Responsive image
博碩士論文 etd-0216111-000244 詳細資訊
Title page for etd-0216111-000244
論文名稱
Title
兩種潮間帶海綿對四種藻粉濾食效率之研究
The study of filtration efficiency of two intertidal sponges to four algal powders
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
66
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-01-31
繳交日期
Date of Submission
2011-02-16
關鍵字
Keywords
藻粉、濃度、Spongia ceylonensis、Tedania klausi、濾食效率、清除率
retention rate, filtration efficiency, clearance rate, Tedania klausi, algae powder, Spongia ceylonensis, concentration
統計
Statistics
本論文已被瀏覽 5761 次,被下載 9
The thesis/dissertation has been browsed 5761 times, has been downloaded 9 times.
中文摘要
本研究探討澎湖潮間帶兩種常見海綿Spongia ceylonensis (Spongiidae)和Tedania klausi (Tedaniidae)的濾食效率,期能運用於養殖或環境研究上;實驗方式是以水產養殖常用的四種養殖微藻Tetraselmis chui (周氏扁藻,8-16μm)、Chaetoceros muelleri (牟氏角毛藻,6-9μm) 、Isochrysis galbana (等鞭金藻,3-7μm)和Nannochloropsis oculata (擬球藻,2-5μm) 活藻和乾燥藻粉進行,濾食效率主要就清除率 (Clearance rate)進行評估。兩種海綿的清除率受濃度、藻種與藻類狀態(活藻或藻粉)影響表現出選擇性濾食,濾食90 分鐘後, T. klausi 對N. oculata濃度107 cells ml-1 的藻粉清除率為71 ml h-1 gDW-1,S. ceylonensis 在此濃度下對N. oculata 藻粉無濾食動作;在藻類濃度106 cells ml-1 時,S. ceylonensis 對I.galbana 活藻的清除率為538 ml h-1 gDW-1,高於T. klausi 的11 ml h-1 gDW-1;在藻類濃度105 cells ml-1 時,T. klausi 對T. chui 活藻的保留率高達431 ml h-1gDW-1,S. ceylonensis 則只有23 ml h-1 gDW-1;藻類濃度104 cells ml-1 下,S.ceylonensis 對T. chui 活藻的清除率為532 ml h-1 gDW-1,T. klausi 的清除率則為315 ml h-1 gDW-1;本研究顯示兩種海綿對四種藻類在不同濃度下,會對不同的藻類做選擇性濾食,且海綿對於活藻的清除率高於藻粉。雖然藻粉之濾食效率較活藻低,在考量藻粉的經濟效益以及無時效性之優勢下,未來應用於海綿養殖 (如浴用海綿) 仍有潛力。
Abstract
The present study was undertaken to evaluate the filtration efficiency of the bath sponge Spongia ceylonensis (Spongiidae) and fire sponge Tedania klausi (Tedaniidae) collected from Penghu. In the feeding experiements, live and algal powder of Tetraselmis chui (8-16μm), Chaetoceros muelleri (6-9μm), Isochrysis galbana (3-7μm) and Nannochloropsis oculata (2-5μm) were used to determine the clearance rate of sponges. Sponges S. ceylonensis and T. klausi showed selective feeding under various algal species, concentrations and conditions (live algae or powders). After 90 minutes, the clearance rate of T. klausi fed on N. oculata powder was 71 ml h-1 gDW-1 at algal concentration of 107 cells ml-1, but S. ceylonensis didn’t feed at the same concentration. At 106 cells ml-1 concentrations, the clearance rate of S. ceylonensis fed on live I. galbana was 538 ml h-1 gDW-1 which was higher than T. klausi, i.e. 11 ml h-1 gDW-1. At 105 cells ml-1 concentrations, the clearance rate of T. klausi fed on live T. chui was 431 ml h-1 gDW-1 which was higher than S. ceylonensis, i.e. 23 ml h-1 gDW-1. At 104 cells ml-1 concentrations, S. ceylonensis fed on live T. chui with clearance rate 532 ml h-1 gDW-1, and T. klausi was 315 ml h-1 gDW-1. The results showed differential clearance rates of sponges depend on sponge species, algal species, concentrations and conditions (live or powder). In gerneral, sponge clearance rate is higher when feeds on live algae than algal powders. Although the filtration efficiency of algal powders is low, the advantage of low cost and high accessibility still make algal powder highly competitive in sponge aquaculture industry.
