Responsive image
博碩士論文 etd-0216111-162218 詳細資訊
Title page for etd-0216111-162218
論文名稱
Title
創新SU-8微壓印與電拉伸技術於微透鏡陣列之開發
A novel SU-8 stamping and electrostatic pulling method for microlens array fabrication
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
135
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-01-19
繳交日期
Date of Submission
2011-02-16
關鍵字
Keywords
光子晶體光纖、電場感測、SU-8、微透鏡陣列、壓印、異軸向、非球面
Stamping, Microlens array, Hetero axes, E-field sensor, Photonic crystal fiber, Aspherical, SU-8
統計
Statistics
本論文已被瀏覽 5732 次,被下載 1271
The thesis/dissertation has been browsed 5732 times, has been downloaded 1271 times.
中文摘要
本研究提出一種創新光阻轉印微透鏡陣列製作方法,利用曝光的方式直接在SU-8 厚膜材料上定義出兩種作用區域。SU-8 是一種負型光阻,遭受曝光後會產生硬化其玻璃轉換溫度可達攝氏200度以上,然在曝光之前其玻璃轉換溫度僅為55度,在當溫度升高至玻璃轉換溫度時SU-8材料將從如玻璃般之固態轉變為如蜂蜜般之高黏度液體。因此藉由曝光定義的方式,即可將SU-8這一種材料定義成有兩種截然不同性質之區域。而本研究將受到曝光之區域作為微透鏡陣列之模板印章,未受到曝光之部分作為墨水,當基板加溫到高於玻璃轉換溫度時把所形成之印章壓印到基板上,即可在基板上獲得一微透鏡陣列。不同於以往製程技術,本研究所提出之轉印製成可將微透鏡陣列形成於現有元件上而不需額外支基板支撐更具有降低整體元件厚度與體積之果效。
而本研究也提出了利用SU-8本身之特性,利用溫度在透鏡生產時或生產後加以調變所生產出之透鏡曲率,與靜電拉伸的方式更進一步的去產生非球狀與更短焦距之透鏡陣列,更加提升所產生之透鏡陣列之光學性能範圍。然而藉由上述技術多半只能於單一基板上產生具相同性質之微透鏡陣列,因此本研究更提出一製程技術於單一基板上製造不同曲率甚至傾斜方向之透鏡陣列。此技術為運用所開發之低成本灰階光罩製程,在電極上形成一具梯度分布之介電質層,以達成改變電極間靜電場強度分布之目標,最後成功的以此漸變強度之靜電場完成不同曲率與傾斜方向之透鏡陣列製造。
本研究亦提出一創新製程技術用於光子晶體光纖式感測器製造,一微小化之高電場感測器成功的被開發出來,用於未來能了解前述複雜靜電場微透鏡調控技術之真實電場分布情況,而本製程技術在未來更可廣泛用於光纖式元件之製造。
Abstract
This research reports a simple and novel method to fabricate microlens arrays by soft stamping the unexposed SU-8 photoresist. A SU-8 based stamp composed of micro-nozzle arrays with a reservoir structure on a glass substrate is first fabricated using a process of dosage control exposure. The unexposed SU-8 is then encapsulated in the cross-linked SU-8 shell and was used as the “ink” for the stamping process. The proposed SU-8 microlens array is then formed by stamping the formed SU-8 structure on a bare glass substrate at a temperature higher than the glass transition temperature (Tg) of the unexposed SU-8 microlens array. Lenses with various radii of curvature can be formed by controlling the working temperature during the stamping process.
In addition, this work also employed a simple electric static pulling scheme to manipulate the fabricated lenses profiles. Aspherical SU-8 microlens arrays with a wide range of tunable focal lengths were fabricated with this approach. Furthermore, we develop an advanced localize E-field control technique to fabricate microlenses with various focus length and microlenses with different tilt angle in a single lens array sheet. A novel grayscale mask fabrication technique is also proposed first. This low cost and rapid method is applied on stepwise and continuous tilt plane fabrication for produces a gradually changed E-field. Hetero axes and focus lengths microlenses are fabricated with this approach. In order to farther understand the real E-field distribution, a novel PCF based E-field sensor fabrication technique is also proposed. This technique also shows the potential on various PCF based devices fabrications.
