Responsive image
博碩士論文 etd-0216116-082129 詳細資訊
Title page for etd-0216116-082129
論文名稱
Title
電銲燻煙的物化特性及操作參數探討-以機械工廠為例
Physicochemical Characterization of Welding Fume and Its Operating Parameter Investigation – A Case Study of Machinery Plant
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
144
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-01-21
繳交日期
Date of Submission
2016-03-16
關鍵字
Keywords
電銲燻煙、粒徑分佈、健康風險推估、金屬成份、操作參數、數目濃度
exposure assessment, health risk, metallic elements, Working environments, metal welding fume, particle size distribution, operating parameters
統計
Statistics
本論文已被瀏覽 5711 次,被下載 0
The thesis/dissertation has been browsed 5711 times, has been downloaded 0 times.
中文摘要
電銲作業所使用的銲條材料、電流參數、作業方式不同,將產生不同的電銲燻煙,電銲燻煙的粒徑分佈介於0.1~0.2 μm之間,屬於嚴重危害人體之粒徑。本研究為釐清不同作業參數間之多項變異因子之相關性,並探討不同材料及銲接電流對燻煙生成量之影響,找出較為適切之銲接作業參數及銲條材料,以降低電銲作業之燻煙污染排放。本研究針對機械製造工廠內放樣、組立、銲接、研磨等不同群組作業員工,實施個人暴露採樣,並將所採集之濾紙進行電銲燻煙微粒濃度、粒徑分佈採樣與金屬成份分析及調查,藉以評估不同電銲方法之燻煙微粒所排放濃度及物化特性。本研究所使用的三種不同材質銲條,以鈦鐵礦系產出之電銲燻煙量最大,高纖維系次之,高張力鋼最少。本研究發現PM2.5濃度與量測距離呈負相關,以0.5 m、1.0 m及1.5 m處量測電銲燻煙微粒濃度得知,PM2.5懸浮微粒濃度降幅頗為規律,隨量測距離越遠降幅越大。在相同電流參數條件下,不同材質銲條進行電銲作業時生成之燻煙微粒數目濃度差異相當大,高張力鋼系銲條以150 A電流參數執行銲接,微粒粒徑130 nm之數目濃度值高達3,000,000顆/cm3左右,鈦鐵礦系電銲燻煙粒徑130 nm之數目濃度值高達25,000,000顆/cm3以上,高纖維系電銲條燻煙微粒粒徑130 nm之數目濃度測值高達100,000,000顆/cm3以上。由懸浮微粒個人吸入暴露量及特定重金屬平均終生吸入量結果得知,酸洗上漆組(E組)作業員工暴露於六價鉻(Cr+6)、鎘(Cd)、銅(Cu)及鋅(Zn)皆較其他各組為高,該組作業員工必須配戴適當防護具,減少暴露造成健康上的不良影響。此外,就作業區內重金屬平均非致癌風險而言,各組作業員工吸入暴露量以錳(Mn)暴露程度最高,其次為鎘(Cd) 及銅(Cu);就致癌風險而言,酸洗上漆組(E組)暴露以鎘(Cd)及六價鉻(Cr6+)之風險較大,電銲組(C3組)暴露以鎘(Cd)及鎳(Ni)之風險較大,電銲組(C1組)及電銲組(C3組)暴露以鉛(Pb)之風險較大。作業員工應配戴適當防護具,避免長時間暴露於高污染作業環境,降低員工之暴露及健康風險。
Abstract
Welding fume formation depends on numerous operating factors such as welding currents and voltages, welding types, and the composition of applied welding rods, and the temperatures of welding pool during the metal welding process. The particles of welding fume are in the nano size range (0.1-0.2 μm), which could cause severe health effects on the welders. This study aims to investigate the correlation between welding fume formation and the operating factors to figure out the optimal welding condition to reduce the emission of welding fumes. A mechanical manufacturing factory was selected for this particular study. Particulate matters were sampled for five working groups including supervising, resembling, welding, grinding and polishing, and painting staffs in the working environments. After sampling with personal exposure, the filters were analyzed for size distribution, concentration, and metallic elements in this study and to assess the emission concentrations and physicochemical characteristic of metal fumes with different welding process. This study revealed that PM2.5, PM10, and the number concentrations are highly influenced by the welding current and welding rods. The concentrations of fumes have huge difference with the same parameters of welding operating. Among three types of welding rods, the CNS4010 welding rod was the most harmful type of welding rod for welders, which emitted much more nanoparticles and metal welding fumes than others. The concentration of welding fumes descended with distance from the welding operating site regularly. Compared to the concentrations of welding fumes or nanoparticle emission rates, CNS7016 is one kind of top-notch welding rod when compared with CNS4010 or CNS4011. Results obtained from personal exposure to concentrations and exposure dose of PM showed that painting staffs (section E) exposure the highest cancer risk to hexavalent chromium (Cr6+), Cd, and Cu simultaneously. Moreover, welding staffs (section C3) bore the hazardous of Cd and Cu, while welding staffs (section C1 and C3) suffered from the risk of Pb. Enforcement of wearing maskers and/or shelters is highly recommended to prevent manufacturing workers from the exposure of hazardous materials at working places.