目次 Table of Contents
圖次 頁碼
謝辭 I
中文摘要 II
英文摘要 III
目錄 V
表目錄 VI
圖目錄 VII
附錄目錄 VIII
前言 1
實驗材料與方法 5
結果 9
討論 13
參考文獻 18
表 25
圖 40
附錄 60
表目錄
圖次 頁碼
表一、四種常見微藻形質分類表 25
表二、海綿Spongia ceylonensis 和Tedania klausi 體積及乾重表 26
表三、海綿Spongia ceylonensis 濾食藻類之保留率單因子變異數分析表 27
表四、海綿Tedania klausi 濾食藻類之保留率單因子變異數分析表 28
表五、海綿Spongia ceylonensis 濾食各種藻類不同濃度之保留率單因子變異數分析表 29
表六、海綿Tedania klausi 濾食各種藻類不同濃度之保留率單因子變異數分析表 31
表七、海綿Spongia ceylonensis 濾食藻類之清除率單因子變異數分析表 33
表八、海綿Tedania klausi 濾食藻類之清除率單因子變異數分析表 34
表九、海綿S. ceylonensis 和T. klausi 對不同藻類不同濃度濾食90 分鐘的保留率一覽表 35
表十、海綿S. ceylonensis 和T. klausi 對不同藻類不同濃度濾食90 分鐘的清除率一覽表 36
表十一、微藻營養成分比較表 37
表十二、海綿濾食效率一覽表 38
表十三、二枚貝濾食效率一覽表 39

圖目錄
圖一、澎湖潮間帶常見的海綿 40
圖二、濾食實驗使用的四種微藻 41
圖三、濾食等鞭金藻活藻之濃度變化圖 42
圖四、葉綠素a 和藻水濃度線性關係圖 43
圖五、海綿S. ceylonensis 和T. klausi 乾重和體積關係圖 44
圖六、海綿濾食周氏扁藻活藻之濃度變化 45
圖七、海綿濾食周氏扁藻藻粉之濃度變化圖 46
圖八、海綿濾食牟氏角毛藻藻粉之濃度變化圖 47
圖九、海綿濾食等鞭金藻活藻之濃度變化圖 48
圖十、海綿濾食等鞭金藻藻粉之濃度變化圖 49
圖十一、海綿濾食擬球藻藻粉之濃度變化圖 50
圖十二、海綿S. ceylonensis 濾食不同藻類的保留率比較圖 51
圖十三、海綿T. klausis 濾食不同藻類的保留率比較圖 52
圖十四、海綿S. ceylonensis 濾食各種藻類不同濃度不同時間之保留率比較圖 53
圖十五、海綿T. klausis 濾食各種藻類不同濃度不同時間之保留率比較圖 54
圖十六、海綿S. ceylonensis 在不同濃度下濾食不同藻類的清除率 55
圖十七、海綿S. ceylonensis 濾食不同藻類的清除率比圖 56
圖十八、海綿T. klausi 在不同濃度下濾食不同藻類的清率 57
圖十九、海綿T. klausis 濾食不同藻類的清除率比圖 58
圖二十、海綿S. ceylonensis 與T. klausi 在不同濃度不同時間對藻類的清除率比較圖 59

附錄目錄
附錄一、 海綿S. ceylonesis 的切割及復原外形變化圖 60
附錄二、海綿攝食實驗周氏扁藻濃度時序變化表 61
附錄三、海綿攝食實驗牟氏角毛藻濃度時序變化表 62
附錄四、海綿攝食實驗等鞭金藻濃度時序變化表 63
附錄五、海綿攝食實驗擬球藻濃度時序變化表 64
參考文獻 References
張崑雄。1985。墾丁國家公園海域珊瑚礁及海洋生物生態研究調查報告。 墾丁國家公園管理處保育研究報告。19: 304。
陳勇輝。1988。澳洲球形海綿(Cinachyra australiensis(Carter)1886)芽體與成體型態之研究。國立中山大學海洋生物研究所碩士論文。
陳清雨。1991 年。台灣產海綿生物活性成分研究。國立中山大學海洋資源研究所博士論文。
周桂如。1995 年。臺灣產Negombata corticata 海綿抗癌成分之研究。國立中山大學海洋資源研究所碩士論文。
王憶鎧。1995 年。澳洲球形海綿共生細菌之研究。國立中山大學海洋資源研究所碩士論文。
林少陵。1995 年。台灣產海綿 Strongylophora durissima 抗癌活性成分之研究。國立中山大學海洋資源研究所碩士論文。
羅光良。1999 年。台灣產海綿Xestospongia sp.抗癌活性成分之研究。國立中山大學海洋資源研究所碩士論文。
周歧存和肖風波。2003 年。海藻在南美白對蝦飼料中的應用研究。海洋科學第27 卷第3 期,66-69 頁。
蕭聖代。2004 年。澳洲球形海綿完整粒線體DNA 序列及分析研究。國立中山大學海洋資源研究所碩士論文。
陳全鎮,曾江寧,廖一波,高愛根,楊俊毅,胡錫綱,陳優勝和吳永壽。2004年。螺旋藻粉在鮑魚配合飼料中的應用研究。水產科技情報第31 卷第1 期, 3-6頁。
楊雅文。2006 年。澳洲球形海綿芽體共生菌之分佈與傳遞。國立中山大學海洋資源研究所碩士論文。
Brown, M. R. 1991. The amino-acid and sugar composition of 16 species of microlgae used in mariculture. Journal of Experimental Marine Biology and Ecology 145: 79-99.
de Caralt Bosch, S. 2007. Sponge culture: learning from biology and ecology. Chapter IV: Cultivation of sponge larvae: settlement, survival and growth of juveniles.