目次 Table of Contents
論文審定書 I
誌謝 II
中文摘要 III
Abstract IV
Table of Contents V
List of Figures VII
List of Tables XIV
Nomenclature XV
Abbreviations XVII
Chapter 1 Introduction 1
1.1 Background 1
1.2 Current MLA fabrication techniques 2
1.3 MLA turning after formation 5
1.4 MLA with hetero axes 7
1.5 Motivation and Objective 10
Chapter 2 Materials and Methods 14
2.1 SU-8 basic properties 16
2.2 Glass transition in amorphous polymers 20
2.3 Surface properties of a droplet on a solid surface 27
2.4 Taylor cone effect of a droplet in an electrical field 29
2.5 E-field distribution control between two electrodes 33
Chapter 3 Fabrication 40
3.1 Stamping method 41
3.1.1 SU-8 photoresist application 41
3.1.2 Soft-baking process 42
3.1.3 Exposure 43
3.1.4 Second exposure - Sidewall formation 44
3.1.5 SU-8 mold stamping 45
3.1.6 Demolding 46
3.2 Microlens array post stamping modification 48
3.2.1 Microlens reflow 48
3.2.2 Microlens electrostatic pulling 49
3.3 E-field control dielectric layer fabrication 51
3.3.1 Introduction of gray scale mask 51
3.3.2 The fabrication method of low cost grayscale mask 54
3.3.3 Results of grayscale mask fabrication 57
3.3.4 Results of 3-D structure fabrication 60
Chapter 4 Results of MLA fabrication 64
4.1 Results of stamping fabrication 64
4.2 Post stamping reflow adjusting 72
4.3 Post stamping electrostatic pulling adjusting 75
4.4 Hetero axes and focus lengths microlenses 81
Chapter 5 PCF based E-field sensor fabrication 85
5.1 Motivation and Background of PCF 85
5.2 The proposed PCF cross-section modification method 87
5.3 PCF selective sealing and filling process 89
5.4 Results and discussion 91
Chapter 6 Conclusions and Suggestions 100
6.1 Conclusions 100
6.2 Future perspectives 102
Reference 105
Publication list 115
參考文獻 References
[1] M. He, X. C. Yuan, N. Q. Ngo, and S. H. Tao, "Single-step fabrication of a microlens array in sol-gel material by direct laser writing and its application in optical coupling," Journal of Optics a-Pure and Applied Optics, vol. 6, pp. 94-97, Jan 2004.
[2] A. K. Nallani, T. Chen, D. J. Hayes, W. S. Che, and J. B. Lee, "A method for improved VCSEL packaging using MEMS and ink-jet technologies," Journal of Lightwave Technology, vol. 24, pp. 1504-1512, Mar 2006.
[3] D. S. Lee, S. S. Min, and M. S. Lee, "Design and analysis of spatially variant microlens-array diffuser with uniform illumination for short-range infrared wireless communications using photometric approach," Optics Communications, vol. 219, pp. 49-55, Apr 2003.
[4] H. Kwon, Y. Yee, C. H. Jeong, H. J. Nam, and J. U. Bu, "A high-sag microlens array film with a full fill factor and its application to organic light emitting diodes," Journal of Micromechanics and Microengineering, vol. 18, 065003, Jun 2008.
[5] H. Y. Lin, K. Y. Chen, Y. H. Ho, J. H. Fang, S. C. Hsu, J. R. Lin, J. H. Lee, and M. K. Wei, "Luminance and image quality analysis of an organic electroluminescent panel with a patterned microlens array attachment," Journal of Optics, vol. 12, 085502, Aug 2010.
[6] C. T. Pan and C. H. Su, "Fabrication of high fill factor optical film using two-layer photoresists," Journal of Modern Optics, vol. 55, pp. 33-42, 2008.
[7] T. W. Lin, C. F. Chen, J. J. Yang, and Y. S. Liao, "A dual-directional light-control film with a high-sag and high-asymmetrical-shape microlens array fabricated by a UV imprinting process," Journal of Micromechanics and Microengineering, vol. 18, 095029, Sep 2008.
