Responsive image
博碩士論文 etd-0215107-000014 詳細資訊
Title page for etd-0215107-000014
論文名稱
Title
奈米級零價鐵懸浮液之應用性探討:不同環境氣氛下對於水溶液中TCE之降解反應途徑與成效、在土體中之傳輸現象及對菌落數之影響
The Application of Nanoscale Zero-Valent Iron Slurry: Degradation Pathways and Efficiencies of Aqueous TCE under Different Atmospheres, and Transport Phenomena and Influence on Colony in Soil
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
174
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-01-29
繳交日期
Date of Submission
2007-02-15
關鍵字
Keywords
傳輸現象、反應途徑、三氯乙烯、懸浮液、奈米級零價鐵
transport phenomena, reaction pathway, trichloroethylene, slurry, nanoscale zero-valent iron
統計
Statistics
本論文已被瀏覽 5753 次,被下載 3621
The thesis/dissertation has been browsed 5753 times, has been downloaded 3621 times.
中文摘要
本研究利用化學還原法以試藥級試劑製備之奈米級零價鐵(NZVI),經場發射型掃描式電子顯微鏡分析後粒徑介於50∼80 nm間,比表面積測值66.34 m2/g;採工業級試劑合成之NZVI粒徑分布範圍略廣(30∼80 nm),比表面積測值61.5 m2/g,由氮氣吸/脫附曲線結果顯示兩種NZVI之顆粒表面皆呈介孔性結構,顯示其基本特性與試藥級試劑合成之NZVI所得差異不大,適宜作為實際整治之應用。
製備穩定性高之奈米級零價鐵懸浮液(NZVIS)試驗過程中,結果顯示於製備過程中添加0.5 vol %陰離子型親水性界面活性劑(分散劑A)合成之NZVIS具有較佳之穩定性,顆粒粒徑較小且分布均勻。
以NZVI為還原劑,三氯乙烯(TCE)降解反應過程中產生之中間產物以cis-1,2-DCE為主,亦有少量的trans-1,2-DCE產生,但兩物種濃度皆隨時間增長而遞減,並不會持續累積在反應系統中。此外,碳氫化合物之副產物以甲烷為主,且反應系統中若有氫氣存在者,有微量之乙烷、乙烯產生,推測係H2(g)參與反應,促進氫化反應進行。
使用奈米級鈀/鐵雙金屬降解TCE時,在含有氫氣之條件下,氫氣濃度越高者,TCE降解速率越快,然而含氯中間副產物(DCEs)濃度也越高,顯示氫解作用為優勢反應,反應3分鐘後,TCE去除效率高達99 %;就碳氫化合物而言,副產物以乙烷為主,證實鈀催化劑存在會促使TCE直接降解成乙烷。
添加NZVIS於土壤中(鐵相對於土壤之重量為2.5×10-3)經培養後顯示,含有少量NZVIS者,其總菌落數較未添加者高,即NZVIS對土壤中總菌落數而言,並不會造成抑制生長或削減活性的情形發生。
改質之NZVIS在多孔介質中的垂直傳輸結果得知,本研究於製備過程中所使用的分散劑A能使NZVIS均勻流佈在石英砂管柱中,黏附係數值為0.11,此一數值較未使用分散劑改值前之黏附係數值0.56為低;而在土壤(壤質砂土)管柱中傳輸之黏附係數值為0.0061,顯示本研究自行製備之NZVIS於多孔介質中能有良好的傳輸特性。
施加電場於水平土壤管柱之作用下, NZVIS於傳輸過程所求得之黏附係數值為0.00034,鐵含量亦減少了10 %,顯示施加電場不僅能驅動懸浮液在水平管柱中的移動,亦可提升NZVI於多孔介質中的傳輸特性。
Abstract
In this research, nanoscale zero-valent iron (NZVI) was synthesized using the chemical reduction method. Experimental results have revealed that nanoiron synthesized by the reagent-grade chemicals had a size range of 50-80 nm, as determined by FE SEM. BET specific surface area of thus synthesized nanoparticles was 66.34 m2/g. NZVI prepared by the industrial-grade chemicals had a broader particle size distribution (30-80 nm) and its BET specific surface area was 61.50 m2/g. Results of XRD showed that both types of NZVI were composed of iron with a poor crystallinity. Additional test results further showed that both types of NZVI had similar characteristics.
NZVI prepared by the chemical reduction method tends to aggregate resulting in a significant loss in reactivity. To overcome this disadvantage, four water-soluble dispersants were used in different stages of the NZVI preparation process. Of these, Dispersant A (an anionic surfactant) has shown its superior stabilizing capability to others. An addition of 0.5 vol % Dispersant A during the nanoiron preparation process would result in a good stability of NZVI slurry (NZVIS).