Chung, I. F., Huang, Y. M., Lee and L. L. Liu. 2010. Reproduction of the bath sponge Spongia ceylonensis (Dictyoceratida: Spongiidae) from Penghu, Taiwan. Zoological Studies 49(5): 601-607.
Corriero, G., Longo, C., Mercurio, M., Marzano, C. N., Lembo, G. and M. T.
Spedicato. 2004. Rearing performance of Spongia officinalis on suspended ropes off the Southern Italian Coast (Central Mediterranean Sea). Aquaculture 238: 195-205.
Coughlan, J. 1969. The extimation of filtering rate from the clearance of suspensions. Marine Biology 2: 356-358.
Dendy, A. 1905. Report of the sponges collected by Professor Herdman, at Ceylon, in 1902. Ceylong pearl oyster fisheries supplementary reports XVIII.
Dobberfuhl, D. R. and J. J. Elser. 1999. Use of dried algae as a food source for zooplankton growth and nutrient release experiments. Journal of plankton research 21 (5): 957-970.
Duckworth, A. R. and C. N. Battershill. 2003a. Developing farming structures for production of biologically active sponge metabolites. Aquaculture 217: 139-156.
Duckworth, A. R. and C. N. Battershill. 2003b. Sponge aquaculture for the production of biologically active metabolites: the influence of farming protocols and environment. Aquaculture 221: 311-329.
Duckworth, A. R., Samples, G. A., Wright A. E. and S. A. Pomponi. 2003. In vitro culture of the tropical sponge Axinella corrugata effect of food cell concentration on growth , clearance rate , and biosynthesis of stevensine. Marine Biotechnology 5: 519-527.
Duckworth, A. R., Battershill C. N. and D. R. Schiel. 2004. Effects of depth and water flow on growth, survival and bioactivity of two temperate sponges cultured in different seasons. Aquaculture 242: 237-250.
Duckworth, A. R. and S. A. Pomponi. 2005. Relative importance of bacteria, microalgae and yeast for growth of the sponge Halichondria melanadocia (De Laubenfels, 1936): A laboratory study. Journal of Experimental Marine Biology and Ecology 323(2): 151-159.
Dunphy, B. J., Hall, J. A., Jeffs, A. G. and R. M. G. Wells. 2006. Selective particle feeding by the Chilean oyster, Ostrea chilensis; implications for nursery culture and broodstock conditioning. Aquaculture 261: 594-602.
Duckworth, A. R., Wolff, C. and E. Evans-Illidge. 2007. Developing methods for commercially farming bath sponges in tropical Australia. Porifera Research: Biodiversity, Innovation and Sustainability.
