Responsive image
博碩士論文 etd-0216112-112117 詳細資訊
Title page for etd-0216112-112117
論文名稱
Title
自噬作用在鉛暴露下神經細胞之類澱粉生成過程中扮演的角色
The Possible Role of Neuron Autophagy on Amyloidogenesis Disorderswith Lead Exposure
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
79
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-01-09
繳交日期
Date of Submission
2012-02-16
關鍵字
Keywords
自噬作用、類澱粉先驅蛋白、類澱粉蛋白、類澱粉蛋白生成異常、鉛暴露、阿茲海默症、細胞程式凋亡
Alzheimer’s Disease, amyloid precursor protein, autophagy, amyloidogensis disorders, apoptosis, β-amyloid protein, lead exposure
統計
Statistics
本論文已被瀏覽 5704 次,被下載 1013
The thesis/dissertation has been browsed 5704 times, has been downloaded 1013 times.
中文摘要
臺灣環境中的鉛(lead)暴露被認為可影響認知、學習和記憶障礙,更可能危害人及動物並導致疾病,甚至死亡的重金屬之ㄧ。過去流行病學研究指出,環境中的重金屬鉛為導致阿茲海默症(Alzheimer’s disease; AD)可能的危險因子。慢性鉛暴露同時伴隨著發生細胞壞死(necrosis),細胞程式凋亡(apoptosis)以及類澱粉蛋白沉積(β-amyloid deposition)。在神經細胞中β-amyloid形式主要藉由細胞自噬(autophagy)及內噬作用(endocytosis)降解胞器中富含類澱粉先驅蛋白(amyloid precursor protein; APP)而得。因此,本研究目的從新觀點探討在鉛暴露(lead exposure)下的類澱粉蛋白生成異常(amyloidogensis disorders)中自噬作用可能扮演的角色。以人類神經母細胞瘤細胞株SH-SY5Y細胞分化模式,添加10 μM 視網酸(retinoic acid; RA)誘導細胞分化模式1-4天將細胞分化成不同階段的神經細胞形態。利用MTT assay分析未分化及分化神經細胞在5 μΜ醋酸鉛處理後之細胞存活率,以TUNEL分析偵測斷裂的DNA以評估細胞凋亡情形。同時藉由即時定量聚合酶鏈鎖反應及酵素免疫分析法分別定量APP與類澱粉蛋白Aβ1-40與類澱粉蛋白Aβ1-42片段表現量。並以西方點墨法觀察細胞自噬作用標幟蛋白LC3II及自噬作用訊息分子mammalian target of rapamycin (mTOR)蛋白磷酸化變化,以評估可能的訊號傳遞調控路徑。結果發現,未分化及分化的神經細胞SH-SY5Y在鉛暴露下都會造成LC3I轉變成LC3II增強細胞自噬作用,無論有無誘導分化的SH-SY5Y神經細胞均造成細胞之程式性死亡。同時,伴隨著自噬效應增強,mTOR的磷酸化現象也會有減弱趨勢。另外,比較未分化神經細胞與經過RA分化後神經細胞對於鉛造成的毒性,結果顯示未分化神經細胞對鉛毒性耐受性較差,可以佐證前臨床研究,鉛對胎兒與嬰幼兒傷害較為嚴重。
Abstract
Lead (Pb) is one of the most well known toxic heavy metals in human beings and animals, which leads to toxic neurological disorders, cognitive problems, learning and memory disabilities. Epidemiological studies revealed that chronic lead exposure is one of the environmental risk factors which may cause Alzheimer’s Disease, which were speculated for the observation of cellular necrosis, apoptosis, and β-amyloid deposition frequently occuring altogether after chronic lead exposure. Recent studies have shown that the β-amyloid formed during autophagic turnover of APP-rich organelles supplied by both autophagy and endocytosis. Therefore, we will conduct the new perspective for studying the possible role of autophagy on amyloidogensis disorders after lead exposure. SH-SY5Y human neuroblastoma cells, used in this study, were differentiated to a neuronal phenotype by retinoic acid (RA) to the culture medium at 10 μM for 1, 2, 3 and 4 days. Doses of lead acetate with of lead acetate were 5 μM and applied to the neuronal culture and then cell viability measurement by MTT assay. The apoptotic effect of non-differentiation and differentiation neuroblastoma cells after lead exposure was determined by cleaved DNA fragments. Furthermore, APP, intracellular Aβ1-40 and Aβ1-42 expression were quantified by Real-time PCR and ELISA, respectively. The autophagy process and variation of total and phosphorylated mammalian target of rapamycin (mTOR) forms were determined after lead exposure in non-differentiation and differentiation neuroblastoma cells by western blot. The results indicate that lead exposure enhances autophagy response in both non-differentiation and differentiation SH-SY5Y cells, which might cause neuronal apoptosis associated with β-amyloidgenesis. Otherwise, lead exposure resulted in the inhibition of mTOR signaling, which correlated with the autophagic process. Besides, in our studies, non-differentiated cells exhibited more toxic vulnerability than RA induced differentiated neuron is congruous to previous finding that lead exposure during fetal development might be a potential risk factor for AD in the adulthood.
目次 Table of Contents
中文摘要 ... IV
英文摘要 ... VI
英文名詞縮寫對照表 ... VIII

