Responsive image
博碩士論文 etd-0216111-175425 詳細資訊
Title page for etd-0216111-175425
論文名稱
Title
系統性POMC過度表現增加老鼠內臟脂肪堆積
Systemic POMC Overexpression Increases Visceral Fat Accumulation in Mice
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
64
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-01-20
繳交日期
Date of Submission
2011-02-16
關鍵字
Keywords
內臟脂肪堆積、胰島素阻抗性、葡萄糖耐受性、庫欣氏症
visceral fat accumulation, Insulin resistance, Cushing's Syndrome, glucose tolerance, POMC, micro CT
統計
Statistics
本論文已被瀏覽 5734 次,被下載 1323
The thesis/dissertation has been browsed 5734 times, has been downloaded 1323 times.
中文摘要
Pro-opiomelanocortin (POMC)是一個由241個胺基酸多肽鏈組成的前軀物,經過轉譯修飾後產生一系列具有不同生物活性的小片段胜肽,包括 α-, β -, γ-melanocyte-stimulating hormone (α-MSH, β-MSH, γ-MSH ),β-endorphin (β-EP) and adrenocorticotrophic hormone (ACTH)。POMC 衍生胜肽在食慾及能量衡定中皆扮演了重要的角色。近年來,系統性 POMC在代謝方面所造成的病理變化,如:庫欣氏症 (Cushing’s syndrome) 及肥胖症正在積極的研究調查。在本研究中,我們利用基因傳送系統攜帶POMC基因誘發C57/BL6小鼠獲得系統性POMC過度表現來觀察小鼠體內生理變化。我們採集小鼠血清進行血液生化分析並收集腹部內臟脂肪組織秤重分析。在研究結果中我們發現,POMC過度表現並無造成小鼠食量及體重的增加。這個結果顯示,經由POMC基因傳送會誘發小鼠內臟脂肪堆積以及體內新陳代謝改變。同時,我們也觀察到系統性POMC過度表現造成小鼠血液中三酸甘油脂及總膽固醇濃度顯著上升。然而,在POMC基因傳送後的第一週到第四週,小鼠血漿中葡萄糖濃度皆上升而且在第四週時甚至出現葡萄糖耐受性異常症狀。同時,我們發現,胰島素阻抗性症狀卻早在POMC基因傳送後的第一週即出現。除此之外,Micro-CT掃描與組織型態學研究證實,與實驗組小鼠比較後發現,在POMC過度表現的小鼠身上內臟脂肪有顯著增加。這些數據顯示,POMC基因傳送造成系統性ACTH濃度上升及胰島素阻抗性症狀產生。這些現象與臨床上庫欣氏症的個體發生特點相似。總結以上所述,POMC基因傳送誘發系統性POMC過度表現並且造成內臟脂肪堆積與胰島素阻抗性的產生;這些結果提供我們能更方便建立一個類庫欣氏症代謝症候群 (Cushing’s-like metabolic syndrome)的小鼠實驗模式。
Abstract
Proopiomelanocortin (POMC) is a polypeptide precursor with 241 amino acid residues which undergoes extensive post-translational modification to yield a range of smaller, biological active peptides including α-, β -, γ-melanocyte-stimulating hormone (α-MSH, β-MSH, γ-MSH ),β-endorphin (β-EP) and adrenocorticotrophic hormone (ACTH). POMC-derived peptides play important roles in appetite and energy homeostasis. Recently, the peripheral POMC system is under active investigation to delineate their pathogenic roles in metabolic diseases such as Cushing’s syndrome and obesity. In the present study, we utilized adenovirus gene delivery system to achieve systemic POMC overexpression in adult C57/BL6 mice for at least 30 days. Subsequently, the plasma and abdominal adipose tissue of mice were collected and analyzed by biochemical assays and weight determination respectively. POMC overexpression did not increase in the food uptake and body weight. These results imply that local POMC gene delivery induced the visceral fat accumulation and altered the metabolism in mice. It was observed that systemic POMC overexpression significantly elevated the triglyceride and the cholesterol levels in mice. However, POMC gene delivery also induced elevated plasma glucose concentration at weeks 1-4 and evoked glucose tolerance in mice at week 4. Interestingly, insulin resistance was readily detected in POMC-transduced in mice at as early as week 1. Besides, Micro-CT scanning and histological studies demonstrated that the visceral fat was significantly increased in POMC over-expressing mice compared with control animals. These data indicate that hepatic POMC gene delivery causes systemic ACTH rise and insulin resistance, which recapitulates the clinical features of Cushing’s syndrome. In summary, POMC gene delivery induces systemic POMC overexpression and results in visceral fat accumulation and insulin resistance, which may facilitates a mice model for Cushing’s-like metabolic syndrome.
