. 4,533,724 (Aug. 6, 1987), J. F. Wolfe, P. D. Sybert, J. R. Sybert, and B. Wilson (to SRI International).
26. A. W. Chow, S. P. Bitler, P. E. Penwell, D. J. Osborne, and J. F. Wolfe, Macromolecules, 22, 3514 (1989).
27. R. G. Pearson, J. Am. Chem. Soc., 85, 3533 (1963).
28. R. G. Pearson, J. Chem. Ed., 45, 581 (1968).
29. Y. Macrus, "Ion Solvation," John Wiley & Sons, Inc., Chichester, England, 1985.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.12.41.106
論文開放下載的時間是 校外不公開

Your IP address is 3.12.41.106
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code