[8] J. H. Lee, Y. H. Ho, K. Y. Chen, H. Y. Lin, J. H. Fang, S. C. Hsu, J. R. Lin, and M. K. Wei, "Efficiency improvement and image quality of organic light-emitting display by attaching cylindrical microlens arrays," Optics Express, vol. 16, pp. 21184-21190, Dec 2008.
[9] R. Martinez-Cuenca, H. Navarro, G. Saavedra, B. Javidi, and M. Martinez-Corral, "Enhanced viewing-angle integral imaging by multiple-axis telecentric relay system," Optics Express, vol. 15, pp. 16255-16260, Nov 2007.
[10] H. Urey and K. D. Powell, "Microlens-array-based exit-pupil expander for full-color displays," Applied Optics, vol. 44, pp. 4930-4936, Aug 2005.
[11] K. Goto, Y. J. Kim, T. Kirigaya, and Y. Masuda, "Near-field evanescent wave enhancement with nanometer-sized metal grating and microlens array in parallel optical recording head," Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 43, pp. 5814-5818, Aug 2004.
[12] K. Goto, Y. J. Kim, S. Mitsugi, K. Suzuki, K. Kurihara, and T. Horibe, "Microoptical two-dimensional devices for the optical memory head of an ultrahigh data transfer rate and density sytem using a vertical cavity surface emitting laser (VCSEL) array," Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 41, pp. 4835-4840, Jul 2002.
[13] K. Fujita, O. Nakamura, T. Kaneko, M. Oyamada, T. Takamatsu, and S. Kawata, "Confocal multipoint multiphoton excitation microscope with microlens and pinhole arrays," Optics Communications, vol. 174, pp. 7-12, Jan 2000.
[14] H. J. Tiziani and H. M. Uhde, "3-Dimensional Analysis by a Microlens-Array Confocal Arrangement," Applied Optics, vol. 33, pp. 567-572, Feb 1 1994.
[15] H. Toshiyoshi, G. D. J. Su, J. LaCosse, and M. C. Wu, "A surface micromachined optical scanner array using photoresist lenses fabricated by a thermal reflow process," Journal of Lightwave Technology, vol. 21, pp. 1700-1708, Jul 2003.
[16] R. Volkel, H. P. Herzig, P. Nussbaum, R. Dandliker, and W. B. Hugle, "Microlens array imaging system for photolithography," Optical Engineering, vol. 35, pp. 3323-3330, Nov 1996.
[17] R. Volkel, H. P. Herzig, P. Nussbaum, W. Singer, R. Dandliker, and W. B. Hugle, "Microlens lithography: A new approach for large display fabrication," Microelectronic Engineering, vol. 30, pp. 107-110, Jan 1996.
[18] R. Martinez-Cuenca, V. Duran, V. Climent, E. Tajahuerce, S. Bara, J. Ares, J. Arines, M. Martinez-Corral, and J. Lancis, "Reconfigurable Shack-Hartmann sensor without moving elements," Optics Letters, vol. 35, pp. 1338-1340, May 2010.
[19] L. Seifert, J. Liesener, and H. Tiziani, "The adaptive Shack-Hartmann sensor," Optics Communications, vol. 216, pp. 313-319, Feb 2003.
[20] A. Schilling, R. Merz, C. Ossmann, and H. P. Herzig, "Surface profiles of reflow microlenses under the influence of surface tension and gravity," Optical Engineering, vol. 39, pp. 2171-2176, Aug 2000.
[21] S. Y. Hung, S. N. Chen, C. P. Lin, and H. H. Yang, "The robust design for gapless microlens array fabrication using the incomplete developing and thermal reflow process," Microwave and Optical Technology Letters, vol. 49, pp. 23-29, Jan 2007.
[22] H. Kim, G. Jeong, Y. J. Kim, and S. Kang, "Design and fabrication of aspheric microlens array for optical read-only-memory card system," Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, vol. 45, pp. 6708-6712, Aug 2006.
[23] D. Daly, R. F. Stevens, M. C. Hutley, and N. Davies, "The Manufacture of Microlenses by Melting Photoresist," Measurement Science & Technology, vol. 1, pp. 759-766, Aug 1990.
[24] X. Q. Fan and H. H. Zhang, "Fabrication of microlens array by direct hot embossing on silicon substrate," Sensor Letters, vol. 6, pp. 266-271, Apr 2008.