目次 Table of Contents
CONTENTS
Page
Abstract in Chinese 6
Abstract in English 7
Abbreviations 9
Introduction 10
Specific Aims 19
Materials and Methods 20
Results 24
Discussion 28
Figures 36
Supplemental Figures 44
Appendix 49
References 58
參考文獻 References
References
1. Farooqi IS, Drop S, Clements A, et al. Heterozygosity for a POMC-null mutation and increased obesity risk in humans. Diabetes 2006;55(9):2549-53.
2. Liu GS, Liu LF, Lin CJ, et al. Gene transfer of pro-opiomelanocortin prohormone suppressed the growth and metastasis of melanoma: involvement of alpha-melanocyte-stimulating hormone-mediated inhibition of the nuclear factor kappaB/cyclooxygenase-2 pathway. Mol Pharmacol 2006;69(2):440-51.
3. Catania A, Gatti S, Colombo G, Lipton JM. Targeting melanocortin receptors as a novel strategy to control inflammation. Pharmacol Rev 2004;56(1):1-29.
4. Solomon S. POMC-derived peptides and their biological action. Ann N Y Acad Sci 1999;885:22-40.
5. Li SJ, Varga K, Archer P, et al. Melanocortin antagonists define two distinct pathways of cardiovascular control by alpha- and gamma-melanocyte-stimulating hormones. J Neurosci 1996;16(16):5182-8.
6. Cone RD. The Central Melanocortin System and Energy Homeostasis. Trends Endocrinol Metab 1999;10(6):211-6.
7. Wikberg JE, Muceniece R, Mandrika I, et al. New aspects on the melanocortins and their receptors. Pharmacol Res 2000;42(5):393-420.
8. Getting SJ. Melanocortin peptides and their receptors: new targets for anti-inflammatory therapy. Trends Pharmacol Sci 2002;23(10):447-9.
9. Wikberg JE. Melanocortin receptors: perspectives for novel drugs. Eur J Pharmacol 1999;375(1-3):295-310.
10. Chhajlani V. Distribution of cDNA for melanocortin receptor subtypes in human tissues. Biochem Mol Biol Int 1996;38(1):73-80.
11. Chhajlani V, Wikberg JE. Molecular cloning and expression of the human melanocyte stimulating hormone receptor cDNA. FEBS Lett 1992;309(3):417-20.
12. Penhoat A, Jaillard C, Saez JM. Corticotropin positively regulates its own receptors and cAMP response in cultured bovine adrenal cells. Proc Natl Acad Sci U S A 1989;86(13):4978-81.
13. Xia Y, Muceniece R, Wikberg JE. Immunological localisation of melanocortin 1 receptor on the cell surface of WM266-4 human melanoma cells. Cancer Lett 1996;98(2):157-62.
14. Boston BA. The role of melanocortins in adipocyte function. Ann N Y Acad Sci 1999;885:75-84.
15. MacNeil DJ, Howard AD, Guan X, et al. The role of melanocortins in body weight regulation: opportunities for the treatment of obesity. Eur J Pharmacol 2002;450(1):93-109.
16. Roselli-Rehfuss L, Mountjoy KG, Robbins LS, et al. Identification of a receptor for gamma melanotropin and other proopiomelanocortin peptides in the hypothalamus and limbic system. Proc Natl Acad Sci U S A 1993;90(19):8856-60.
