Responsive image
博碩士論文 etd-0215111-161751 詳細資訊
Title page for etd-0215111-161751
論文名稱
Title
使用統計靜態時序分析來實現低功率IC設計採用90奈米製程
Implement Low Power IC Design with Statistical Static Timing Analysis in 90nm CMOS Technology
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
50
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-01-24
繳交日期
Date of Submission
2011-02-15
關鍵字
Keywords
靜態時序分析、電壓準位調升電路、製程變異、關鍵路徑
Path Sensitivity, Intra-Die, Inter-Die, Process Variation, Critical Path, Cell-Based, Statistical Static Timing Analysis, Level Converter Logic, Static Timing Analysis
統計
Statistics
本論文已被瀏覽 5700 次,被下載 0
The thesis/dissertation has been browsed 5700 times, has been downloaded 0 times.
中文摘要
隨著可攜式的電子產品的發展越來越頻繁,像是手機、數位相機、PDA…等。各家公司相繼推出各個類型的機種,每個機種都有多樣的功能。其中一項功能-低消耗功率,一直是學術界和業界探討的議題,能找到有效降低晶片的消耗功率將能讓可攜式電子產品向前邁進一大步。由於可攜式電子產品擁有的功能越來越多,加上LCD面板的大小不斷增加,導致功率消耗剖大,因此延長電池的使用壽命將是重要的議題。此外,在製程技術持續地演進,所需的工作電壓也隨著製程的進步而降低,顯示電源管理會直接影響電路的消耗功率。相對於降低整體IC消耗功率和不影響IC效能的前提下,本論文找出關鍵路徑(Critical Path)的演算法,並使用電壓準位調升電路嵌入至一般常用的數位邏輯閘中,讓部分不需使用較大供應電壓的電路使用恰當的供應電壓,藉以達到整體的功率消耗降低。
然而由於製程變異(Inter-Die or Intra-Die)可能改變原本的Cell Delay,使用靜態時序分析找出的Critical Path可能會不準。為了克服這問題,本論文使用統計的方式去做時序分析,找出該Path會成為Critical Path的機率為多少(Path Sensitivity)。最後在透過Cell-Based的方式換成自己設計的邏輯閘來降低功率。
Abstract
As the mobile electronic products development are more and more popular such as mobile phone, digital camera, PDA…etc. Each of company releases variable kind of mobile products, and every portable machine has plenty of functions. A low power consumption design is a significant issue which academics and engineers concern. It would be a major progress if the approach which can drop off the power consumption successfully. The mobile electronic products have more application programs than before and the size of LCD increases continuously, so that the power consumption becomes large. Therefore, expanding the life of battery would be a significant issue. Besides, the process technology has improved day by day, and it would influence the supply voltage be declined. It represents the power management would influence the power consumption of circuit directly. Comparing to drop down the entire IC power consumption and not to influence the performance of IC, the thesis employs the algorithm that searches the Critical Path and embeds the Level Converter Logic into digital circuit. It can offer the proper supply voltage to circuits which do not want to bigger supply voltage for reduce power consumption.
However, the process variation (Inter-Die or Intra-Die) may transform the original Critical Path, the Critical Path which searches through the static timing analysis would not correct. To conquer this problem, the thesis provides the statistical approach to analysis timing. It would search Path Sensitivity which is exactly equal to the probability that a path is critical. Finally, the logic gate which is designed by us would replace the UMC 90nm standard cell through Cell-Based.
目次 Table of Contents
CHAPTER 1 Introduction....................................................1
1.1 Introduction...................................................................1
1.2 Motivation.....................................................................2
1.3 Research Goals and Contribution................................3
1.4 Thesis Organization.....................................................3
CHAPTER 2 Introduction of Static Timing Analysis...........4
2.1 Modeling of CMOS Cells.............................................4
2.2 Propagation Delay.......................................................5
2.3 Slew of a Waveform....................................................6
2.4 Timing Arcs and Unateness........................................7
2.5 Operating Conditions..................................................7
2.6 Critical Path................................................................8
CHAPTER 3 Statistical Static Timing Analysis................11
3.1 Introduction................................................................11
3.2 Obtain Linear Model..................................................12
3.3 Path Delay Distributions Based on Parameter Distributions.....................................................................13
3.4 Perturbation and PDF(Probability Distribution Function)..........................................................................14
3.5 Path Sensitivity..........................................................15
CHAPTER 4: Construct Standard Cell Library................19
4.1 Standard Cell Flow Introduction................................19
4.2 Construct Synopsys Library Model...........................20
4.3 Place & Route Model................................................23
CHAPTER 5: Dynamic Level Converter Logic................25
5.1 Multiple Voltage Techniques.....................................25
5.2 Conventional Level Shifter Circuit.............................26
5.3 Dynamic Logic...........................................................27
5.4 Dynamic Logic Combined Level Shifter.....................28
5.5 Combination of Level Converter................................29
5.6 Simulation Level Converter.......................................31
CHAPTER 6: Mix Design Level Converter Logic and UMC90 nm Standard Cell...............................................34
6.1 New Design Flow for LC logic and Standard Cell.....34
6.2 Compare and Result.................................................36
CHAPTER 7: Conclusion and Future Work....................39
7.1 Conclusion................................................................39
7.2 Future Works............................................................39
References.....................................................................40

參考文獻 References
[1] A. P. Chandrakasan, R. Allmon, A. Stratakos, and R. W. Brodersen, “Design of portable system,” in Proc. IEEE CICC, 1994, pp. 259-266.
[2] M. C. Johnson, and K. Roy, “Scheduling and Optimal Voltage Selection For Low Power Multi-Voltage DSP Datapaths,” in Proc. IEEE ISCAS, 1997, pp.2152-2155.