[25] C. Y. Chang, S. Y. Yang, L. S. Huang, and J. H. Chang, "Fabrication of plastic microlens array using gas-assisted micro-hot-embossing with a silicon mold," Infrared Physics & Technology, vol. 48, pp. 163-173, Jun 2006.
[26] L. W. Pan, X. J. Shen, and L. W. Lin, "Microplastic lens array fabricated by a hot intrusion process," Journal of Microelectromechanical Systems, vol. 13, pp. 1063-1071, Dec 2004.
[27] C. T. Pan, "Design and fabrication of sub-micrometer eight-level bi-focal diffraction optical elements," Journal of Micromechanics and Microengineering, vol. 14, pp. 471-479, Apr 2004.
[28] X. C. Shan, R. Maeda, and Y. Murakoshi, "Micro hot embossing for replication of microstructures," Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 42, pp. 3859-3862, Jun 2003.
[29] N. S. Ong, Y. H. Koh, and Y. Q. Fu, "Microlens array produced using hot embossing process," Microelectronic Engineering, vol. 60, pp. 365-379, Apr 2002.
[30] S. Biehl, R. Danzebrink, P. Oliveira, and M. A. Aegerter, "Refractive microlens fabrication by ink-jet process," Journal of Sol-Gel Science and Technology, vol. 13, pp. 177-182,Jan 1998.
[31] D. L. Macfarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, and D. J. Hayes, "Microjet Fabrication of Microlens Arrays," Ieee Photonics Technology Letters, vol. 6, pp. 1112-1114, Sep 1994.
[32] W. K. Huang, C. J. Ko, and F. C. Chen, "Organic selective-area patterning method for microlens array fabrication," Microelectronic Engineering, vol. 83, pp. 1333-1335, Apr-Sep 2006.
[33] M. R. Wang and H. Su, "Laser direct-write gray-level mask and one-step etching for diffractive microlens fabrication," Applied Optics, vol. 37, pp. 7568-7576, Nov 1998.
[34] Q. J. Peng, Y. K. Guo, and S. J. Liu, "Real-time gray-scale photolithography for fabrication of continuous microstructure," Optics Letters, vol. 27, pp. 1720-1722, Oct 2002.
[35] W. X. Yu and X. C. Yuan, "UV induced controllable volume growth in hybrid sol-gel glass for fabrication of a refractive microlens by use of a grayscale mask," Optics Express, vol. 11, pp. 2253-2258, Sep 2003.
[36] X. Y. Zhang, X. J. Yi, X. R. Zhao, Z. H. Mai, M. A. He, and L. Q. Liu, "IR detector array with quartz microlens," Journal of Infrared and Millimeter Waves, vol. 17, pp. 147-152, Feb 1998.
[37] S. Mihailov and S. Lazare, "Fabrication of Refractive Microlens Arrays by Excimer-Laser Ablation of Amorphous Teflon," Applied Optics, vol. 32, pp. 6211-6218, Nov 1993.
[38] G. Kopitkovas, T. Lippert, C. David, S. Canulescu, A. Wokaun, and J. Gobrecht, "Fabrication of beam homogenizers in quartz by laser micromachining," Journal of Photochemistry and Photobiology a-Chemistry, vol. 166, pp. 135-140, Aug 2004.
[39] K. H. Choi, J. Meijer, T. Masuzawa, and D. H. Kim, "Excimer laser micromachining for 3D microstructure," Journal of Materials Processing Technology, vol. 149, pp. 561-566, Jun 2004.
[40] T. R. M. Sales, "Structured microlens arrays for beam shaping," Optical Engineering, vol. 42, pp. 3084-3085, Nov 2003.
[41] D. J. Kang, J. P. Jeong, and B. S. Bae, "Direct photofabrication of focal-length-controlled microlens array using photoinduced migration mechanisms of photosensitive sol-gel hybrid materials," Optics Express, vol. 14, pp. 8347-8353, Sep 2006.
[42] C. Y. Chang, S. Y. Yang, M. S. Wu, L. T. Jiang, and L. A. Wang, "A novel method for fabrication of plastic microlens array with aperture stops for projection photolithography," Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, vol. 46, pp. 2932-2935, May 2007.