Degradation of trichloroethylene (TCE) by NZVIS under different atmospheres was carried out in batch experiments. Experimental results have shown that the TCE dechlorination rate increased markedly when the reaction proceeded under hydrogen gas atmosphere as compared with that of air. Methane was the primary end product with a trace amount of ethane and ethylene when the reaction was conducted under the atmosphere of H2. It was suggested that an addition of H2 to the reaction system could promote the hydrogenolysis reaction for better degradation. On the other hand, ethane was the main product when the reaction system consisted of nanoscale palladized iron and H2 atmosphere. It demonstrated that Pd-catalyzed TCE dechlorination has resulted in a direct conversion of TCE to ethane in the study. The greatest dechlorination rate was obtained when 2 g/L nanoscale palladized iron and 50 mL H2 was employed in the reaction system. Under the circumstances, the TCE (10 mg/L) removal efficiency was up to 99 % in 3 minutes. Experimental results have demonstrated that the reaction system with both nanoscale palladized iron and H2 atmosphere would promote TCE degradation rate.
The culture of microorganism in soil showed minor changes to microbial community structures between the pre- and post-injection conditions. The number of microorganism colony was found to be increased after adding 1 mL NZVIS to 1 g soil. Experimental results revealed that NZVIS would not cause the inhibition or reduction of microorganism activity.
Surface modification of NZVI slurry by Dispersant A could enhance its transport in saturated porous media. Sticking coefficients were determined to be 0.56 and 0.11, respectively, for bare and Dispersant A-modified NZVIS transporting in quartz sand columns. The sticking coefficient for modified NZVIS transport in soil (loamy sand) column was determined to be 0.0061. Apparently, NZVIS modified by Dispersant A would enhance the transport of NZVI in saturated porous media.
The results of combining electrokinetic technology and NZVIS injection tests in horizontal soil column illustrated that the sticking coefficient was 0.00034 and the total content of iron reduced 10 wt. %. Experimental results revealed that the transport distance of NZVIS in saturated horizontal soil column would be greatly increased under electronkinetic conditions.
目次 Table of Contents
聲明切結書 I
謝誌 II
摘要 III
ABSTRACT IV
目錄 VI
表目錄 IX
圖目錄 X
照片目錄 XII
第一章 前言 1
1-1 研究緣起 1
1-2 研究目的 4
1-3 研究項目與架構 5
第二章 文獻回顧 7
2-1 含氯有機化合物 7
2-1-1 含氯有機化合物之特性與危害 7
2-1-2 含氯有機化合物之污染與管制 10
2-1-3 三氯乙烯(TCE) 13
2-1-4 受含氯有機化合物污染之整治技術 15
2-2 零價金屬處理技術與發展 18
2-2-1 零價鐵之應用原理 18
2-2-2 零價鐵處理之反應機制 20
2-3 奈米鐵之技術與發展 24
2-3-1 奈米技術 24
2-3-2 奈米金屬材料製備相關技術 27
2-3-3 奈米金屬材料分散性能探討 30
2-4 雙金屬之技術原理與發展 34
2-4-1 雙金屬的合成 34
2-4-2 雙金屬對污染物之降解原理 36
2-5 含氯有機化合物之降解機制 40
2-6 傳輸特性探討 44
第三章 研究方法 50
3-1 研究內容 50
3-2 研究材料 51
3-2-1 化學藥劑 51
3-2-2 其他材料 54
3-3 研究設備 55
3-4 研究方法 57
3-4-1奈米級零價鐵與鈀/鐵雙金屬之合成 57
3-4-2 奈米鐵及鈀/鐵雙金屬基本性質分析 59
3-4-3奈米鐵懸浮液之穩定性探討 62
3-4-4 檢量線之建立 66
3-4-5 TCE降解批次實驗 73
3-4-6 土壤中總生菌數檢測 76
3-4-7 NZVIS於土壤中之傳輸 78
第四章 結果與討論 84
4-1 奈米級零價鐵與鈀/鐵雙金屬基本特性分析 84
4-1-1 X-光繞射分析物種成分 84
4-1-2 場發射型掃描式電子顯微鏡(FE SEM)觀察顆粒型態 86
4-1-3 BET比表面積分析 88