[3] K. Usami, M. Igarashi, F. Minami, M. K. Ishikawa, M. Ichida, and K. Nogami, “Automated Low-Power Technique Exploiting Multiple Supply Voltages Applied To A Media Processor,” IEEE J, Solid-State Circuits, vol. 33, no. 3, pp. 463-472, March 1998.
[4] J. S. Wang, S. J. Shieh, J. C. Wang, and C. W. Yeh, “Design Of Standard Cells Used Low Power ASIC’s Exploiting The Multiple-Supply-Voltage Scheme,” in Proc. IEEE IASICC, 1998, pp. 119-123.
[5] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler, D. Blaauw, T. Austin, K. Flautner, and T. Mudge, “Razor: A low-power pipeline based on circuit-level timing speculation,” in Proc. IEEE MICRO, 2003, pp. 7–18.
[6] J. L. Hennessy and D. A. Patterson, “Computer Architecture: A Quantitative Approach,” 3rd ed. San Mateo, CA: Morgan Kaufmann, 2003.
[7] Yi-Wei Chiu, “Standard Cell Library Noise Characterization and Power Noise Suppression Circuit Design”, dissertation from National Central University, July 2006.
[8] ALI DASDAN and IVAN HOM, “Handling Inverted Temperature Dependence in Static Timing Analysis”, ACM Transactions on Design Automation of Electronic Systems, vol. 11, no. 2, April 2006.
[9] D. Blaauw, V. Zolotov, and S. Sundareswaran, “Slope propagation in static timing analysis,” IEEE Trans. Computer-Aided Design, vol. 21, pp. 1180–1195, Oct. 2002.
[10] D. Boning and S. Nassif, “Models of Process Variations in Device and Interconnect in Design of High-Performance Microprocessor Circuits,” A. Chandrakasan, 2000.
[11] A. Gattiker, S. Nassif, R. Dinakar, and C. Long, “Timing yield estimation from static timing analysis,” In IEEE Int’l Symp. on Quality Electronic Design, pages 437–442, San Jose, CA, March 26-28 2001.
[12] A. Agarwal, D. Blaauw, and V. Zolotov, “Statistical timing analysis for intra-die process variations with spatial correlations,” in Proc. IEEE/ACM Int. Conf. Computer Aided Design, San Jose, CA, Nov. 2003, pp. 900–907.
[13] A. Agarwal, D. Blaauw, V. Zolotov, S. Sundareswaran, M. Zhao, K. Gala, and R Panda, “Statistical delay computation considering spatial correlations,” In Proceedings of the Asia and South Pacific Design Automation Conference, pages 271–276, Kitakyushu, Japan, January 2003.
[14] J. J. Liou, A. Krstic, L. C. Wang, and K. T. Cheng, “False-path-aware statistical timing analysis and efficient path selection for delay testing and timing validation,” In Proceedings of the ACM/IEEE Design Automation Conference, pages 566–569, New Orleans, Louisiana, USA, June 2002.
[15] Y. Liu, A. Zakhor, and M. A. Zuniga, “Computer-aided phase shift mask design with reduced complexity,” IEEE Transactions on Semiconductor Manufacturing, pages: 170–181, May 1996.
[16] X. Li, J. Le, M. Celik, and L. T. Pileggi, “Defining statistical timing sensitivity for logic circuits with large-scale process and environmental variations,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 27, no. 6, pp. 1041–1054, Jun. 2008.
[17] B. Choi and D.M. H.Walker, “Timing Analysis of Combinational Circuits Including Capacitive Coupling and Statistical Process Variation,” in Proc. VLSI Test Symp., pp. 49-54, 2000.
[18] M. Orshansky, L. Milor, P. Chen, K. Keutzer, and C. Hu, “Impact of spatial intrachip gate length variability on the performance of high-speed digital circuits,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, pages: 544–553, May 2002.
[19] X. Bai, C. Visweswariah, P. Strenski, and D. Hathaway, “Uncertainty aware circuit optimization,” in Proc. IEEE Des. Autom. Conf., 2002, pp. 58–63.
[20] N. Akhiezer, “The Classical Moment Problem and Some Related Questions in Analysis,” Edinburgh, U.K.: Oliver & Boyd, 1965.
[21] IEEE Standard for and Advanced Library Format (ALF) Describing Integrated Circuit (IC) Technology, Cells, and Blocks, IEEE standard 1603TM-2003,2004
[22] Synopsys Corporation, “Library Compiler User Guide: Modeling Timing and Power,” 2004
[23] Faraday’s 90 nm technology standard cell library guideline: 90nm GENERIC CORE P&R LayoutGuidev1.0
[24] S.H. Kulkarni, D. Sylvester, “High Performance Level Conversion for Dual-VDD Design,” IEEE TraVLSI, vol. 12, pp. 926-936, Sept. 2004.
[25] P. Y. Chin, C. C. Yu, “Voltage Level Converter Circuit Design with Low Power Consumption,” in Proc. IEEE ICASIC, 2005, pp. 309-310.
[26] K. H. Koo, J. H. Seo, M. L. Ko, J. W. Kim, “A New Level-Up Shifter for High Speed and WideRange Interface in Ultra Deep Sub-Micron,” in Proc. IEEE ISCAS, 2005, pp. 1063-1065.
[27] 張裕睿,具有PVT容忍能力之CMOS電壓準位調升電路,國立中正大學電機工
程研究所碩士論文,民國九十四年。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.138.116.20
論文開放下載的時間是 校外不公開

Your IP address is 3.138.116.20
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code