[43] M. C. Chou, C. T. Pan, S. C. Shen, M. F. Chen, K. L. Lin, and S. T. Wu, "A novel method to fabricate gapless hexagonal micro-lens array," Sensors and Actuators a-Physical, vol. 118, pp. 298-306, Feb 2005.
[44] T. K. Shih, C. F. Chen, J. R. Ho, and F. T. Chuang, "Fabrication of PDMS (polydimethylsiloxane) microlens and diffuser using replica molding," Microelectronic Engineering, vol. 83, pp. 2499-2503, Nov-Dec 2006.
[45] C. S. Lee and C. H. Han, "A novel refractive silicon microlens away using bulk micromachining technology," Sensors and Actuators a-Physical, vol. 88, pp. 87-90, Jan 2001.
[46] E. Gu, H. W. Choi, C. Liu, C. Griffin, J. M. Girkin, I. M. Watson, M. D. Dawson, G. McConnell, and A. M. Gurney, "Reflection/transmission confocal microscopy characterization of single-crystal diamond microlens arrays," Applied Physics Letters, vol. 84, pp. 2754-2756, Apr 2004.
[47] H. H. Yang, C. K. Chao, M. K. Wei, and C. P. Lin, "High fill-factor microlens array mold insert fabrication using a thermal reflow process," Journal of Micromechanics and Microengineering, vol. 14, pp. 1197-1204, Aug 2004.
[48] J. C. Tsai, K. Liu, and H. Yang, "Fabrication of rolling mold for a 200 μm microlens array by 3D LIGA-like processes," Progress on Advanced Manufacture for Micro/Nano Technology, Pt 1 and 2, vol. 505-507, pp. 271-276, Jan 2006.
[49] Y. C. Lee, C. M. Chen, and C. Y. Wu, "Spherical and aspheric microlenses fabricated by excimer laser LIGA-like process," Journal of Manufacturing Science and Engineering-Transactions of the Asme, vol. 129, pp. 126-134, Feb 2007.
[50] S. T. Chen, "Fabrication of high-density micro holes by upward batch micro EDM," Journal of Micromechanics and Microengineering, vol. 18, 085002, Aug 2008.
[51] J. N. Kuo, C. C. Hsieh, S. Y. Yang, and G. B. Lee, "An SU-8 microlens array fabricated by soft replica molding for cell counting applications," Journal of Micromechanics and Microengineering, vol. 17, pp. 693-699, Apr 2007.
[52] V. Fakhfouri, N. Cantale, G. Mermoud, J. Y. Kim, D. Boiko, E. Charbon, A. Martinoli, and J. Brugger, "Inkjet printing of SU-8 for polymer-based MEMS a case study for microlenses," in Micro Electro Mechanical Systems,(IEEE MESM) 2008, pp. 407-410.
[53] R. Feng and R. J. Farris, "Influence of processing conditions on the thermal and mechanical properties of SU8 negative photoresist coatings," Journal of Micromechanics and Microengineering, vol. 13, pp. 80-88, Jan 2003.
[54] H. Ren and S. T. Wu, "Tunable-focus liquid microlens array using dielectrophoretic effect," Optics Express, vol. 16, pp. 2646-2652, Feb 2008.
[55] D. M. Hartmann, O. Kibar, and S. C. Esener, "Characterization of a polymer microlens fabricated by use of the hydrophobic effect," Optics Letters, vol. 25, pp. 975-977, Jul 2000.
[56] J. H. Kim and S. Kumar, "Fabrication of electrically controllable microlens array using liquid crystals," Journal of Lightwave Technology, vol. 23, pp. 628-632, Feb 2005.
[57] L. Yu-Hsin and H. Wensyang, "A Novel Fabrication Method of Microlens Array by Surface Tension and Injection Process," in Nano/Micro Engineered and Molecular Systems,(IEEE NEMS) 2007, pp. 443-446.
[58] N. Chronis, G. L. Liu, K. H. Jeong, and L. P. Lee, "Tunable liquid-filled microlens array integrated with microfluidic network," Optics Express, vol. 11, pp. 2370-2378, Sep 2003.
[59] F. Krogmann, R. Shaik, W. Munch, and H. Zappe, "Repositionable liquid micro-lenses with variable focal length," in Micro Electro Mechanical Systems,(IEEE MESM) 2007, pp. 707-710.