4-1-4 掃描式電子顯微鏡-X-光能譜分析儀(SEM-EDS)與能量分佈面掃描分析(EDS-Mapping) 90
4-2 奈米鐵懸浮液之穩定性探討 96
4-2-1沉降試驗 97
4-2-2動態光散射(Dynamic Light Scattering, DLS) 99
4-3 不同環境氣氛下奈米級零價鐵及鈀/鐵雙金屬懸浮液降解水溶液中之三氯乙烯 102
4-3-1未添加任何還原劑之背景試驗 104
4-3-2試藥級藥品合成之懸浮液於不同環境氣氛下降解水溶液中之三氯乙烯 106
4-3-3工業級藥品合成之懸浮液於不同環境氣氛下降解水溶液中之三氯乙烯 117
4-4 三氯乙烯降解反應路徑與機制探討 120
4-4-1 奈米級零價鐵還原處理三氯乙烯之反應機制探討 120
4-4-2 奈米級鈀/鐵雙金屬還原處理三氯乙烯之反應機制探討 123
4-5 奈米級鐵懸浮液對土壤環境中總菌落數之影響 126
4-6 奈米級零價鐵懸浮液於土體中之傳輸特性 132
4-6-1 奈米級零價鐵懸浮液於不同多孔介質中之垂直傳輸情形 132
4-6-2 黏附係數(Sticking Coefficient,α)計算 136
4-6-3 在電場作用下NZVIS於土壤管柱中之水平傳輸情形 137
第五章 結論與建議 142
5-1 結論 142
5-2 建議 144
參考文獻 145
附錄 161
碩士在學期間發表之學術論文 162
參考文獻 References
1. 行政院環境保護署,毒性化學物質,毒化物管理,多氯聯苯等毒性化學物質許可用途一覽表,http://www.epa.gov.tw/attachment_file/941230表三.doc,2006/12/25。
2. 官知嫻、李季眉、盧至人,“甲苯分解菌共代謝三氯乙烯”,第二十三屆廢水處理技術研討會論文集,第727-733頁,台中市 (1998)。
3. 行政院勞工委員會,物質安全資料表,http://www.e-safety.com.tw/2_main/206_msds_2/chem-template.php?chem_id=103,2006/7/12。
4. 林財富、洪旭文,“受污染場址現地化學處理方法的介紹”,工業污染防治,第十八卷,第四期,第178-200頁(1999)。
5. Puls, R. W., C. J. Paul, and R. M. Powell, “The Application of In-Situ Permeable Reactive (Zero-Valent Iron) Barrier Technology for the Remediation of Chromate-Contaminated Groundwater: a Field Test,” Applied Geochemistry, 14, 989-1000 (1999).
6. Fountain, J. C., “Technologies for Dense Nonaqueous Phase Liquid Source Zone Remediation,” Ground-Water Remediation Technologies Analysis Center, Technology Evaluation Report TE-98-02, December (1998).
7. Oppelt E. T., “Metal-Enhanced Dechlorination of Volatile Organic Compounds Using an In-Situ Reactive Iron Wall,” EnviroMetal Technologies, Inc., U. S. EPA EPA-540-R-98-501, September (1998).
8. Quander J., “Field Applications of In Situ Remediation Technologies: Permeable Reactive Barriers,” Environmental Management Support, Inc., U. S. EPA EPA-68-W-00-084, January (2002).
9. Campbell, T. J., D. R. Burris, A. L. Robert, and J. R. Wells, “Trichloroethylene and Tetrachloroethylene Reduction in a Metallic Iron-Water-Vapor Batch System,” Environmental Toxicology and Chemistry, 16(4), 625-630 (1997).
10. Roberts, A. L., L. A. Totten, W. A. Arnold, D. R. Burris, and T. J. Campbell, “Reductive Elimination of Chlorinated Ethylene in Reaction with Zero-Valent Metals,” Environmental Science & Technology, 30(8), 2654-2659 (1996).
11. Zhang, W. X., C. B. Wang, and H. L. Lien, “Treatment of Chlorinated Organic Contaminants with Nanoscale Bimetallic Particles,” Catalysis Today, 40, 387-395 (1998).
12. Appleton, E. L., “A Nickel-Iron Wall Against Contaminated Groundwater,” Environmental Science & Technology, 30(12), 536-539 (1996).
13. Grittini, C., M. Malcomson, Q. Fernando, and N. Korte, “Rapid Dechlorination of Polychlorinated Biphenyls on the Surface of a Pd/Fe Bimetallic System,” Environmental Science & Technology, 29(11), 2898-2900 (1995).
14. Muftikian, R., K. Nebesny, Q. Fernando, and N. Korte, “X-ray Photoelectron Spectra of the Palladium-Iron Bimetallic Surface Used for the Rapid Dechlorination of Chlorinated Organic Environmental Contaminants,” Environmental Science & Technology, 30(12), 3593-3596 (1996).
15. Fennelly, J. P. and A. L. Roberts, “Reaction of 1,1,1-Trichloroethane with Zero-Valent Metals and Bimetallic Reductants,” Environmental Science & Technology, 32(13), 1980-1988 (1998).