目次 Table of Contents
目 錄
摘要…………………………………………………………………………………ⅰ
Abstract………………………………………………………………………………ⅱ
目錄…………………………………………………………………………………ⅲ
圖目錄………………………………………………………………………………ⅵ
表目錄………………………………………………………………………………ⅹ
第一章 緒論……………………………………………………………............1
1-1 研究緣起…………………………………………………………..................1
1-2 研究目的…………………………………………………………..................2
1-3 研究流程…………………………………………………………..................3
第二章 文獻回顧………………………………………………………................4
2-1 電銲燻煙的生成及來源………………………………………......................4
2-1-1 手工電銲作業………………………………………………......................4
2-1-2 氬氣鎢極電銲作業……………………………………….........................6
2-2 研磨粉塵的生成及來源……………………………………….....................6
2-3 電銲燻煙的物化特性………………………………………….....................7
2-4 電銲燻煙粒徑分佈及對人體健康影響……………………….....................8
2-5 電銲燻煙的生成原因…………………………………………...................11
2-5-1 銲接材料…………………………………………..............................…13
2-5-2 銲接參數與條件……………………………………..........................…14
2-6電銲燻煙的採樣方法………………………………………...................…18
第三章 研究方法…………………………………………… ……..............…19
3-1研究架構………………………………………………………...................19
3-2不同製程暴露群組之分組方式……………………………...................…20
3-3銲接人員暴露測試方法…………………………………..........................25
3-4電銲燻煙採樣及分析方法……………………………………...................25
3-4-1電銲燻煙採樣方法…………………………………..............................30
3-4-2電銲燻煙微粒中表面特徵及金屬成份分析方法…………...................30
3-4-3採樣及分析方法之品保與品管………………………….......................32
3-5工作型態問卷調查………………………………………..........................37
3-6 懸浮微粒暴露量及風險推估計算方式……………………….................38
第四章 結果與討論………………………………………………..................40
4-1不同銲接電流參數對燻煙濃度的影響…………………….....................40
4-1-1手工電銲燻煙濃度及粒徑分佈……………………………..................42
4-1-2氬銲燻煙濃度及粒徑分佈……………………………….....................73
4-1-3 PM2.5濃度與電流參數之關係……………………………….............75
4-1-4 PM10濃度與電流參數之關係………………………………..............76
4-2不同銲藥對電銲燻煙微粒濃度的影響……………………....................77
4-3不同作業群組人員暴露濃度值………………………………................80
4-4金屬成份分析………………………………………………...................82
4-5研磨粉塵的粒徑分佈…………………………………………...............87
4-6數目濃度………………………………………………………...............88
4-7電銲燻煙微粒表面特徵狀況………………………………..................97
4-8生活型態問卷調查結果………………………………………............105
4-9個人暴露評估方式……………………………………………............106
4-9-1個人暴露評估結果…………………………………………............106
4-10作業環境與個人暴露濃度與法規標準探討………………………..106
4-11作業環境內懸浮微粒(特定重金屬)風險推估結果…………..........107
4-11-1致癌風險推估……………………………………………….........108
4-11-2非致癌風險推估…………………………………………….........113
第五章 結論與建議……………………………………………….......…116
5-1 結論………………………………………………………................116
5-2 建議…………………………………………………………............119
參考文獻……………………………………………………………….....R1
附錄A 採樣與分析原始數據………………………………………….....A1
附錄B 現場採樣照片………………………………………………….....B1
參考文獻 References
Ashby H.S., "Preventing Potential Health Problems through Proactive Controls," www.asse.org pp.55-60, 2002.
