Responsive image
博碩士論文 etd-0215111-161152 詳細資訊
Title page for etd-0215111-161152
論文名稱
Title
迴路頻寬最佳化技術用於 5GHz 寬頻鎖相迴路頻率合成 器設計
An Optimized Loop Bandwidth Technique for the 5GHz Wide band PLL Frequency Synthesizer Design
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
59
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-01-24
繳交日期
Date of Submission
2011-02-15
關鍵字
Keywords
頻率合成器、鎖相迴路、電荷幫浦、最佳頻帶選頻器、自動選頻器、壓控振盪器、相位頻率偵測器
OBS, ABS, VCO, Charge Pump, PFD, PLL, Frequency synthesizer
統計
Statistics
本論文已被瀏覽 5722 次,被下載 0
The thesis/dissertation has been browsed 5722 times, has been downloaded 0 times.
中文摘要
本論文提出了一個高調頻範圍,低相位雜訊全積體化除整數之頻率合成器。此頻率合成器採用TSMC 0.18μm 1P6M CMOS製程並操作在1.8V供應電壓之下,主要應用於射頻收發機的前端電路。本論文所提出的頻率合成器包含相頻偵測器(PFD)、電荷幫浦(CP)、低通迴路濾波器(LPF)、壓控振盪器(VCO)、自動選頻器(ABS)、最佳頻道選頻器(OBS)、以及含雙模數前置除頻器(dual-modulus prescaler)之pulse-swallow divider。電路設計中以新的架構來達到較寬的可調頻範圍與低相位雜訊的壓控振盪器效能,利用switched capacitors技術降低VCO gain(KVCO)並能涵蓋原有所需頻帶,使得此頻率合成器能在製程、電壓、以及溫度的變化之下而能正常運作。在自動選頻器部分採用二元搜尋的演算法,減少了電路在選擇VCO子頻帶的選頻時間。KVCO在不同頻帶間之變化量有相當差距,加上欲鎖定的頻率可能被好不同VCO子頻帶所涵蓋,因此自動選頻器所選擇之頻帶未必為最佳解,在此論文中提出一個最佳頻道選頻器來選擇一個涵蓋欲鎖到之頻率且擁有最小KVCO變化量之頻帶,並利用KVCO量化值來調整電荷幫浦的電流值。透過最佳頻道選頻器以及可程式化的電荷幫浦,可以在整個操作頻率範圍維持迴路頻寬和穩定度。
Abstract
This thesis presents a wide tuning, low phase noise CMOS integer-N frequency synthesizer with 1.8V power supply. The frequency synthesizer is designed using the TSMC 0.18μm CMOS 1P6M technology. The proposed frequency synthesizer consists of a phase-frequency detector, a charge pump, a low-pass loop filter, a voltage control oscillator, an auto-band selection (ABS), an optimum-band selection (OBS), and a pulse-swallow divider. In system design, we present the new architecture for voltage-controlled oscillator with switched capacitors technique with a lowered VCO gain (KVCO) to achieve wide tuning range and low phase noise in order to cover the desired operating frequency bands and to accommodate process, voltage, and temperature (PVT) variations. The ABS accomplishes the efficient search for a VCO discrete tuning curve among a group of frequency sub-bands. It is apparent to reduce the calibration time by adopting the binary search algorithm to select the calibration word. However, the variation of Kvco across different channels can still be large after the execution of ABS. There might be many sub-bands covering the desired frequency. Hence the sub-band which is selected by ABS could not be an optimum choice for the minimum Kvco variation. The OBS is proposed to implement an algorithm in order to find the optimum solution which has the minimum Kvco variation and covers the desired frequency. The Kvco variation is quantified by OBS and using this value to adjust the charge pump current. Therefore, Loop bandwidth and stability were maintained across the operating range by using optimum-band selection(OBS) and a programmable charge pump.