17. Abdel-Malek ZA. Melanocortin receptors: their functions and regulation by physiological agonists and antagonists. Cell Mol Life Sci 2001;58(3):434-41.
18. Getting SJ, Christian HC, Flower RJ, Perretti M. Activation of melanocortin type 3 receptor as a molecular mechanism for adrenocorticotropic hormone efficacy in gouty arthritis. Arthritis Rheum 2002;46(10):2765-75.
19. Starowicz K, Przewlocka B. The role of melanocortins and their receptors in inflammatory processes, nerve regeneration and nociception. Life Sci 2003;73(7):823-47.
20. Van der Ploeg LH, Martin WJ, Howard AD, et al. A role for the melanocortin 4 receptor in sexual function. Proc Natl Acad Sci U S A 2002;99(17):11381-6.
21. Marsh DJ, Hollopeter G, Huszar D, et al. Response of melanocortin-4 receptor-deficient mice to anorectic and orexigenic peptides. Nat Genet 1999;21(1):119-22.
22. Boston BA, Cone RD. Characterization of melanocortin receptor subtype expression in murine adipose tissues and in the 3T3-L1 cell line. Endocrinology 1996;137(5):2043-50.
23. Yudofsky SC. The American Psychiatric Publishing Textbook of Neuropsychiatry and Behavioral Neurosciences (5th ed.).
24. Mancini T, Porcelli T, Giustina A. Treatment of Cushing disease: overview and recent findings. Ther Clin Risk Manag 2010;6:505-16.
25. Boscaro M, Barzon L, Sonino N. The diagnosis of Cushing's syndrome: atypical presentations and laboratory shortcomings. Arch Intern Med 2000;160(20):3045-53.
26. Ceska R. Clinical implications of the metabolic syndrome. Diab Vasc Dis Res 2007;4 Suppl 3:S2-4.
27. Park YW, Zhu S, Palaniappan L, Heshka S, Carnethon MR, Heymsfield SB. The metabolic syndrome: prevalence and associated risk factor findings in the US population from the Third National Health and Nutrition Examination Survey, 1988-1994. Arch Intern Med 2003;163(4):427-36.
28. Grundy SM. Metabolic syndrome: a multiplex cardiovascular risk factor. J Clin Endocrinol Metab 2007;92(2):399-404.
29. Grundy SM, Cleeman JI, Daniels SR, et al. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 2005;112(17):2735-52.
30. Eckel RH, Grundy SM, Zimmet PZ. The metabolic syndrome. Lancet 2005;365(9468):1415-28.
31. Rana JS, Nieuwdorp M, Jukema JW, Kastelein JJ. Cardiovascular metabolic syndrome - an interplay of, obesity, inflammation, diabetes and coronary heart disease. Diabetes Obes Metab 2007;9(3):218-32.
32. Charles MA, Eschwege E, Thibult N, et al. The role of non-esterified fatty acids in the deterioration of glucose tolerance in Caucasian subjects: results of the Paris Prospective Study. Diabetologia 1997;40(9):1101-6.
33. Empana JP, Ducimetiere P, Charles MA, Jouven X. Sagittal abdominal diameter and risk of sudden death in asymptomatic middle-aged men: the Paris Prospective Study I. Circulation 2004;110(18):2781-5.
34. Andrikopoulos S, Blair AR, Deluca N, Fam BC, Proietto J. Evaluating the glucose tolerance test in mice. Am J Physiol Endocrinol Metab 2008;295(6):E1323-32.
35. E-BioMethods-Intraperitoneal glucose tolerance test (IPGTT). [cited; Available from: http://www.ebiomethods.com/methods/IntraperitonealGlucoseToleranceTest(IPGTT)
36. Barr EL, Zimmet PZ, Welborn TA, et al. Risk of cardiovascular and all-cause mortality in individuals with diabetes mellitus, impaired fasting glucose, and impaired glucose tolerance: the Australian Diabetes, Obesity, and Lifestyle Study (AusDiab). Circulation 2007;116(2):151-7.