Antonini J.M., Taylor M.D., Millecchia L., Bebout A.R., and Roberts J.R., “Suppression in Lung Defense Responses after Bacterial Infection in Rats Pretreated with Different Welding Fumes,"Toxicology and Applied Pharmacology, Vol.200, PP.206–218, 2004.
Antonini J.M, Stone S., Roberts J.R., Schwegler- Berry B.C.D., Aliakbar A. A., and Frazer D.G, “Effect of Short-Term Stainless Steel Welding Fume Inhalation Exposure on Lung Inflammation, Injury, and Defense Responses in Rats,"Toxicology and Applied Pharmacology, Vol.223, pp. 234–245, 2007.
Chung K.Y.K., Aitkenf R.J., and Bradley D.R., “Development and Testing of a New Sampler for Welding Fume,"Institute of Occupational Medicine, Edinburgh, U.K, Vol.41, pp.355-372,1996.
Heele R.F and Hill D.C.,“ Particulate Fume Generation in Arc Welding Processes,"Welding Journal,Vol.7, pp. 201-210, 1975.
Jenkins N.T. and Eagar T.W., “ Chemical Analysis of Welding Fume Particles,"Welding Journal, www.osha.gov/noisha,, pp.87-93, 2005.
Jenkins N.T., Pierce,W.M.G., and Eagar T.W., “Particle Size Distribution of Gas Metal and Flux Cored Arc Welding Fumes,"Welding Journal, www.osha.gov/noisha,,pp.56-63, 2005.
Kalliomäki P.L., Alanko K., Korhonen O., Mattsson T., Vääränen V, and Koponen M., “Amount and Distribution of Welding Fume Lung Contaminants among Arc Welders,”Scand. Journal Work Environment. Health, Vol.4,pp.122-130,1978.
Kobayashi M., Maki S., Hashimoto Y., and Suga T., “Investigations on Chemical Composition of Welding Fumes,"Welding Research Supplement,Vol.7, pp. 190-196,1983.
Kodas T.,Gurav A.,Pluym T,and Yun X.,“Aerosol Processing of Materials,” Aerosol Science and Technology, Vol.19,pp. 411-452, 2007.
Jukkak ukkak K., Sakariakari akari T. ,Virtamo M., irtamo M., and Kand K aukoauko H.,“Urinary chromium as an indicator of the exposure of welders to chromium,"Scandinavian Journal of Work, Environment & Health .,Vol. 3, pp. 192-202, 1977.
Kiilunen M., Eevalakomaa, Kalliomaki K., Pirkko L.K., Kivela R.,and Vaaranen V., “Stainless Steel Manual Metal Arc Welding Fumes in Rats,"Finland British Journal of Industrial Medicine,Vol.40, pp.229-234,1983.
Kelha V., Pirkko L.K., Sortti V,and Sutinen S., “Amount and Distribution of Fume Contaminants in The Lungs of an Arc Welder Post Mortem, “Helsinki British Journal of Industrial Medicine, Vol.36,pp. 224-230,1979.
Li G.J., Zhang L.L., Lu L., Wu P., and Zheng W., “Occupational Exposure to Welding Fume among Welders: Alterations of Manganese,Iron,Zinc,Copper,and Lead in Body Fluids and the Oxidative Stress Status,"Occupational Environment Medicine,Vol.46, pp. 241–248,2004.
Matczak W., and Chmielnickar J., “Relation Between Various Chromium Compounds And Some Other Elements In Fumes From Manual Metal Arc Stainless Steel Welding,"British Journal of Industrial Medicine, Vol.50, pp. 244-251,1993.
Mansour B.A. and Goknil M.K., “Total Fume and Metal Concentrations during Welding in Selected Factories in Jeddah, Saudi Arabia,"International Journal of Environmental. Research. Public Health,Vol .10, pp.2978-2987, 2010.
Niemela R., Koskela H., and Engstro K., “Stratification of Welding Fumes and Grinding Particles in a Large Factory Hall Equipped with Displacement Ventilation,"Occupation Hygiene Society British,Vol.45, pp. 467–471, 2001.