16. Masciangioli, T. and W. X. Zhang, “Environmental Technologies at the Nanoscale,” Environmental Science & Technology, 37(5), 102A-108A (2003).
17. 中國公眾科技網,http://www.sdnano.com/paper/nanopaper02.htm,2006/7/12。
18. Perry, R. H. and D. W. Green, “Perry’s Chemical Engineers’ Handbook,” McGraw-Hill, New York, 1997.
19. 行政院環境保護署,土壤及地下水,http://www.epa.gov.tw/b/b0100.asp?Ct_Code=02X0000002X0000107,2006/12/25。
20. 美國環境保護署(U. S. EPA),超級基金網站(Superfund),http://www.epa.gov/superfund/,2006/12/15。
21. 美國環境保護署(U. S. EPA),Laws & Regulations,Major Environmental Laws,http://www.epa.gov/epahome/laws.htm,2006/12/28。
22. 國際癌症研究協會(International Agency for Research on Cancer , IARC) ,http://monographs.iarc.fr/ENG/Monographs/vol63/volume63.pdf,2006/12/28。
23. 行政院勞工委員會,勞工安全衛生法規,http://www.iosh.gov.tw/law.htm,2006/7/12。
24. 行政院環境保護署,飲用水水質標準,http://ivy2.epa.gov.tw/out_web/j/drinkwater/law/law04.htm ,2006/7/12。
25. 阮國棟、陳啟仁,“天然衰減法整治土壤及地下水污染之技術內涵與案例研究”,工業污染防治,第71 期,第87-102頁(1999)。
26. Sajiki, J. and T. Masumizu, “Inhibition of BPA Degradation by Serum as a Hydroxyl Radical Scavenger and an Fe Trapping Agent in Fenton Process,” Chemosphere, 57, 241-252 (2004).
27. 洪源駿,“電動力法-Fenton法-催化性鐵粉牆組合技術現地模場整治受含氯有機物污染之場址”,碩士學位論文,國立中山大學環境工程研究所,高雄市(2002)。
28. Rabbi, M.F., B. Clark, R.J. Gale, E. Ozsu-Acar, J. Pardue, and A. Jackson, “In Situ TCE Bioremediation Study Using Electrokinetic Cometabolite Injection,” Waste Management, 20, 279-286 (2000).
29. 雷世恩,“以生物處理法整治三氯乙烯及四氯乙烯污染之場址”,碩士學位論文,國立中山大學環境工程研究所,高雄市(2000)。
30. Matheson, L. J. and P. G. Tratnyek, “Reductive Dehalogenatlon of Chlorinated Methanes by Iron Metal,” Environmental Science & Technology, 28(12), 2045-2053 (1994).
31. Burris, D. R., T. J. Campbell, and V. S. Manoranjan, “Sorption of Trichloroethylene and Tetrachloroethylene in a Batch Reactive Metallic Iron–Water System,” Environmental Science & Technology, 29(11), 2850-2855 (1995).
32. Johnson, T. L., M. M. Scherer, and P. G. Tratnyek, “Kinetics of Halogenated Organic Compound Degradation by Iron Metal,” Environmental Science & Technology, 30(8), 2634-2640 (1996).
33. Kim, S. O. and K. W. Kim, “Monitoring of Electrokinetic Removal of Heavy Metals in Tailing-Soils Using Sequential Extraction Analysis,” Journal of Hazardous Materials, B85, 195–211 (2001).
34. Virkutyte, J., M. Sillanpaa, and P. Latostenmaa, “Electrokinetic Soil Remediation-Critical Overview,” The Science of the Total Environment, 289, 97-121 (2002).
35. Acar, Y. B. and A. N. Alshawabkeh, “Principles of Electrokinetic Remediation,” Environmental Science & Technology, 27(13), 2638-2647 (1993).
36. Acar, Y. B., A. N. Alshawabkeh, and R. A. Parker, “Theoretical and Experimental Modeling of Multi-Species Transport in Soils Under Electric Fields”, U. S. EPA Project Summary, EPA/600/SR-97/054, (1997).
37. Bruel, C. J., B. A. Segall, and M. T. Walsh, “Electro-osmotic Removal of Gasoline Hydrocarbons and TCE from Clay,” Journal of Environmental Engineering, 118(1), 68-83 (1992).
38. 翁誌煌、涂宏旭、林裕雄、謝永旭,“電動力法復育受三氯乙烯污染黏質土壤之研究”,第15屆廢棄物處理技術研討會論文集,第7-8 ~ 7-13頁,斗六市(2000)。
39. Yang, G. C. C. and C. Y. Liu, “Removal of TCE Contaminated Soils by In Situ EK-Fenton Process,” Journal of Hazardous Materials, 85(3), 317-331 (2001).