第一章 前言與文獻回顧 ... 1

1.1 鉛與阿茲海默病... 1
1.2 類澱粉蛋白與阿茲海默病 ... 2
1.3 γ-secretase activity在形成類澱粉蛋白中的角色 ... 6
1.4自噬作用在類澱粉蛋白形成與沉積所擔任的角色 ... 7
1.5 Mammalian target of rapamycin (mTOR) signaling pathway與自主吞噬調控 ... 12
1.6類澱粉蛋白與自噬作用實驗之神經細胞分化模式 (Differentiation on neuronal cell model) ... 14

第二章 研究動機與目的 ... 16

第三章 實驗架構 ... 18

第四章 研究材料與方法 ... 19

4.1 細胞培養(Cell culture) ... 19
4.2 免疫螢光染色法(Immunofluorescence) ... 20
4.3 細胞毒性之分析(MTT assay) ... 21
4.4 細胞程式凋亡分析(Apoptosis assay) ... 22
4.5 酵素免疫分析(ELISA assay) ... 23
4.6 抽取total RNA(RNA extraction) ... 24
4.7反轉錄 cDNA聚合酵素連鎖反應(Reverse transcription reaction, RT) ... 24
4.8即時定量聚合酶連鎖反應(Real-time Polymerase Chain Reaction, Q-PCR) ... 25
4.9 西方墨點法(Western blotting) ... 26
4.1 統計方法(Statistical method) ... 30

第五章 研究結果 ... 31

5.1 利用Retinoic acid 促進神經細胞分化成具有dopaminergic phenotype功能成熟神經胞 ... 31
5.2 醋酸鉛暴露在未分化以及分化狀態下神經細胞存活率與細胞凋亡變化 ... 31
5.3 醋酸鉛暴露與APP、β-Amyloid [1-40]及β-Amyloid [1-42]表現量影響 ... 32
5.4 醋酸鉛暴露給予壓力後未分化以及分化神經細胞與自噬效應與mTOR kinase變化 ... 34

第六章 研究討論與結論 ... 36

第七章 未來研究方向 ... 45

第八章 參考文獻 ... 47
參考文獻 References
Arsham AM, Neufeld TP (2006). Thinking globally and acting locally with TOR. Curr Opin Cell Biol 18: 589-597.

Bellinger DC (2008). Very low lead exposures and children's neurodevelopment. Curr Opin Pediatr 20: 172-177.

Benetollo C, Lambert G, Talussot C, Vanloo E, Cauteren TV, Rouy D et al (1996). Lipid-binding properties of synthetic peptide fragments of human apolipoprotein A-II. Eur J Biochem 242: 657-664.

Bhaskar PT, Hay N (2007). The two TORCs and Akt. Dev Cell 12: 487-502.

Blommaart EF, Luiken JJ, Blommaart PJ, van Woerkom GM, Meijer AJ (1995). Phosphorylation of ribosomal protein S6 is inhibitory for autophagy in isolated rat hepatocytes. J Biol Chem 270: 2320-2326.