Pires I., Quintino L.,and Mirand R.M., “Analysis of the Influence of Shielding Gas Mixtures on the Gas Metal Arc Welding Metal Transfer Modes And Fume Formation Rate,"Materials and Design, Document No:10.1016, 2006.
Pires I., QuintinoPires I., Quintino Pires I., Quintino Pires I., QuintinoPires I., Quintino Pires I., Quintino Pires I., Quintino L., Miranda RL., Miranda R L., Miranda RL., Miranda R L., Miranda R .M., and Gomes Jand Gomes J and Gomes J .F., “Fume Emissions During Gas , “Fume Emissions During Gas , “Fume Emissions During Gas , “Fume Emissions During Gas , “Fume Emissions During Gas , “Fume Emissions During Gas , “Fume Emissions During Gas , “Fume Emissions During Gas , “Fume Emissions During Gas Mmetal Arc Welding, Mmetal Arc Welding, Mmetal Arc Welding, Mmetal Arc Welding,Mmetal Arc Welding,Mmetal Arc Welding,Mmetal Arc Welding,Mmetal Arc Welding, Mmetal Arc Welding, Mmetal Arc Welding,"Toxicological & Environmental Chemistry,Vol. 88,Toxicological & Environmental Chemistry,Vol. 88, Toxicological & Environmental Chemistry,Vol. 88, Toxicological & Environmental Chemistry,Vol. 88, Toxicological & Environmental Chemistry,Vol. 88, Toxicological & Environmental Chemistry,Vol. 88, Toxicological & Environmental Chemistry,Vol. 88,Toxicological & Environmental Chemistry,Vol. 88, Toxicological & Environmental Chemistry,Vol. 88, Toxicological & Environmental Chemistry,Vol. 88,Toxicological & Environmental Chemistry,Vol. 88, Toxicological & Environmental Chemistry,Vol. 88, pp. pp. 385-394, 2006.
Quimby B. J., and Ulrich D, “Fume Formation Rates in Gas Metal Arc Welding,"Welding Research Supplement,Vol.4,pp. 142-149l, 1999.
RaynorRaynorRaynorRaynor P. C. ,andand Hovde Hovde C.A.C.A. ,“Effects of Voltage and Wire Feed Speed on Weld Effects of Voltage and Wire Feed Speed on Weld Effects of Voltage and Wire Feed Speed on Weld Effects of Voltage and Wire Feed Speed on Weld Effects of Voltage and Wire Feed Speed on Weld Effects of Voltage and Wire Feed Speed on Weld Effects of Voltage and Wire Feed Speed on Weld Effects of Voltage and Wire Feed Speed on Weld Effects of Voltage and Wire Feed Speed on Weld Effects of Voltage and Wire Feed Speed on Weld Effects of Voltage and Wire Feed Speed on Weld Effects of Voltage and Wire Feed Speed on Weld Effects of Voltage and Wire Feed Speed on Weld Effects of Voltage and Wire Feed Speed on Weld Effects of Voltage and Wire Feed Speed on Weld Effects of Voltage and Wire Feed Speed on Weld Effects of Voltage and Wire Feed Speed on Weld Effects of Voltage and Wire Feed Speed on Weld Effects of Voltage and Wire Feed Speed on Weld Effects of Voltage and Wire Feed Speed on Weld Effects of Voltage and Wire Feed Speed on Weld Effects of Voltage and Wire Feed Speed on Weld Effects of Voltage and Wire Feed Speed on Weld Fume CharacteristicsFume Characteristics Fume CharacteristicsFume CharacteristicsFume CharacteristicsFume Characteristics Fume Characteristics Fume Characteristics Effects of Voltage and Wire Feed Speed on Weld Fume Effects of Voltage and Wire Feed Speed on Weld Fume Effects of Voltage and Wire Feed Speed on Weld Fume Effects of Voltage and Wire Feed Speed on