40. 楊金鐘、洪志雄、洪源駿,“電動力-Fenton法現地土壤復育應用評估”,第16屆廢棄物處理技術研討會論文集光碟,高雄市(2001)。
41. Yang, G. C. C. and Y. W. Long, “Removal and Degradation of Phenol in a Saturated Flow by In-Situ Electrokinetic Remediation and Fenton-Like Process,” Journal of Hazardous Materials, B69, 259-271 (1999).
42. Phillips, D. H., B. Gu, D. B. Watson, Y. Roh, L. Liang, and S. Y. Lee, “Performance Evaluation of a Zerovalent Iron Reactive Barrier: Mineralogical Characteristics,” Environmental Science & Technology, 34(19), 4169-4176 (2000).
43. Gilham, R. W. and S. F. O’Hannesin, “Enhanced Degradation of Halogenated Alophatics by Zero-Valent Iron”, Ground Water, 32, 958-967 (1994).
44. Li, T. and J. Farrell, “Reductive Dechlorination of Trichloroethene and Carbon Tetrachloride Using Iron and Palladized-Iron Cathodes,” Environmental Science & Technology, 34(1), 173-179 (2000).
45. Chen, J. L., S. R. Al-Abed, J. A. Ryan, and Z. Li, “Effects of pH on Dechlorination of Trichloroethylene by Zero-Valent Iron,” Journal of Hazardous Materials, B83, 243–254 (2001).
46. Schreier, C. G. and M. Reinhard, “Catalytic Hydrodehalogenation of Chlorinated Ethylenes Using Palladium and Hydrogen for the Treatment of Contaminated Water,” Chemosphere, 31(6), 3475-3487 (1995).
47. Cheng, I. F., R. Muftikian, Q. Fernando, and N. Korte, “Reduction of Nitrate to Ammonia by Zero-Valent Iron,” Chemosphere, 35(11), 2689-2695 (1997).
48. Siantar, D. P., C. G. Schreier, C. S. Chou, and M. Reinhard, “Treatment of 1,2-dibromo-3-Chloropropane and Nitrate- Contaminated Water with Zero-Valent Iron or Hydrogen/Palladium Catalysis,” Water Research, 30, 2315-2322 (1996).
49. Zhang, W. X., “Nanoscale Iron Particles for Environmental Remediation: An Overview,” Journal of Nanoparticle Research, 5, 323-332 (2003).
50. Su, C. and R. W. Puls, “Kinetics of Trchloroethene Reduction by Zero valent Iron and Tin: Pretreatment Effect, Apparent Activation Energy, and Intermediate Products,” Environmental Science & Technology, 33(1), 163-168 (1999).
51. Korte, N. E., J. L. Zutman, R. M. Schlosser, L. Liang, B. Gu, and Q. Fernando, “Field Application of Palladized Iron for the Dechlorination of Trichloroethene,” Waste Management, 20, 687-694 (2000).
52. 曹茂盛、關長斌、徐甲強,“奈米材料導論”,學富文化事業有限公司,台北市(2002)。
53. 張立德、牟季美,“奈米材料和奈米結構”,滄海書局,台中市(2002)。
54. 尹邦躍,“奈米時代”,五南圖書出版股份有限公司,台北市(2002)。
55. 施周、張文輝,“環境奈米技術”,五南圖書出版股份有限公司,台北市(2006)。
56. Li, L., M. Fan, R. C. Brown, J. V. Leeuwen, J. Wang, W. Wang, Y. Song, and P. Zhang, “Synthesis, Properties, and Environmental Applications of Nanoscale Iron-Based Materials: A Review,” Environmental Science & Technology, 36, 405-431 (2006).
57. Choe, S. Y., Y. Chang, K. Y. Hwang, and J. Khim, “Kinetics of Reductive Denitrification by Nanoscale Zero-Valent Iron,” Chemosphere, 41(8), 1307-1311 (2000).
58. Wang, C. B. and W. X. Zhang, “Synthesizing Nanoscale Iron Particles for Rapid and Complete Dechlorination of TCE and PCBs,” Environmental Science & Technology, 31(7), 2154-2156 (1997).
59. Lien, H. L. and W. X. Zhang, “Nanoscale Iron Particles for Complete Reduction of Chlorinated Ethenes,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, 191, 97-105 (2001).
60. 郭清癸、黃俊傑、牟中原,“金屬奈米粒子的製造”,物理雙月刊,第23卷 第6期,第614-624頁(2001)。
61. Kanel, S. R., J. M. Greneche, and H. Choi, “Arsenic(V) Removal from Groundwater Using Nano Scale Zero-Valent Iron as a Colloidal Reactive Barrier Material,” Environmental Science & Technology, 40, 2045-2050 (2006).