[60] Z. X. Zhan, K. Y. Wang, H. T. Yao, and Z. L. Cao, "Fabrication and characterization of aspherical lens manipulated by electrostatic field," Applied Optics, vol. 48, pp. 4375-4380, Aug 2009.
[61] O. A. Basaran and L. E. Scriven, "Axisymmetrical Shapes and Stability of Pendant and Sessile Drops in an Electric-Field," Journal of Colloid and Interface Science, vol. 140, pp. 10-30, Nov 1990.
[62] U. C. Boettiger and J. Li, "Process for creating tilted microlens," USA Patent US 7,688,514 B2, 2010.
[63] Y. P. Huang, H. P. D. Shieh, and S. T. Wu, "Applications of multidirectional asymmetrical microlens-array light-control films on reflective liquid-crystal displays for image quality enhancement," Applied Optics, vol. 43, pp. 3656-3663, Jun 2004.
[64] H. Hasei, A. Inagaki, and M. Kuribayashi, "Method of manufacturing optical sheet, backlight unit, display device, and electronic apparatus," US Patent US 2006/0291065 Al, 2006.
[65] S. K. Cho, H. J. Moon, and C. J. Kim, "Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits," Journal of Microelectromechanical Systems, vol. 12, pp. 70-80, Feb 2003.
[66] J. Lee and C. J. Kim, "Surface-tension-driven microactuation based on continuous electrowetting," Journal of Microelectromechanical Systems, vol. 9, pp. 171-180, Jun 2000.
[67] I. Moon and J. Kim, "Using EWOD (electrowetting-on-dielectric) actuation in a micro conveyor system," Sensors and Actuators a-Physical, vol. 130, pp. 537-544, Aug 2006.
[68] H. Yang, C. K. Chao, T. H. Lin, and C. P. Lin, "Fabrication of microlens array with graduated sags using UV proximity printing method," Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems, vol. 12, pp. 82-90, Dec 2005.
[69] H. Huang, W. Yang, T. Wang, T. Chuang, and C. Fu, "3D high aspect ratio micro structures fabricated by one step UV lithography," Journal of Micromechanics and Microengineering, vol. 17, pp. 291-296, Feb 2007.
[70] D. M. Altpeter. (2005). Description of SU-8. Available: http://www.mesacrl.utwente.nl/mis/generalinfo/downloads/equipment/Delta%2020%20SU-8/Description%20of%20SU.pdf
[71] Microchem. (2009). SU-8 Photoresist product on line. Available: http://www.microchem.com/products/su_eight.htm
[72] F. Chollet. (2009). SU-8: Thick Photo-Resist for MEMS. Available: http://www.memscyclopedia.org/su8.html
[73] Microchem. (2009, Negative tone photoresist Formulation 50-100. Available: http://www.microchem.com/products/pdf/SU8_50-100.pdf
[74] D. I. Bower, An introduction to polymer physics, First ed., New York: Cambridge University Press, 2002.
[75] 邱顯堂, 高分子物性, 初版: 明文, 1998.
[76] L. H. Sperling, Introduction to physical polymer science, 4th ed. New Jersey: John Wiley & Sons, 2005.
[77] S. Wu, Polymer interface and adhesion, First ed. New York: M. Dekker, 1982.
[78] R. A. L. Jones and R. W. Richards, Polymers at surfaces and interfaces, First ed. New York: Cambridge University Press, 1999.
[79] G. Taylor, "Disintegration of Water Drops in Electric Field," Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences, vol. 280, pp. 383-397, 1964.
[80] T. J. Sill and H. A. von Recum, "Electro spinning: Applications in drug delivery and tissue engineering," Biomaterials, vol. 29, pp. 1989-2006, May 2008.
[81] A. A. Ali, "Self-assembled ultra fine carbon coils by wet electro-spinning," Materials Letters, vol. 60, pp. 2858-2862, Oct 2006.
[82] Budiono, D. Byun, V. D. Nyugen, J. Kim, and H. S. Ko, "Free surface transition and momentum augmentation of liquid flow in Micro/Nano-scale channels with hydrophobic and hydrophilic surfaces," Journal of Mechanical Science and Technology, vol. 22, pp. 2554-2562, Dec 2008.