目次 Table of Contents
CHAPTER 1 INTRODUCTION...........................................1
1.1 Motivation........................................................................1
1.2 Thesis Organization.....................................................3
CHAPTER 2 THE CONCEPTS OF PLL FREQUENCY SYNTHESIZER.....................................................................4
2.1 General Concepts.........................................................4
2.2 Voltage-Controlled Oscillator(VCO)...........................6
2.2.1 Process variation effect on a VCO..........................6
2.2.2 VCO Gain Variation effect on a VCO.......................7
2.2.3 VCO Gain Variation across on a Single Tuning Curve......................................................................................8
2.3 Loop Bandwidth Variations.........................................9
2.3.1 Factors Causing Loop Bandwidth Variations......9
CHAPTER 3 The Proposed Frequency Synthesizer..10
3.1 Introduction..................................................................10
3.2 Phase Frequency Detector (PFD)............................12
3.3 Voltage Controlled Oscillator (VCO)........................13
3.4 Auto Band Selection (ABS)........................................17
3.4.1 Phase Selector........................................................18
3.4.2 Dual-edge PD..........................................................19
3.4.3 4-bit SAR...................................................................20
3.5 Optimum Band Selection(OBS)...............................22
3.5.1 OBS_CLK..................................................................25
3.5.2 High Speed Counter...............................................27
3.6 Charge Pump (CP).....................................................28
3.7 Frequency Divider.......................................................29
3.7.1 Dual-modulus prescaler........................................30
3.8 Loop filter......................................................................32
3.9 Lock Detector...............................................................34
CHAPTER 4 SIMULATION RESULTS............................36
4.1 RF Model and CMOS Process.................................36
4.2 Simulation results of PFD.........................................36
4.3 Simulation results of CP...........................................38
4.4 Simulation results of VCO.........................................39
4.5 Simulation results of ABS.........................................41
4.6 Simulation results of Frequency Synthesizer........41
CHAPTER 5 CONCLUSION AND FUTURE WORK....44
5.1 Conclusion...................................................................44
5.2 Future Work..................................................................45
Reference...........................................................................46

參考文獻 References
[1] WWW.WIMAXFORUM.ORG/HOME
[2] T.-H. Lin and W. J. Kaiser, “A 900-MHz 2.5-mA CMOS frequency synthesizer with an automatic SC tuning loop,” IEEE Journal of Solid-State Circuits, vol. 36, no. 3, pp. 424-431, Mar. 2001.
[3] A. Aktas and M. Ismail, “CMOS PLL calibration techniques,” IEEE Circuits Devices Magazine, vol. 20, no. 5, pp. 6-11, Sept./Oct. 2004.
[4] W. B. Wilson, U. Moon, K. R. Lakshmikumar, and L. Dai, “A CMOS self-calibrating frequency synthesizer,” IEEE Journal of Solid-State Circuits, vol. 35, no. 10, pp. 1437-1444, Oct. 2000.
[5] M. A. L. Mostafa, S. Tuncer, and G. Luff, “Low power low phase noise 3.9 GHz SiGe VCO whit data modulation correction loop,” in IEEE RFIC Symposium, Jun. 2004, pp. 273-276.
[6] A. Kral, F. Behbahani, and A. A. Abidi, “RF-CMOS oscillators with switched tuning,” in Proceeding of IEEE Custom Integrated Circuits Conference, May 1998, pp. 555-558.
[7] P. Vaananen, N. Mikkola, and P. Helio, “VCO design with on-chip calibration system,” IEEE Transaction on Circuit System I: Regular Paper, vol. 53, no. 10, pp. 2157-2166, October 2006.
[8] Lei Lu, Jinghong Chen, Lu Yuan, Hao Min, Zhangwen Tang, “An 18-mW 1.175-2-GHz Frequency Synthesizer With Constant Bandwidth for DVB-T Tuners,” IEEE Transaction on Microwave Theory and Techniques, vol. 57, no. 4, pp.928-937, April 2009.
[9] Ting Wu, et al, “Method for a Constant Loop Bandwidth in LC_VCO PLL Frequency Synthesizers,” IEEE Journal of Solid-State Circuits, vol. 44, no. 2, pp.427-435, February 2009.
[10] Y. Akamine, M. Kawabe, K. Hori, T. Okazaki, M. Kasahara, and S. Tanaka, “△ΣPLL transmitter with a loop-bandwidth calibration system,” IEEE J. Solid-State Circuits, vol. 43, no. 2, pp. 497–506, Feb. 2008.
[11] C. Lam and B. Razavi, “A 2.6 GHz/5.2 GHz frequency synthesizer in 0.4 μm CMOS technology,” IEEE J. Solid-State Circuits, vol. 35, no.5, pp. 788–794, May 2000.
[12] J. Craninckx and M. Steyaert, “A fully integrated CMOS DCS-1800 frequency synthesizer,” IEEE J. Solid-State Circuits, vol. 33, no. 12, pp. 2054–2065, Dec. 1998.
[13] H. Lee, J.-K. Cho, K.-S. Lee, I.-C. Hwang, T.-W. Ahn, K.-S. Nah, and B.-H. Park, “A △Σ fractional-N frequency synthesizer using a wideband integrated VCO and a fast AFC technique for GSM/GPRS/WCDMA applications,” in ESSCIRC’03, Sep. 2003, pp. 97–100.
[14] T. Johnson, A. Fard, and D. Aberg, “An Improved Low Voltage Phase-Frequency Detector with Extended Frequency Capability,” 47th Midwest Circuits &Systems Symp., vol. 1, pp. 181-184, July 2004.