Fernandez-Reiriz, M. J., Perez-Camacho, A., Ferreiro, M. J., Blanco, J., Planas, M. and M. J. Campos. 1989. Biomass production and Variaion in the Biochemical profile (total protein, carbohydrates, RNA, lipids and fatty acids) of seven species of marine microalgae. Aquaculture 83: 17-37.
Fu, W. T., Wu, Y. C., Sun, L. M. and W. Zhang. 2007. Efficient Bioremediation of Total Organic Carbon (TOC) in Integrated Aquaculture System by Marine Sponge Hymeniacidon perleve. Biotechnology and Bioengineering 97: 1387-1397.
Hindarti, D. 1995. Algal feed in bivalbe culture. Oseana, volume XX, normor 1:11-19.
Osinga, R., Klejin, R., Groenendijk, E., Niesink, P., Tramper, J. and R. H. Wijffels. 2001a. Development of in vivo sponge culture: particle feeding by the tropical sponge Pseudosuberites aff. andrewsi. Marine Biotechnology 3: 544-554.
Osinga, R., Belarbi, E. H., Grima, E. M., Tramper, J. and R. H. Wijffels. 2001b.
Progress towards a controlled culture of the marine sponge Pseudosuberites aff. andrewsi in a bioreator. Journal of Biotechnology 100: 141-146.
Osinga, R., Belarbi, E. H., Grima, E. M., Tramper, J. and R. H. Wifffels. 2003.
Progress towards a controlled culture of the marine sponge Pseudosuberites andrewsi in a bioreactor. Journal of Biotechnology 100: 141-146.
Osinga, R., Sidri, M., Cerig, E., Gokalp, S. Z. and M. Gokalp. 2010. Sponge Aquaculture Trials in the East-Mediterranean Sea: New Approaches to Earlier Ideas. The Open Marine Biology Journal 4: 74-81.
Perez, T., Longer, D., Schembri, T., Rebouillon, P. and J. Vacelet. 2005. Effects of 12 years' operation of a sewage treatment plant on trace metal occurrence within a Mediterranean commercial sponge (Spongia officinalis, Demospongiae). Marine Pollution Bulletin 50: 301-309.
Peterson, B. J., Chester, C. M., Jochem, F. J. and J. W. Fourqurean. 2006. Potential role of sponge communities in controlling phytoplankton blooms in Florida Bay. Marine Ecology Progress Series 328: 93-103.
Pile, A. J., Patterson, M. R. and J. D. Witman. 1996. In situ grazing on plankton < 10 μm by the boreal sponge Mycale lingua. Marine Ecology Progress Series 141: 95-102.
Pouvreau, S., Jonqui&#232;res, G. and D. Buestel. 1999. Filtration by the pearl oyster, Pinctada margaritifera, under conditions of low seston load and small particle size in a tropical lagoon habitat. Aquaculture 176: 295-314.
Reiswig, H. M. 1971. In situ pumping activities of tropical Demospongiae. Marine Biology 9: 38-50.
Reiswig, H. M. 1974. Water transport, respiration and energetics of three tropical marine sponges. Journal of Experimental Marine Biology and Ecology 14: 231-249.
Renaud, S. M., Thinh, L. V. and D. L. Parry. 1999. The gross chemical composition and fatty acid composition of 18 species of tropical Australian microalgae for possible use in mariculture. Aquaculture 170: 147-159.
Renaud, S. M., Thinh, L. V., Lambrinidis, G. and D. L. Parry. 2002. Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures. Aquaculture 211: 165-214.
Ribes, M., Coma, R. and J. M. Gili. 1999. Natural diet and grazing rate of the temperate sponge Dysidea avara (Demospongiae, Dendroceratida) throughout an annual cycle. Marine Ecology Progress Series 176: 179-190.
Riisg&#229;rd, H. U. 1988. Efficiency of particle retention and filtration rate in 6 species of northeast American bivalves. Marine Ecology Progress Series 45: 217-223.
Riisg&#229;rd, H. U., Thomassen, S., Jakobsen, H., Weeks, J. M. and P. S. Larsen. 1993.
Suspension feeding in marine sponges Halichondria panicea and Haliclona urceolus : effects of temperature on filtration rate and energy cost of pumping. Marine Ecology Progress Series 96: 177-188.