[83] T. S. Leu and C. H. Teng, "Design, fabrication and study of micro-electros pray chips," Progress on Advanced Manufacture for Micro/Nano Technology 2005, Pt 1 and 2, vol. 505-507, pp. 1249-1254, 2006.
[84] A. Bateni, S. S. Susnar, A. Amirfazli, and A. W. Neumann, "Development of a new methodology to study drop shape and surface tension in electric fields," Langmuir, vol. 20, pp. 7589-7597, Aug 2004.
[85] C. H. Lin, G. B. Lee, B. W. Chang, and G. L. Chang, "A new fabrication process for ultra-thick microfluidic microstructures utilizing SU-8 photoresist," Journal of Micromechanics and Microengineering, vol. 12, pp. 590-597, Sep 2002.
[86] J. D. Rogers, A. H. O. Karkkainen, T. Tkaczyk, J. T. Rantala, and M. R. Descour, "Realization of refractive microoptics through grayscale lithographic patterning of photosensitive hybrid glass," Optics Express, vol. 12, pp. 1294-1303, Apr 2004.
[87] J. S. Liu, A. J. Waddie, and M. R. Taghizadeh, "Fabrication of diffractive-optical elements by using halftone gray-scale masks," Optics Communications, vol. 208, pp. 31-40, Jul 2002.
[88] C. M. Waits, B. Morgan, M. Kastantin, and R. Ghodssi, "Microfabrication of 3D silicon MEMS structures using gray-scale lithography and deep reactive ion etching," Sensors and Actuators a-Physical, vol. 119, pp. 245-253, Mar 2005.
[89] P. Heyl, T. Olschewski, and R. W. Wijnaendts, "Manufacturing of 3D structures for micro-tools using laser ablation," Microelectronic Engineering, vol. 57-8, pp. 775-780, Sep 2001.
[90] K. S. Chen, I. K. Lin, and F. H. Ko, "Fabrication of 3D polymer microstructures using electron beam lithography and nanoimprinting technologies," Journal of Micromechanics and Microengineering, vol. 15, pp. 1894-1903, Oct 2005.
[91] M. Kurihara, M. Abe, K. Suzuki, K. Yoshida, T. Shimomura, M. Hoga, H. Mohri, and N. Hayashi, "3D structural templates for UV-NIL fabricated with gray-scale lithography," Microelectronic Engineering, vol. 84, pp. 999-1002, May-Aug 2007.
[92] L. Mosher, C. M. Waits, B. Morgan, and R. Ghodssi, "Double-Exposure Grayscale Photolithography," Journal of Microelectromechanical Systems, vol. 18, pp. 308-315, Apr 2009.
[93] Y. Hirai, K. Sugano, T. Tsuchiya, and O. Tabata, "A three-dimensional microstructuring technique exploiting the positive photoresist property," Journal of Micromechanics and Microengineering, vol. 20, 065005, Jun 2010.
[94] C. M. Waits, A. Modafe, and R. Ghodssi, "Investigation of gray-scale technology for large area 3D silicon MEMS structures," Journal of Micromechanics and Microengineering, vol. 13, pp. 170-177, Mar 2003.
[95] T. Dillon, A. Sure, J. Murakowski, and D. Prather, "Continuous-tone grayscale mask fabrication using high-energy-beam-sensitive glass," Journal of Microlithography Microfabrication and Microsystems, vol. 3, pp. 550-554, Oct 2004.
[96] Y. Q. Gao, N. N. Luo, T. Z. Chen, and M. Chen, "Research on digital mask fabrication technique of micro-optical element," Journal of Modern Optics, vol. 56, pp. 453-462, Feb 2009.
[97] T. Hayashia, T. Shibata, T. Kawashima, E. Makino, T. Mineta, and T. Masuzawa, "Photolithography system with liquid crystal display as active gray-tone mask for 3D structuring of photoresist," Sensors and Actuators a-Physical, vol. 144, pp. 381-388, Jun 2008.
[98] J. P. Parry, B. C. Griffiths, N. Gayraud, E. D. McNaghten, A. M. Parkes, W. N. MacPherson, and D. P. Hand, "Towards practical gas sensing with micro-structured fibres," Measurement Science & Technology, vol. 20, 075301, Jul 2009.