62. Cao, J. and W. X. Zhang, “Stabilization of Chromium Ore Processing Residue (COPR) with Nanoscale Iron Particles,” Journal of Hazardous Materials, B132, 213-219 (2006).
63. 楊金鐘、洪志雄,“奈米級含鐵粒子之製備與其對水體中硝酸鹽降解成效探討”,第九屆土壤及地下水污染整治研討會論文集,第261-272頁,台北市(2005)。
64. Glavee, G. N., K. J. Klabunde, C. M. Sorensen, and G. C. Hadlipanayis, “Chemistry of Borohydride Reduction of Iron(II) and Iron(III) Ions in Aqueous and Nonaqueous Media. Formation of Nanoscale Fe0, FeB, and Fe2B Powders,” Inorganic Chemistry, 34(1), 28-35 (1995).
65. Schrick, B., J. L. Blough, A. D. Jones, and T. E. Mallouk, “Hydrodechlorination of Trichloroethylene to Hydrocarbons Using Bimetallic Nickel–Iron Nanoparticles,” Chemistry of Materials, 14, 5140-5147 (2002).
66. 李曉嵐,“奈米鐵粉結合電動力法處理含硝酸鹽土壤之研究”,碩士學位論文,國立中山大學環境工程研究所,高雄市(2003)。
67. Yang, G. C. C. and H. L. Lee, “Chemical Reduction of Nitrate by Nanosized Iron: Kinetics and Pathways,” Water Research, 39, 884-894 (2005).
68. Liou, Y. H., S. L. Lo, C. J. Lin, W. H. Kuan, and S. C. Weng, “Chemical Reduction of an Unbuffered Nitrate Solution Using Catalyzed and Uncatalyzed Nanoscale Iron Particles,” Journal of Hazardous Materials, 127, 102-110 (2005).
69. Feng, J. and T. T. Lim, “Pathways and Kinetics of Carbon Tetrachloride and Chloroform Reductions by Nano-Scale Fe and Fe/Ni Particles: Comparison with Commercial Micro-Scale Fe and Zn,” Chemosphere, 59, 1267-1277 (2005).
70. Phenrat, T., N. Saleh, K. Sirk, R. D. Tilton, and G. V. Lowry, “Aggregation and Sedimentation of Aqueous Nanoscale Zerovalent Iron Dispersions,” Environmental Science & Technology, 40(1), 284-290 (2007).
71. 楊金鐘、張德光、洪志雄,“奈米級零價鐵懸浮液之分散性質初步探討”,第一屆環境保護與奈米科技學術研討會論文集,第45-50頁,新竹市(2004)。
72. 楊金鐘、洪志雄、張德光,“奈米級鈀/鐵雙金屬:製備、基本性質及催化活性”,第二屆環境保護與奈米科學技術研討會論文集,第48-55頁,新竹市(2005)。
73. Alessi, D. S. and Z. Li, “Synergistic Effect of Cationic Surfactants on Perchloroethylene Degradation by Zero-Valent Iron,” Environmental Science & Technology, 35(18), 3713-1717 (2001).
74. He, F. and D. Zhao, “Preparation and Characterization of a New Class of Starch-Stabilized Bimetallic Nanoparticles for Degradation of Chlorinated Hydrocarbons in Water,” Environmental Science & Technology, 39(9), 3314-3320 (2005).
75. 吳先琪、王郁翔、魏裕庭,“The Preparation and Evaluation of Dispersed Nano-scale Iron Suspension for the Purposes of Environmental Remediation”,第二屆環境保護與奈米科技學術研討會論文集,第257-263頁,新竹市(2005)。
76. Ponder S. M., J. G. Darab, and T. E. Mallouk, “Remediation of Cr(VI) and Pb(II) Aqueous Solutions Using Supported, Nanoscale Zero-Valent Iron,” Environmental Science & Technology, 34(12), 2564-2569 (2000)。
77. Jain, T. K., M. A. Morales, S. K. Sahoo, D. L. Leslie-Pelecky, and V. Labhasetwar, “Iron Oxide Nanoparticles for Sustained Delivery of Anticancer Agents,” Molecular Pharmaceutics, 2(3), 194-205 (2005).
78. 何佩芬,“製備大小與形狀選擇性的鈀金屬奈米粒子”,碩士學位論文,國立中正大學化學研究所,嘉義縣(2002)。
79. Salen, N., K. Sirk, Y. Liu, T. Phenrat, B. Dufour, K. Matyjaszewski, R. D. Tilton, and G. V. Lowry, “Surface Modifications Enhance Nanoiron Transport and NAPL Targeting in Saturated Porous Media,” Environmental Engineering Science, 24(1), 45-57 (2007).