Rivero-Rodriguez, S., Beaumont, A. R. and M. C. Lora-Vilchis. 2007. The effect of microalgal diets on growth, biochemical composition, and fatty acid profile of Crassostrea corteziensis (Hertlein) juveniles. Aquaculture 263: 199-210.
Sar&#224;, G., Romano, C., Widdows, J. and F. J. Staff. 2008. Effect of salinity and temperature on feeding physiology and scope for growth of an invasive species (Brachidontes pharaonis - MOLLUSCA: BIVALVIA) within the Mediterranean sea. Journal of Experimental Marine Biology and Ecology 363: 130-136.
Soest, R. W. M. 1980. A small collection of sponge (Porifera) from Hong Kong.
Proceeding of the First International Marine Biological Workshop : The Marine Flora and Fauna of Hong Kong and Southern China, Hong Kong.
Southgate, P. C., Beer, A. C., Duncan, P. F. and R. Tamburri. 1998. Assessment of the nutritional value of three species of tropical microalgae, dried Tetraselmis and a yeast-based diet for larvae of the blacklip pearl oyster, Pinctada margaritifera (L.). Aquaculture 162: 247-257.
Stabili, L., Licciano, M., Giangrande, A.,Longo, C., Mercurio, M., Marzano, C. N. and G. Corriero. 2006. Filtering activity of Spongia officinalis var. adriatica (Schmidt) (Porifera, Demospongiae) on bacterioplankton: Implications for bioremediation of polluted seawater. Water Research 40: 3083-3090.
Stabili, L., Licciano, M., Longo, C., Corriero, G. and M. Mercurio. 2008. Evaluation of microbiological accumulation capability of the commercial sponge Spongia officinalis var. adriatica (Schmidt) (Porifera, Demospongiae). Water Research 42: 2499-2506.
van Treeck, P., Eisinger, M., M&#252;ller, J., Paster, M. and H. Schuhmacher. 2003.
Mariculture trials with Mediterranean sponge species The exploitation of an old natural resource with sustainable and novel methods. Aquaculture 218: 439-455.
Trussell, G. C., Lesser, M. P., Patterson, M. R. and S. J. Genovese. 2006.
Depth-specific differences in growth of the reef sponge Callyspongia vaginalis : role of bottom-up effects. Marine Ecology Progress Series 323: 149-158.
Turon, X., Galera, J. and M. J. Uriz. 1997. Clearance rates and aquiferous systems in two sponges with contrasting life-history strategies. Journal of Experimental Zoology 278(1): 22-36.
Weisz, J. B., Lindquist, N. and C. S. Martens. 2008. Do associated microbial abundances impact marine demosponge pumping rates and tissue densities? Oecologia 155(2): 367-376.
Witte, U., Brattegard, T., Graf, G. and B. Springer. 1997. Particle capture and deposition by deep-sea sponges from the Norwegian-Greenland Sea. Marine Ecology Progress Series 154: 241-252.
Wulff, J. I. 2006. Sponge Systematics by Starfish : Predators Distinguish Cryptic Sympatric Species of Caribbean Fire sponge, Tedania ignis and Tedania klausi n. sp. (Demospongiae, Poecilosclerida). Biol Bull 211: 83-94. Yahel, G., Sharp, J. H., Marie, D., Hase, C. and A. Genin. 2003. In situ feeding and element removal in the symbiont-bearing sponge Theonella swinhoei: Bulk DOC is the major source for carbon. Limnology and Oceanography 48(1): 141-149.
Yahel, G., Eerkes-Medrano, D. I. and S. P. Leys. 2006. Size independent selective filtration of ultraplankton by hexactinellid glass sponges. Aquatic Microbial Ecology 45(2): 181-194.
Yukihira, H., Lucas J. S. and D. W. Klumpp. 2000. Comparative effects of temperature on suspension feeding and energy budgets of the pearl oysters Pinctada margaritifera and P. maxima. Marine Ecology Progress Series 195: 179-188.
Zhang, X. C., Zhang, W., Xue, L. Y., Zhang, B., Jin, M. F. and W. T. Fu. 2010. Bioremediation of Bacteria Pollution Using the Marine Sponge Hymeniacidon perlevis in the Intensive Mariculture Water System of Turbot Scophthalmus maximus. Biotechnology and Bioengineering 105(1): 59-68.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.137.218.5
論文開放下載的時間是 校外不公開

Your IP address is 3.137.218.5
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code