[99] A. A. Voronin, V. P. Mitrokhin, A. A. Ivanov, A. B. Fedotov, D. A. Sidorov-Biryukov, V. I. Beloglazov, M. V. Alfimov, H. Ludvigsen, and A. M. Zheltikov, "Understanding the nonlinear-optical response of a liquid-core photonic-crystal fiber," Laser Physics Letters, vol. 7, pp. 46-49, Jan 2010.
[100] Z. Y. Sun, H. S. Han, and G. C. Dai, "Mechanical Properties of Injection-molded Natural Fiber-reinforced Polypropylene Composites: Formulation and Compounding Processes," Journal of Reinforced Plastics and Composites, vol. 29, pp. 637-650, Mar 2010.
[101] T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, "Optical devices based on liquid crystal photonic bandgap fibres," Optics Express, vol. 11, pp. 2589-2596, Oct 2003.
[102] D. Noordegraaf, L. Scolari, J. Laegsgaard, T. T. Alkeskjold, G. Tartarini, E. Borelli, P. Bassi, J. Li, and S. T. Wu, "Avoided-crossing-based liquid-crystal photonic-bandgap notch filter," Optics Letters, vol. 33, pp. 986-988, May 2008.
[103] R. Zhang, J. Teipel, and H. Giessen, "Theoretical design of a liquid-core photonic crystal fiber for supercontinuum generation," Optics Express, vol. 14, pp. 6800-6812, Jul 2006.
[104] J. Villatoro, M. P. Kreuzer, R. Jha, V. P. Minkovich, V. Finazzi, G. Badenes, and V. Pruneri, "Photonic crystal fiber interferometer for chemical vapor detection with high sensitivity," Optics Express, vol. 17, pp. 1447-1453, Feb 2009.
[105] W. Yuan, G. E. Town, and O. Bang, "Refractive Index Sensing in an All-Solid Twin-Core Photonic Bandgap Fiber," Ieee Sensors Journal, vol. 10, pp. 1192-1199, Jul 2010.
[106] T. R. Wolinski, A. Czapla, S. Ertman, M. Tefelska, A. W. Domanski, J. Wojcik, E. Nowinowski-Kruszelnicki, and R. Dabrowski, "Photonic liquid crystal fibers for sensing applications," IEEE Transactions on Instrumentation and Measurement, vol. 57, pp. 1796-1802, Aug 2008.
[107] C. K. Chen, A. Laronche, G. Bouwmans, L. Bigot, Y. Quiquempois, and J. Albert, "Sensitivity of photonic crystal fiber modes to temperature, strain and external refractive index," Optics Express, vol. 16, pp. 9645-9653, Jun 2008.
[108] S. Smolka, M. Barth, and O. Benson, "Selectively coated photonic crystal fiber for highly sensitive fluorescence detection," Applied Physics Letters, vol. 90, pp. 111101 - 111101-3, Mar 12 2007.
[109] B. T. Kuhlmey, B. J. Eggleton, and D. K. C. Wu, "Fluid-Filled Solid-Core Photonic Bandgap Fibers," Journal of Lightwave Technology, vol. 27, pp. 1617-1630, Jun 2009.
[110] L. Xiao, W. Jin, M. S. Demokan, H. L. Ho, Y. L. Hoo, and C. L. Zhao, "Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer," Optics Express, vol. 13, pp. 9014-9022, Oct 2005.
[111] Y. Y. Huang, Y. Xu, and A. Yariv, "Fabrication of functional microstructured optical fibers through a selective-filling technique," Applied Physics Letters, vol. 85, pp. 5182-5184, Nov 2004.
[112] Y. P. Wang, X. L. Tan, W. Jin, S. J. Liu, D. Q. Ying, and Y. L. Hoo, "Improved bending property of half-filled photonic crystal fiber," Optics Express, vol. 18, pp. 12197-12202, Jun 2010.
[113] S. M. Kuo and C. H. Lin, "The fabrication of non-spherical microlens arrays utilizing a novel SU-8 stamping method," Journal of Micromechanics and Microengineering, vol. 18, 125012, Dec 2008.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code