37. Genuth S, Alberti KG, Bennett P, et al. Follow-up report on the diagnosis of diabetes mellitus. Diabetes Care 2003;26(11):3160-7.
38. Report of the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 1997;20(7):1183-97.
39. Qiao Q, Jousilahti P, Eriksson J, Tuomilehto J. Predictive properties of impaired glucose tolerance for cardiovascular risk are not explained by the development of overt diabetes during follow-up. Diabetes Care 2003;26(10):2910-4.
40. Abdul-Ghani MA, Tripathy D, DeFronzo RA. Contributions of beta-cell dysfunction and insulin resistance to the pathogenesis of impaired glucose tolerance and impaired fasting glucose. Diabetes Care 2006;29(5):1130-9.
41. Consensus Development Conference on Insulin Resistance. 5-6 November 1997. American Diabetes Association. Diabetes Care 1998;21(2):310-4.
42. Bonora E, Targher G, Alberiche M, et al. Homeostasis model assessment closely mirrors the glucose clamp technique in the assessment of insulin sensitivity: studies in subjects with various degrees of glucose tolerance and insulin sensitivity. Diabetes Care 2000;23(1):57-63.
43. Bonora E, Moghetti P, Zancanaro C, et al. Estimates of in vivo insulin action in man: comparison of insulin tolerance tests with euglycemic and hyperglycemic glucose clamp studies. J Clin Endocrinol Metab 1989;68(2):374-8.
44. Inchiostro S, Bertoli G, Zanette G, Donadon V. Evidence of higher insulin resistance in NIDDM patients with ischaemic heart disease. Diabetologia 1994;37(6):597-603.
45. Day CP, Grove J, Daly AK, Stewart MW, Avery PJ, Walker M. Tumour necrosis factor-alpha gene promoter polymorphism and decreased insulin resistance. Diabetologia 1998;41(4):430-4.
46. Hermans MP, Levy JC, Morris RJ, Turner RC. Comparison of insulin sensitivity tests across a range of glucose tolerance from normal to diabetes. Diabetologia 1999;42(6):678-87.
47. Bartha JL, Comino-Delgado R, Martinez-Del-Fresno P, Fernandez-Barrios M, Bethencourt I, Moreno-Corral L. Insulin-sensitivity index and carbohydrate and lipid metabolism in gestational diabetes. J Reprod Med 2000;45(3):185-9.
48. Akinmokun A, Selby PL, Ramaiya K, Alberti KG. The short insulin tolerance test for determination of insulin sensitivity: a comparison with the euglycaemic clamp. Diabet Med 1992;9(5):432-7.
49. Plumpton FS, Besser GM. The adrenocortical response to surgery and insulin-induced hypoglycaemia in corticosteroid-treated and normal subjects. Br J Surg 1969;56(3):216-9.
50. Kahn BB, Flier JS. Obesity and insulin resistance. J Clin Invest 2000;106(4):473-81.
51. Reaven GM. Pathophysiology of insulin resistance in human disease. Physiol Rev 1995;75(3):473-86.
52. Frayn KN. Adipose tissue and the insulin resistance syndrome. Proc Nutr Soc 2001;60(3):375-80.
53. Reaven GM. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes 1988;37(12):1595-607.
54. Despres JP. Abdominal obesity as important component of insulin-resistance syndrome. Nutrition 1993;9(5):452-9.
55. Bjorntorp P. The regulation of adipose tissue distribution in humans. Int J Obes Relat Metab Disord 1996;20(4):291-302.
56. Yamashita S, Nakamura T, Shimomura I, et al. Insulin resistance and body fat distribution. Diabetes Care 1996;19(3):287-91.
57. Seidell JC, Bouchard C. Visceral fat in relation to health: is it a major culprit or simply an innocent bystander? Int J Obes Relat Metab Disord 1997;21(8):626-31.