Bradshaw KD, Emptage NJ, Bliss TV (2003). A role for dendritic protein synthesis in hippocampal late LTP. Eur J Neurosci 18: 3150-3152.

Brouillet E, Trembleau A, Galanaud D, Volovitch M, Bouillot C, Valenza C et al (1999). The amyloid precursor protein interacts with Go heterotrimeric protein within a cell compartment specialized in signal transduction. J Neurosci 19: 1717-1727.

Brunden KR, Trojanowski JQ, Lee VM (2009). Advances in tau-focused drug discovery for Alzheimer's disease and related tauopathies. Nat Rev Drug Discov 8: 783-793.

Cai XD, Golde TE, Younkin SG (1993). Release of excess amyloid beta protein from a mutant amyloid beta protein precursor. Science 259: 514-516.

Calabresi L, Lucchini A, Vecchio G, Sirtori CR, Franceschini G (1996). Human apolipoprotein A-II inhibits the formation of pre-beta high density lipoproteins. Biochim Biophys Acta 1304: 32-42.

Canfield RL, Kreher DA, Cornwell C, Henderson CR, Jr. (2003). Low-level lead exposure, executive functioning, and learning in early childhood. Child Neuropsychol 9: 35-53.

Cernaianu G, Brandmaier P, Scholz G, Ackermann OP, Alt R, Rothe K et al (2008). All-trans retinoic acid arrests neuroblastoma cells in a dormant state. Subsequent nerve growth factor/brain-derived neurotrophic factor treatment adds modest benefit. J Pediatr Surg 43: 1284-1294.

Chen SS, Chen TJ, Chiang HC, Yu HS (1995). An overview of toxic neurological disease in Taiwan. Acta Neurol Sin 4: 56-67.

Ciccarone V, Spengler BA, Meyers MB, Biedler JL, Ross RA (1989). Phenotypic diversification in human neuroblastoma cells: expression of distinct neural crest lineages. Cancer Res 49: 219-225.

Citron M, Oltersdorf T, Haass C, McConlogue L, Hung AY, Seubert P et al (1992). Mutation of the beta-amyloid precursor protein in familial Alzheimer's disease increases beta-protein production. Nature 360: 672-674.

Codogno P, Meijer AJ (2005). Autophagy and signaling: their role in cell survival and cell death. Cell Death Differ 12 Suppl 2: 1509-1518.

Corton JM, Gillespie JG, Hardie DG (1994). Role of the AMP-activated protein kinase in the cellular stress response. Curr Biol 4: 315-324.

Counter SA, Buchanan LH, Ortega F (2005). Neurocognitive impairment in lead-exposed children of Andean lead-glazing workers. J Occup Environ Med 47: 306-312.

Counter SA, Buchanan LH, Ortega F (2009). Neurophysiologic and neurocognitive case profiles of Andean patients with chronic environmental lead poisoning. J Toxicol Environ Health A 72: 1150-1159.

Dahlgren KN, Manelli AM, Stine WB, Jr., Baker LK, Krafft GA, LaDu MJ (2002). Oligomeric and fibrillar species of amyloid-beta peptides differentially affect neuronal viability. J Biol Chem 277: 32046-32053.

De Strooper B, Saftig P, Craessaerts K, Vanderstichele H, Guhde G, Annaert W et al (1998). Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature 391: 387-390.

Dubouloz F, Deloche O, Wanke V, Cameroni E, De Virgilio C (2005). The TOR and EGO protein complexes orchestrate microautophagy in yeast. Mol Cell 19: 15-26.

Duverger N, Viglietta C, Berthou L, Emmanuel F, Tailleux A, Parmentier-Nihoul L et al (1996). Transgenic rabbits expressing human apolipoprotein A-I in the liver. Arterioscler Thromb Vasc Biol 16: 1424-1429.

Eskelinen EL (2008). New insights into the mechanisms of macroautophagy in mammalian cells. Int Rev Cell Mol Biol 266: 207-247.

