Responsive image
博碩士論文 etd-0215111-163538 詳細資訊
Title page for etd-0215111-163538
論文名稱
Title
糾錯和高偵錯能力的調變/解調晶片設計應用於電力線通訊
A modulation/demodulation chip design with error correctable and high error detected ability for Power Line Communication
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
62
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-01-24
繳交日期
Date of Submission
2011-02-15
關鍵字
Keywords
二元BCH碼、循環冗餘檢查碼、脈寬調變、頻移鍵送、位元交叉
Interleaving technique, CRC16, PWM, Binary BCH, FSK
統計
Statistics
本論文已被瀏覽 5690 次,被下載 0
The thesis/dissertation has been browsed 5690 times, has been downloaded 0 times.
中文摘要
2010年能源國家型科技計畫的主軸專案計劃目標裡,就有提到電力線通訊的發展,由此可見電力線通訊的重要性。由於電力線環境干擾因素多,資料傳輸的過程中容易產生突發性錯誤,因此為了降低錯誤率,本篇論文設計出具有高偵錯能力和糾錯能力的調變/解調晶片應用於電力線通訊中。

設計中應用到了CRC、PWM、FSK、FEC(我們使用binary BCH code)和Interleaving的技術。CRC-16可偵測出資料傳輸的過程中是否發生錯誤,偵錯機率高達99.997%;我們使用BCH code可隨機糾正3位元的錯誤;PWM則根據輸入訊號的1、0,產生不同頻率的數位波。FSK是個頻率調變技術,可利用不同的頻率改變,傳送數位訊息。Interleaving則是將Burst error轉變成 random error。

本設計使用TSMC .18μm 製程,晶片面積1.16毫米平方,使用3.3V/1.8V的供應電壓,消耗功率55.5 μW。
Abstract
In the 2010, targets of National Science and Technology Program - Energy‘s project plan had mentioned about the development of power line communication (PLC). This shows the importance of PLC. The data transmission occur burst errors easily by the noise interference from the environment. In order to reduce the error rate, we design a modulation/demodulation chip with error correctable and high error detected ability for power line communication in this thesis.
The proposed design consists of Cyclic Redundancy Check (CRC), Pulse Width Modulation (PWM), Frequency Shift Keying (FSK), Forward Error Correction (i.e. binary BCH code), and interleaving techniques. The CRC can detect the errors occurred in the digital communication. The probability of finding error is 99.997%. The BCH code is capable of correcting any combination of 3 or fewer errors in block. The function of PWM is to generate the digital pulses that exhibit the changeable pulse width according to the swing of the input voltage. In the telecommunication, FSK is a frequency modulation scheme such that the digital information can be transmitted through the discrete frequency changes of the carrier. Interleaving can make burst errors look like random errors.
The design is implemented TSMC 0.18μm process. The fabricated chip area is 1.16 millimeter square with 3.3V/1.8V supply voltages. The measured data shows that the proposed design is fully functional and consumes 55.5 μW.
目次 Table of Contents
CHAPTER 1 INTRODUCTION....................1
1.1 Motivation............................1
1.2 Research Objectives...................2
1.3 Research Contribution.................3
1.4 Thesis Organization...................4

CHAPTER 2 THE CONCEPTS OF PWM AND FSK.....5
2.1 DSP Controller Circuit................5
2.2 Transmit Protocol.....................7
2.3 Circuit Topologie.....................8
2.4 Pulse Width Modulation................9
2.4.1 Basic Concept.......................9
2.4.2 Circuit Design.....................10
2.5 A Fully Digital FSK Demodulator......12
2.5.1 Basic Concept......................12
2.5.2 Circuit Design.....................13

CHAPTER 3 BASEBAND DESIGN................16
3.1 Interleving Technique................16
3.1.1 Basic Concept......................16
3.1.2 Circuit Design.....................18
3.2 Cyclic Redundancy Check..............19
3.2.1 Basic Concept......................19
3.2.2 UART Format........................20
3.2.3 Circuit Design.....................21

CHAPTER 4 BINARY BCH ENCODER/DECODER.....26
4.1 Binary BCH Overview..................26
4.2 BCH Encoder..........................28
4.3 BCH Decoder..........................30
4.3.1 Basic Concept......................30
4.3.2 Syndrome Computer..................33
4.3.3 Comparison Module..................37

CHAPTER 5 MEASUREMENT RESULT.............40
5.1 Sinulation...........................40
5.1.1 Functional Verification............40
5.1.2 Simulation Result..................41
5.2 Measurement result...................47