58. Ostman J, Arner P, Engfeldt P, Kager L. Regional differences in the control of lipolysis in human adipose tissue. Metabolism 1979;28(12):1198-205.
59. Wajchenberg BL. Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome. Endocr Rev 2000;21(6):697-738.
60. Yu R, Kim CS, Kwon BS, Kawada T. Mesenteric adipose tissue-derived monocyte chemoattractant protein-1 plays a crucial role in adipose tissue macrophage migration and activation in obese mice. Obesity (Silver Spring) 2006;14(8):1353-62.
61. Lovejoy JC. The influence of dietary fat on insulin resistance. Curr Diab Rep 2002;2(5):435-40.
62. Ikejima S, Sasaki S, Sashinami H, et al. Impairment of host resistance to Listeria monocytogenes infection in liver of db/db and ob/ob mice. Diabetes 2005;54(1):182-9.
63. McTiernan A. Obesity and cancer: the risks, science, and potential management strategies. Oncology (Williston Park) 2005;19(7):871-81; discussion 81-2, 85-6.
64. Ludwig DS, Tritos NA, Mastaitis JW, et al. Melanin-concentrating hormone overexpression in transgenic mice leads to obesity and insulin resistance. J Clin Invest 2001;107(3):379-86.
65. Konrad D, Rudich A, Schoenle EJ. Improved glucose tolerance in mice receiving intraperitoneal transplantation of normal fat tissue. Diabetologia 2007;50(4):833-9.
66. SkyScan 1076 manuals.
67. Judex S, Luu YK, Ozcivici E, Adler B, Lublinsky S, Rubin CT. Quantification of adiposity in small rodents using micro-CT. Methods 2009;50(1):14-9.
68. Hildebrandt AL, Kelly-Sullivan DM, Black SC. Validation of a high-resolution X-ray computed tomography system to measure murine adipose tissue depot mass in situ and longitudinally. J Pharmacol Toxicol Methods 2002;47(2):99-106.
69. Carroll JF, Chiapa AL, Rodriquez M, et al. Visceral fat, waist circumference, and BMI: impact of race/ethnicity. Obesity (Silver Spring) 2008;16(3):600-7.
70. Jensen MD. Adipose tissue and fatty acid metabolism in humans. J R Soc Med 2002;95 Suppl 42:3-7.
71. Danilova OV, Tai AK, Mele DA, et al. Neurogenin 3-specific dipeptidyl peptidase-2 deficiency causes impaired glucose tolerance, insulin resistance, and visceral obesity. Endocrinology 2009;150(12):5240-8.
72. Hamdy O, Porramatikul S, Al-Ozairi E. Metabolic obesity: the paradox between visceral and subcutaneous fat. Curr Diabetes Rev 2006;2(4):367-73.
73. Saltiel AR, Kahn CR. Insulin signalling and the regulation of glucose and lipid metabolism. Nature 2001;414(6865):799-806.
74. Raffin-Sanson ML, de Keyzer Y, Bertagna X. Proopiomelanocortin, a polypeptide precursor with multiple functions: from physiology to pathological conditions. Eur J Endocrinol 2003;149(2):79-90.
75. Wikipedia. [cited; Available from: http://en.wikipedia.org/wiki/Cortisol
76. Mazzuco TL, Chabre O, Feige JJ, Thomas M. Aberrant expression of human luteinizing hormone receptor by adrenocortical cells is sufficient to provoke both hyperplasia and Cushing's syndrome features. J Clin Endocrinol Metab 2006;91(1):196-203.
77. Ferreira JG, Cruz CD, Neves D, Pignatelli D. Increased extracellular signal regulated kinases phosphorylation in the adrenal gland in response to chronic ACTH treatment. J Endocrinol 2007;192(3):647-58.
78. Bornstein SR, Chrousos GP. Clinical review 104: Adrenocorticotropin (ACTH)- and non-ACTH-mediated regulation of the adrenal cortex: neural and immune inputs. J Clin Endocrinol Metab 1999;84(5):1729-36.