Ferraro E, Cecconi F (2007). Autophagic and apoptotic response to stress signals in mammalian cells. Arch Biochem Biophys 462: 210-219.

Finkelstein Y, Markowitz ME, Rosen JF (1998). Low-level lead-induced neurotoxicity in children: an update on central nervous system effects. Brain Res Brain Res Rev 27: 168-176.

Galluzzi L, Vicencio JM, Kepp O, Tasdemir E, Maiuri MC, Kroemer G (2008). To die or not to die: that is the autophagic question. Curr Mol Med 8: 78-91.

Garcia MA, Vazquez J, Gimenez C, Valdivieso F, Zafra F (1996). Transcription factor AP-2 regulates human apolipoprotein E gene expression in astrocytoma cells. J Neurosci 16: 7550-7556.

Gingras AC, Raught B, Sonenberg N (2001). Regulation of translation initiation by FRAP/mTOR. Genes Dev 15: 807-826.

Glick D, Barth S, Macleod KF (2010). Autophagy: cellular and molecular mechanisms. J Pathol 221: 3-12.

Goyer RA (1995). Nutrition and metal toxicity. Am J Clin Nutr 61: 646S-650S.

Guarnieri S, Pilla R, Morabito C, Sacchetti S, Mancinelli R, Fano G et al (2009). Extracellular guanosine and GTP promote expression of differentiation markers and induce S-phase cell-cycle arrest in human SH-SY5Y neuroblastoma cells. Int J Dev Neurosci 27: 135-147.

Haass C, Hung AY, Selkoe DJ, Teplow DB (1994). Mutations associated with a locus for familial Alzheimer's disease result in alternative processing of amyloid beta-protein precursor. J Biol Chem 269: 17741-17748.

Haass C (2004). Take five--BACE and the gamma-secretase quartet conduct Alzheimer's amyloid beta-peptide generation. EMBO J 23: 483-488.

Huang Y, Schwendner SW, Rall SC, Jr., Mahley RW (1996). Hypolipidemic and hyperlipidemic phenotypes in transgenic mice expressing human apolipoprotein E2. J Biol Chem 271: 29146-29151.

Jaworska-Feil L, Jantas D, Leskiewicz M, Budziszewska B, Kubera M, Basta-Kaim A et al (2010). Protective effects of TRH and its analogues against various cytotoxic agents in retinoic acid (RA)-differentiated human neuroblastoma SH-SY5Y cells. Neuropeptides 44: 495-508.

Jiang X, Francone OL, Bruce C, Milne R, Mar J, Walsh A et al (1996). Increased prebeta-high density lipoprotein, apolipoprotein AI, and phospholipid in mice expressing the human phospholipid transfer protein and human apolipoprotein AI transgenes. J Clin Invest 98: 2373-2380.

Jong MC, Dahlmans VE, van Gorp PJ, van Dijk KW, Breuer ML, Hofker MH et al (1996). In the absence of the low density lipoprotein receptor, human apolipoprotein C1 overexpression in transgenic mice inhibits the hepatic uptake of very low density lipoproteins via a receptor-associated protein-sensitive pathway. J Clin Invest 98: 2259-2267.

Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T et al (2000). LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19: 5720-5728.

Kamenetz F, Tomita T, Hsieh H, Seabrook G, Borchelt D, Iwatsubo T et al (2003). APP processing and synaptic function. Neuron 37: 925-937.

Kang J, Lemaire HG, Unterbeck A, Salbaum JM, Masters CL, Grzeschik KH et al (1987). The precursor of Alzheimer's disease amyloid A4 protein resembles a cell-surface receptor. Nature 325: 733-736.

Kienlen-Campard P, Octave JN (2002). Correlation between beta-amyloid peptide production and human APP-induced neuronal death. Peptides 23: 1199-1204.

Kume T, Kawato Y, Osakada F, Izumi Y, Katsuki H, Nakagawa T et al (2008). Dibutyryl cyclic AMP induces differentiation of human neuroblastoma SH-SY5Y cells into a noradrenergic phenotype. Neurosci Lett 443: 199-203.