CHAPTER 6 CONCLUSION AND FUTURE WORK.....50
6.1 Conclusion...........................50
6.2 Future Work..........................50

Reference................................51
參考文獻 References
[1]CENELEC EN 50065-1: .Signaling on low-voltage electrical installations in the frequency range 3kHz to 148.5kHz, 1991.
[2]李淑敏等四人, 2008, 節能通信 IC 晶片開發與智慧型電能管理系統整合研究, NSC98-2220-E-110-009
[3]Y. H. Liu and T. H. Lin,” A Wideband PLL-Based G/FSK Transmitter in 0.18 μm CMOS” IEEE Journal of Solid-State Circuits, vol. 44., no. 9, pp.2452-2462, Sept. 2009.
[4]H. Darabi, S. Khorram, H.-M. E. Chien, M.-A. Pan, S.Wu, S. Moloudi, J. C. Leete, J.J. Rael, M.Syed, R. Lee, B. Ibrahim, M. Rofougaran, and A. Rofougaran, ”A 2.4-GHz CMOS transceiver for Bluetooth,” IEEE Journal of Solid-State Circuits, vol.36, no. 12, pp. 2016-2024, Dec.2001.
[5]B. Xia, C. Xin, W. Sheng, A. Y. Valero-Lopez, and E. Sanchez-Sinencio, ”A GFSK demodulator for low-IF Bluetooth receiver,” IEEE Journal of Solid-State Circuist, vol. 38, no. 8, pp. 1397-1400, Aug.2003.
[6]S.Byun, C.-H. Park, Y.Song, S.Wang, C. S. Conroy, and B. Kim,”A low-Power CMOS bluetooth RF transceiver with a digital offset canceling DLL-Based GFSK demodulator,” IEEE Journal of Solid-State Circuits, vol. 38, no. 10, pp. 1609-1618, Oct. 2003.
[7]M. Ghovanloo and K. Najafi, ”A high data transfer rate frequency shift keying demodulator chip for the wireless biomedical implants” IEEE Midwest Symposium on Circuits and Systems Proc,vol.3,pp.III-433 -III-436, August 2002.
[8]M. Ghovanloo and K. Najafi, ”A fully digital frequency shift keying demodulator chip for wireless biomedical implants” Southwest Symposium on Mixed Signal Design, pp.223-227,April 2003.
[9]William Stallings, Wireless communications and network, p206~213, Prentice Hall, 2002.
[10]D. Bertsekas and R. Gallager, Data Networks. Englewood Cliffs, NJ:Prentice-Hall, 1995.
[11]J. Norhuzaimin and H.H Maimun, “The design of high speed UART,” Applied Electromagnetics, 2005
[12]Shin-Lin Shieh, Po-Ning Chen, and Yunghsiang S. Han, “Flip CRC Modification for Message Length Detection,” IEEE Transactions on Communications, vol. 55, no. 9, pp.1747-1756, September 2007.
[13]S. Lin and D.J. Costello, Error Control coding: Fundamentals and Applications, Prentice-Hall Inc., Englewood Cliffs, NJ, second edition, 2004.
[14]徐誌宏, 2007, ”Design of Reed-Solomon Decoder and Implement on FPGA”, 國立雲林科技大學電子工程系, 碩士論文
[15]陳德軒, 2008, “An Adaptive-Rate Error Correction Scheme for NAND Flash Memory”, 國立清華大學電機工程學系, 碩士論文
[16]S. W. Wei and C. H. Wei, “A high-speed real-time binary BCH decoder,” IEEE Trans. Circuits and Systems for Video Technology, vol.3, no. 2, pp.138-147, 1993
[17]C. L. Chr, S. L. Su, and S. W. Wu, “New step-by-step decoding for binary BCH codes”, The Ninth International Conference on Communications Systems, pp.456, September 2004
[18]Huapeng Wu, “Bit-Parallel Finite Field Multiplier and Squarer Using Polynomial Basis”, IEEE Transactions on Computers, vol.51, no. 7, pp.750-758, July 2002
[19]C. Y. Lee; Y. H. Chen, “Low-Complexity Parallel Systolic Architectures for Computing Multiplication and Squaring over GF(2m)”, 21st International Conference on Advanced Information Networking and Applications Workshops, vol. 1, pp.906, May 2007
[20]N. Weste and K. Eshraghian, Principles of CMOS VLSI Design: a System Perspective, Addison-Wesley, Reading, MA, 1985.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.15.147.53
論文開放下載的時間是 校外不公開

Your IP address is 3.15.147.53
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code