79. Choi K, Kim YB. Molecular mechanism of insulin resistance in obesity and type 2 diabetes. Korean J Intern Med;25(2):119-29.
80. Franckhauser S, Munoz S, Pujol A, et al. Increased fatty acid re-esterification by PEPCK overexpression in adipose tissue leads to obesity without insulin resistance. Diabetes 2002;51(3):624-30.
81. Hanson RW, Reshef L. Glyceroneogenesis revisited. Biochimie 2003;85(12):1199-205.
82. Reshef L, Olswang Y, Cassuto H, et al. Glyceroneogenesis and the triglyceride/fatty acid cycle. J Biol Chem 2003;278(33):30413-6.
83. Bogacka I, Xie H, Bray GA, Smith SR. The effect of pioglitazone on peroxisome proliferator-activated receptor-gamma target genes related to lipid storage in vivo. Diabetes Care 2004;27(7):1660-7.
84. Tordjman J, Chauvet G, Quette J, Beale EG, Forest C, Antoine B. Thiazolidinediones block fatty acid release by inducing glyceroneogenesis in fat cells. J Biol Chem 2003;278(21):18785-90.
85. Staehr P, Hother-Nielsen O, Landau BR, Chandramouli V, Holst JJ, Beck-Nielsen H. Effects of free fatty acids per se on glucose production, gluconeogenesis, and glycogenolysis. Diabetes 2003;52(2):260-7.
86. Sewter C, Berger D, Considine RV, et al. Human obesity and type 2 diabetes are associated with alterations in SREBP1 isoform expression that are reproduced ex vivo by tumor necrosis factor-alpha. Diabetes 2002;51(4):1035-41.
87. Kolehmainen M, Vidal H, Alhava E, Uusitupa MI. Sterol regulatory element binding protein 1c (SREBP-1c) expression in human obesity. Obes Res 2001;9(11):706-12.
88. Horton JD, Shimomura I, Ikemoto S, Bashmakov Y, Hammer RE. Overexpression of sterol regulatory element-binding protein-1a in mouse adipose tissue produces adipocyte hypertrophy, increased fatty acid secretion, and fatty liver. J Biol Chem 2003;278(38):36652-60.
89. Wamil M, Andrew R, Chapman KE, Street J, Morton NM, Seckl JR. 7-oxysterols modulate glucocorticoid activity in adipocytes through competition for 11beta-hydroxysteroid dehydrogenase type. Endocrinology 2008;149(12):5909-18.
90. Roberge C, Carpentier AC, Langlois MF, et al. Adrenocortical dysregulation as a major player in insulin resistance and onset of obesity. Am J Physiol Endocrinol Metab 2007;293(6):E1465-78.
91. Ricketts ML, Verhaeg JM, Bujalska I, Howie AJ, Rainey WE, Stewart PM. Immunohistochemical localization of type 1 11beta-hydroxysteroid dehydrogenase in human tissues. J Clin Endocrinol Metab 1998;83(4):1325-35.
92. White PC, Mune T, Agarwal AK. 11 beta-Hydroxysteroid dehydrogenase and the syndrome of apparent mineralocorticoid excess. Endocr Rev 1997;18(1):135-56.
93. Pritchard LE, Turnbull AV, White A. Pro-opiomelanocortin processing in the hypothalamus: impact on melanocortin signalling and obesity. J Endocrinol 2002;172(3):411-21.
94. Coll AP, Loraine Tung YC. Pro-opiomelanocortin (POMC)-derived peptides and the regulation of energy homeostasis. Mol Cell Endocrinol 2009;300(1-2):147-51.
95. WHO Diabetes. [cited; Available from: http://www.who.int/diabetes/en/
96. Burén J. Glucose and lipid metabolism in insulin resistance– an experimental study in fat cells. Sweden: Umeå University; 2002.
97. Ashrafi K. Obesity and the regulation of fat metabolism. San Francisco; 2007.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code