Kwon CH, Zhu X, Zhang J, Baker SJ (2003). mTor is required for hypertrophy of Pten-deficient neuronal soma in vivo. Proc Natl Acad Sci U S A 100: 12923-12928.

LaFerla FM, Tinkle BT, Bieberich CJ, Haudenschild CC, Jay G (1995). The Alzheimer's A beta peptide induces neurodegeneration and apoptotic cell death in transgenic mice. Nat Genet 9: 21-30.

Ling Y, Morgan K, Kalsheker N (2003). Amyloid precursor protein (APP) and the biology of proteolytic processing: relevance to Alzheimer's disease. Int J Biochem Cell Biol 35: 1505-1535.

Lisman J, Schulman H, Cline H (2002). The molecular basis of CaMKII function in synaptic and behavioural memory. Nat Rev Neurosci 3: 175-190.

Loewith R, Jacinto E, Wullschleger S, Lorberg A, Crespo JL, Bonenfant D et al (2002). Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell 10: 457-468.

Lopez-Boado YS, Klaus M, Dawson MI, Lopez-Otin C (1996). Retinoic acid-induced expression of apolipoprotein D and concomitant growth arrest in human breast cancer cells are mediated through a retinoic acid receptor RARalpha-dependent signaling pathway. J Biol Chem 271: 32105-32111.

Manning BD, Tee AR, Logsdon MN, Blenis J, Cantley LC (2002). Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol Cell 10: 151-162.

Mattson MP (1997). Cellular actions of beta-amyloid precursor protein and its soluble and fibrillogenic derivatives. Physiol Rev 77: 1081-1132.

Mattson MP, LaFerla FM, Chan SL, Leissring MA, Shepel PN, Geiger JD (2000). Calcium signaling in the ER: its role in neuronal plasticity and neurodegenerative disorders. Trends Neurosci 23: 222-229.

Mattson MP, Chan SL (2001). Dysregulation of cellular calcium homeostasis in Alzheimer's disease: bad genes and bad habits. J Mol Neurosci 17: 205-224.

Mattson MP, Chan SL (2003). Neuronal and glial calcium signaling in Alzheimer's disease. Cell Calcium 34: 385-397.

Mooser V, Marcovina SM, White AL, Hobbs HH (1996). Kringle-containing fragments of apolipoprotein(a) circulate in human plasma and are excreted into the urine. J Clin Invest 98: 2414-2424.

Nixon RA, Wegiel J, Kumar A, Yu WH, Peterhoff C, Cataldo A et al (2005). Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J Neuropathol Exp Neurol 64: 113-122.

Nixon RA (2006). Autophagy in neurodegenerative disease: friend, foe or turncoat? Trends Neurosci 29: 528-535.

O'Connor T, Sadleir KR, Maus E, Velliquette RA, Zhao J, Cole SL et al (2008). Phosphorylation of the translation initiation factor eIF2alpha increases BACE1 levels and promotes amyloidogenesis. Neuron 60: 988-1009.

Ohsumi Y (2001). Molecular dissection of autophagy: two ubiquitin-like systems. Nat Rev Mol Cell Biol 2: 211-216.

Ohta K, Mizuno A, Ueda M, Li S, Suzuki Y, Hida Y et al (2010). Autophagy impairment stimulates PS1 expression and gamma-secretase activity. Autophagy 6: 345-352.

Pahlman S, Odelstad L, Larsson E, Grotte G, Nilsson K (1981). Phenotypic changes of human neuroblastoma cells in culture induced by 12-O-tetradecanoyl-phorbol-13-acetate. Int J Cancer 28: 583-589.

Pearson RC, Esiri MM, Hiorns RW, Wilcock GK, Powell TP (1985). Anatomical correlates of the distribution of the pathological changes in the neocortex in Alzheimer disease. Proc Natl Acad Sci U S A 82: 4531-4534.

Pickford F, Masliah E, Britschgi M, Lucin K, Narasimhan R, Jaeger PA et al (2008). The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice. J Clin Invest 118: 2190-2199.