[15] C. Toumazou, G. Moschytz, and B. Gilbert, Trade-offs in analog circuit design: the designer’s companion, Dordrecht, The Nether lands: Kluwer Academic Publisher, 2002.
[16] J. Rael J and A. A. Abidi, “Physical processes of phase noise in differential LC oscillators,” in Proceeding of IEEE Custom Integrated Circuits Conference, Orlando, FL, USA, 21-242 May 2000, 569-572.
[17] S. Levantino, C. Samori, A. Bonfanti, SLJ. Gierkink, AL. Lacaita, V. Boccuzzi, “Frequency dependence on bias current in 5-GHz CMOS VCOs: impacts on tuning range and flicker noise upconversion,” IEEE Journal of Solid-State Circuits, vol. 37, no. 8, pp.1003-1011, 2002.
[18] E. Hegazi, H. Sjoland, AA Abidi, “A filtering technique to lower LC oscillator phase noise,” IEEE Journal of Solid-State Circuits, vol. 36, no. 12, pp. 1921-1930, December 2001.
[19] D.J. Young, SJ. Mallin, and M. Cross, “2 GHz CMOS Voltage-Controlled Oscillator with Optimal Design of Phase Noise and Power Dissipation,” IEEE Radio Frequency Integrated Circuits Symposium, Honolulu, Hawhuwi, USA, 3-5 June 2007, 131-134.
[20] CC Boon, MA. Do, KS Yeo, JG Ma, and X Zhang, “RF CMOS low-phase-noise LC oscillator through memory reduction tail transistor,” IEEE Journal of Solid-State Circuits, vol. 39, no. 2 pp. 85-90, Feb. 2004.
[21] EAM Klumperink, et. al, “Reducing MOSFET 1/f noise and power consumption by switch biasing,” IEEE J. of Solid-State Circuits, vol. 35, no. 7, pp.994-1001, July 2000.
[22] SLJ Gierkink, EAM Klumperink, AP van der Wel, G. Hoogzaad, E. van Tuikl, and B. Nauta, “Intrinsic 1/f device noise reduction and its effect on phase noise in CMOS ring oscillators,” IEEE Journal of Solid-State Circuits, vol. 34, no. 7, pp.1022-1025, July 1999.
[23] D. Ham and A. Hajimiri, “Concepts and methods in optimization of integrated LC VCOs,” IEEE Journal of Solid-State Circuits, vol. 36, no. 3, pp. 337-345, March 2001.
[24] J Gil and H. Shin, “A 2.4GHz fully integrated CMOS quadrature VCO,” IEEE Asia-Pacific SoC Conference, 2002, vol. 5, pp. 207-210.
[25] Tsung-Hsien Lin and Yu-Jen Lai, "An Agile VCO Frequency Calibration Technique for a 10-GHz CMOS PLL," IEEE Journal of Solid-State Circuits, vol. 42, no. 2, pp.340-349, February 2007.
[26] J.G. Maneatis, et al, "Self-Biased High-Bandwidth Low-Jitter 1-to-4096 Multiplier Clock Generator PLL," IEEE Journal of Solid-State Circuits, vol. 38, no. 11, pp.1795-1803, November 2003.
[27] A. Rossi and G. Fucilli, “Nonredundant successive approximation register for A/D converters,” Electron Letters, vol. 32, no. 12, pp. 1055–1057, June 1996.
[28] M.A. DO, X.P. Yu, J.G. Ma, K.S. Yeo, R. Wu, Q.X. Zhang, “A 2GHz programmable counter with new re-loadable D flip-flop,” in IEEE Electron Devices and Solid-State Circuits, pp. 269-272, 2003.
[29] A. Rao, M. Mansour, G. Singh, Chee-How Lim, R. Ahmed, D.R. Johnson, “A 4-6.4 GHz LC PLL With Adaptive Bandwidth Control for a Forwarded Clock Link” IEEE Journal of Solid-State Circuits, vol. 43, no. 9, pp.2099-2108, September 2008.
[30] Lam. C, Razavi. B, “A 2.6-GHz/5.2-GHz frequency synthesizer in 0.4-μm CMOS technology,” IEEE Journal of Solid-State Circuits, vol. 35, no. 5, pp. 788-794, May 2000.
[31] A. Hovsepyan, V. Melikyan, M. Ishkhanyan, T. Hakobyan, G. Harutyunyan, “Lock detector with stable parameters,” Design and Test Workshop, pp. 1-4, 2009.
[32] Ting Wu, P.K. Hanumolu, K. Mayaram, Un-Ku Moon, “Method for a Constant Loop Bandwidth in LC-VCO PLL Frequency Synthesizers,” IEEE Journal of Solid-State Circuits, vol. 44, no. 2, pp. 427-435, February 2009.

電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.118.145.114
論文開放下載的時間是 校外不公開

Your IP address is 18.118.145.114
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code