80. Quinn, J., S. O'Hara, C. A. Clausen, T. Krug, S. Yoon, T. Holdsworth, and C. L. Geiger, “Field Demonstration of DNAPL Dehalogenation Using Emulsified Zero-Valent Iron,” Environmental Science & Technology, 39(5), 1309-1318 (2005).
81. Schrick, B., B. W. Hydutsky, J. L. Blough, and T. E. Mallouk, “Delivery Vehicles for Zerovalent Metal Nanoparticles in Soil and Groundwater,” Chemistry of Materials, 16, 2187-2193 (2004).
82. Schafer, D., R. Kober, and A. Dahmke, “Competing TCE and cis-DCE Degradation Kinetics by Zero-Valent Iron - Experimental Results and Numerical Simulation,” Journal of Contaminant Hydrology, 65, 183-202 (2003).
83. Ruiz, N., S. Seal, and D. Reinhart, “Surface Chemical Reactivity in Selected Zero-Valent Iron Samples Used in Groundwater Remediation,” Journal of Hazardous Materials, B80, 107-117 (2000).
84. Muftikian, R., Q. Fernando, and N. Korte, “A Method for the Rapid Dechlorination of Low Molecular Weight Chlorinated Hydrocarbons in Water,” Water Research, 29(10), 2432-2439 (1995).
85. Cheng, S. F. and S. C. Wu, “Feasibility of Using Metals to Remediate Water Containing TCE,” Chemosphere, 43(8), 1023-1028 (2001).
86. Liu, Y., F. Yang, P. L. Yue, and G. Chen, “Catalytic Dechlorination of Chlorphenols in Water by Palladium/Iron,” Water Research, 35(8), 1887-1890 (2001).
87. Graham, L. J. and G. Jovanovic, “Dechlorination of p-Chlorophenol on a Pd/Fe Catalyst in a Magnetically Stabilized Fluidized Bed; Implications for Sludge and Liquid Remediation,” Chemical Engineering Science, 54, 3085-3093 (1999).
88. 張德光,“結合鈀化奈米鐵粉懸浮液與電動力法處理地下環境介質中之三氯乙烯”,碩士學位論文,國立中山大學環境工程研究所,高雄市(2005)。
89. Zhu, B. W., T. T. Lim, and J. Feng, “Reductive Dechlorination of 1,2,4-Trichlorobenzene with Palladized Nanoscale Fe0 Particles Supported on Chitosan and Silica,” Chemosphere, 65, 1137-1145 (2006).
90. Heinrichs, B., J. P. Schoebrechts, and J. P. Pirard, “Palladium-Silver Sol-Gel Catalysts for Selective Hydrodechlorination of 1,2-Dichloroethane into Ethylene,” Journal of Catalysis, 200, 309-320 (2001).
91. 楊金鐘、洪志雄、涂秀娟,“奈米級鈀/鐵雙金屬對於水溶液中TCE之降解反應動力初步探討”,第三屆土壤與地下水研討會論文集光碟,中壢市(2005)。
92. Lowry, G. V. and M. Reinhard, “Hydrodehalogenation of 1- to 3-Carbon Halogenated Organic Compounds in Water Using a Palladium Catalyst and Hydrogen Gas,” Environmental Science & Technology, 33(11), 1905-1910 (1999).
93. Elliott, D. W. and W. X. Zhang, “Field Assessment of Nanoscale Bimetallic Particles for Groundwater Treatment,” Environmental Science & Technology, 35(24), 4922-4926 (2001).
94. Cheng, S. F. and S. C. Wu, “The Enhancement Methods of the Degradation of TCE by Zero-Valent Metal,” Chemosphere, 41, 1263-1270 (2000).
95. Odziemkowski, M. S., L. Gui, and R. W. Gillham, “Reduction of N-Nitrosodimethylamine with Granular Iron and Nickel-Enhanced Iron. 2. Mechanistic Studies,” Environmental Science & Technology, 34(16), 3495-3500 (2000).
96. 胡興中,“觸媒原理與應用”,高立圖書有限公司,台北市(1998)。
97. Korte, N. E., O. R. Westm, B. Gu, J. L. Zutman, and Q. Fernando, “The Effect of Sovent Concentration on the Use of Palladized-Iron for the Step-Wise Dechlorination of Polychlorinated Biphenyls in Soil Extracts,” Waste Management, 22(3), 343-349 (2002).
98. Arnold, W. A. and A. L. Roberts, “Pathways and Kinetics of Chlorinated Ethylene and Chlorinated Acetylene Reaction with Fe(0) Particles,” Environmental Science & Technology, 34(9), 1794-1805 (2000).