Pierrot N, Ghisdal P, Caumont AS, Octave JN (2004). Intraneuronal amyloid-beta1-42 production triggered by sustained increase of cytosolic calcium concentration induces neuronal death. J Neurochem 88: 1140-1150.

Pike CJ, Burdick D, Walencewicz AJ, Glabe CG, Cotman CW (1993). Neurodegeneration induced by beta-amyloid peptides in vitro: the role of peptide assembly state. J Neurosci 13: 1676-1687.

Raught B, Gingras AC, Sonenberg N (2001). The target of rapamycin (TOR) proteins. Proc Natl Acad Sci U S A 98: 7037-7044.

Rautou PE, Mansouri A, Lebrec D, Durand F, Valla D, Moreau R (2010). Autophagy in liver diseases. J Hepatol 53: 1123-1134.

Saftig P, Beertsen W, Eskelinen EL (2008). LAMP-2: a control step for phagosome and autophagosome maturation. Autophagy 4: 510-512.

Sarbassov DD, Ali SM, Sabatini DM (2005). Growing roles for the mTOR pathway. Curr Opin Cell Biol 17: 596-603.

Sarkar S, Ravikumar B, Floto RA, Rubinsztein DC (2009). Rapamycin and mTOR-independent autophagy inducers ameliorate toxicity of polyglutamine-expanded huntingtin and related proteinopathies. Cell Death Differ 16: 46-56.

Schupf N, Tang MX, Fukuyama H, Manly J, Andrews H, Mehta P et al (2008). Peripheral Abeta subspecies as risk biomarkers of Alzheimer's disease. Proc Natl Acad Sci U S A 105: 14052-14057.

Schwartz J, Angle C, Pitcher H (1986). Relationship between childhood blood lead levels and stature. Pediatrics 77: 281-288.

Selkoe DJ, Wolfe MS (2007). Presenilin: running with scissors in the membrane. Cell 131: 215-221.

Shukla R, Dietrich KN, Bornschein RL, Berger O, Hammond PB (1991). Lead exposure and growth in the early preschool child: a follow-up report from the Cincinnati Lead Study. Pediatrics 88: 886-892.

Singh J, Kaur G (2007). Transcriptional regulation of polysialylated neural cell adhesion molecule expression by NMDA receptor activation in retinoic acid-differentiated SH-SY5Y neuroblastoma cultures. Brain Res 1154: 8-21.

Swiech L, Perycz M, Malik A, Jaworski J (2008). Role of mTOR in physiology and pathology of the nervous system. Biochim Biophys Acta 1784: 116-132.

Tee AR, Blenis J, Proud CG (2005). Analysis of mTOR signaling by the small G-proteins, Rheb and RhebL1. FEBS Lett 579: 4763-4768.

Toscano CD, Guilarte TR (2005). Lead neurotoxicity: from exposure to molecular effects. Brain Res Brain Res Rev 49: 529-554.

Weisgraber KH, Mahley RW (1996). Human apolipoprotein E: the Alzheimer's disease connection. FASEB J 10: 1485-1494.

Whitehouse PJ, Price DL, Struble RG, Clark AW, Coyle JT, Delon MR (1982). Alzheimer's disease and senile dementia: loss of neurons in the basal forebrain. Science 215: 1237-1239.

Yu WH, Cuervo AM, Kumar A, Peterhoff CM, Schmidt SD, Lee JH et al (2005). Macroautophagy--a novel Beta-amyloid peptide-generating pathway activated in Alzheimer's disease. J Cell Biol 171: 87-98.

Zhang WY, Gaynor PM, Kruth HS (1996). Apolipoprotein E produced by human monocyte-derived macrophages mediates cholesterol efflux that occurs in the absence of added cholesterol acceptors. J Biol Chem 271: 28641-28646.

Zhang Z, Nadeau P, Song W, Donoviel D, Yuan M, Bernstein A et al (2000). Presenilins are required for gamma-secretase cleavage of beta-APP and transmembrane cleavage of Notch-1. Nat Cell Biol 2: 463-465.

Zheng H, Koo EH (2011). Biology and pathophysiology of the amyloid precursor protein. Mol Neurodegener 6: 27.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code