99. Orth, W. S. and R. W. Gillham, “Dechlorination of Trichloroethene in Aqueous Solution Using Fe0,” Environmental Science & Technology, 30(1), 66-71 (1996).
100. Tratnyek, P. G. and R. L. Johnson, “Nanotechnologies for Environmental Cleanup,” Nanotoday, 1(2), 44-48 (2006).
101. Tufenkji, N. and M. Elimelech, “Correlation Equation for Predicting Single-Collector Efficiency in Physicochemical Filtration in Saturated Porous Media,” Environmental Science & Technology, 38(2), 529-536 (2004).
102. 井出哲夫,“水處理工程:理論與應用”,科技圖書出版社,台北市(1998)。
103. Saleh, N., T. Phenrat, K. Sirk, B. Dufour, J. Ok, T. Sarbu, K. Matyjaszewski, R. D. Tilton, and G. V. Lowry, “Adsorbed Triblock Copolymers Deliver Reactive Iron Nanoparticles to the Oil/Water Interface,” Nano Letters, 5(12), 2489-2494 (2005).
104. Lecoanet, H. F., J. Y. Bottero, and M. R. Wiesner, “Laboratory Assessment of the Mobility of Nanomaterials in Porous Media,” Environmental Science & Technology, 38(19), 5164-5169 (2004).
105. Katsoyiannis, I. A., H. W. Althoff, H. Bartel, and M. Jekel, “The Effect of Groundwater Composition on Uranium (VI) Sorption onto Bacteriogenic Iron Oxides,” Water Research, 40, 3646-3652 (2006).
106. Kao, C. M., S. C. Chen, and M. C. Su, “Laboratory Column Studies for Evaluating a Barrier System for Providing Oxygen and Substrate for TCE Biodegradation,” Chemosphere, 44, 925-934 (2001).
107. 汪建民,“材料分析”,中國材料科學學會,新竹市(2001)。
108. Li, F., C. Vipulanandan, and K. K. Mohanty, “Microemulsion and Solution Approaches to Nanoparticle Iron Production for Degradation of Trichloroethylene,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, 223, 103-112 (2003).
109. Lin, C. J., S. L. Lo, and Y. H. Liou, “Dechlorination of Trichloroethylene in Aqueous Solution by Noble Metal–Modified Iron,” Journal of Hazardous Materials, B116, 219-228 (2004).
110. Sun, Y. P., X. Q. Li, J. Cao, W. X. Zhang, and H. P. Wang, “Characterization of Zero-Valent Iron Nanoparticles,” Advances in Colloid and Interface Science, 120, 47-56 (2006).
111. Kieboom, A. P. G. and F. V. Rantwijk,“合成有機化學中的氫化與氫解”,科學出版社,北京(1981)。
112. Liu, Y., S. A. Mejetich, R. D. Tilton, D. S. Sholl, and G. V. Lowry, “ TCE Dechlorination Rates, Pathways, and Efficiency of Nanoscale Iron Particles with Different Properties,” Environmental Science & Technology, 39(5), 1338-1345 (2005).
113. Liu, Y., H. Choi, D. Dionysiou, and G. V. Lowry, “Trichloroethene Hydrodechlorination in Water by Highly Disordered Monometallic Nanoiron,” Chemistry of Materials, 17(21), 5315-5322 (2005).
114. Liu, Y. and G. V. Lowry, “Effect of Particle Age (Fe0 Content) and Solution pH on NZVI Reactivity: H2 Evolution and TCE Dechlorination,” Environmental Science & Technology, 40(19), 6085-6090 (2006).
115. Mace, C., “Controlling Groundwater VOCs: Do Nanoscale ZVI Particles Have Any Advantages Over Microscale ZVI or BNP,” Pollution Engineering, April Issue, 24-27 (2006).
116. Rocca, C. D., V. Belgiorno, and S. Meric, “An Heterotrophic/Autotrophic Denitrification (HAD) Approach for Nitrate Removal from Drinking Water,” Process Biochemistry, 41, 1022-1028 (2006).
117. Acar, Y. B., R. J. Gale, A. N. Alshawabkeh, R. E. Marks, S. Puppala, M. Bricka, and R. Parker, “Electrokinetic Remediation: Basics and Technology Status,” Journal of Hazardous Materials, 40, 117-137 (1995).
118. Yang, G. C. C. and Y. W. Long, “Removal and Degradation of Phenol in a Saturated Flow by In-Situ Electrokinetic Remediation and Fenton-Like Process,” Journal of Hazardous Materials, B69, 259-271 (1999).
119. 楊金鐘、洪志雄、涂秀娟,“奈米級零價鐵懸浮液穩定性及其於土壤介質之傳輸特性初步探討”,第四屆土壤與地下水研討會論文集光碟,台中市(2006)。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code