Weld Fume Effects of Voltage and Wire Feed Speed on Weld Fume Effects of Voltage and Wire Feed Speed on Weld Fume Effects of Voltage and Wire Feed Speed on Weld Fume Effects of Voltage and Wire Feed Speed on Weld Fume Effects of Voltage and Wire Feed Speed on Weld Fume Effects of Voltage and Wire Feed Speed on Weld Fume Effects of Voltage and Wire Feed Speed on Weld Fume Effects of Voltage and Wire Feed Speed on Weld Fume Effects of Voltage and Wire Feed Speed on Weld Fume Effects of Voltage and Wire Feed Speed on Weld Fume Effects of Voltage and Wire Feed Speed on Weld Fume Effects of Voltage and Wire Feed Speed on Weld Fume Effects of Voltage and Wire Feed Speed on Weld Fume Effects of Voltage and Wire Feed Speed on Weld Fume Effects of Voltage and Wire Feed Speed on Weld Fume Effects of Voltage and Wire Feed Speed on Weld Fume Effects of Voltage and Wire Feed Speed on Weld Fume Effects of Voltage and Wire Feed Speed on Weld Fume Effects of Voltage and Wire Feed Speed on Weld Fume Effects of Voltage and Wire Feed Speed on Weld Fume Effects of Voltage and Wire Feed Speed on Weld Fume Effects of Voltage and Wire Feed Speed on Weld Fume Effects of Voltage and Wire Feed Speed on Weld Fume CharacteristicsCharacteristics Characteristics CharacteristicsCharacteristics Characteristics CharacteristicsCharacteristics", Vol.4,pp. 903-912, 2007.
Sowards J.W., Ramirez A.J., Lippold J.C.,and Dickinson D.W., “ Characterization Procedure for the Analysis of Arc Welding Fume,"Welding Journal, Vol. 87, pp. 76-83, 2008.
Sowards J. W., Jippold C. L., Dickinson D. W., and Ramirez A.J.,“Characterization of Welding Fume from SMAW Electrodes -Part I,"Welding Journal, Vol.87, pp. 106-112, 2008.
Sowards J. W., Ramirez A.J., Dickinson D.W., and Lippold J.C., “Characterization of Welding Fume from SMAW Electrodes -Part II,"Welding Journal, Vol. 89, pp. 82-90, 2010.
Zimmer A.T., and Pratim B., “Characterization of the aerosols resulting from arc welding processes,”", Vol. 32, pp.993-1008, 2002.
許憲呈、顏國翔, 、顏國翔, 、顏國翔, "電銲作業勞工金屬燻煙暴露評估 電銲作業勞工金屬燻煙暴露評估 ";長榮大學職業安全與衛生 長榮大學職業安全與衛生 研究所, 碩士論文台南(2009) (2009) 。
楊秀宜等,「焊接燻煙健康危害新視界」研究報告 ,行政院勞工委員會勞工安全衛生研究所,2011。
徐粗雄 等,“中級電焊工 ”,五南出版社 ,1991 。
中國砂輪公司網站 ,2015 。
大中興公司網站 ,2015 。
天泰銲條公司網站, 2015 。
中鋼銲材公司產品手冊, 2013 。
nehrc.nhri.org.tw/toxic/ nehrc.nhri.org.tw/toxic/ nehrc.nhri.org.tw/toxic/ nehrc.nhri.org.tw/toxic/ nehrc.nhri.org.tw/toxic/ nehrc.nhri.org.tw/toxic/ nehrc.nhri.org.tw/toxic/ nehrc.nhri.org.tw/toxic/ 國家 環境 毒物研究中心網站, 2015 。
www.kobelco www.kobelco www.kobelco www.kobelcowww.kobelco -welding.jp welding.jp welding.jp ,日本, 2015 。
www.millerwelds.com www.millerwelds.com www.millerwelds.com www.millerwelds.com www.millerwelds.com www.millerwelds.comwww.millerwelds.comwww.millerwelds.com www.millerwelds.com,美國, 2015 。
opensourceecology.org opensourceecology.org opensourceecology.org opensourceecology.org opensourceecology.orgopensourceecology.org opensourceecology.org opensourceecology.org opensourceecology.org,美國, , 美國2015 。
www2.warwick.ac.uk www2.warwick.ac.ukwww2.warwick.ac.uk www2.warwick.ac.uk www2.warwick.ac.uk www2.warwick.ac.ukwww2.warwick.ac.uk , 英國, 英國2015 。
勞委會電銲安全手冊 IOSH89 IOSH89 -T-030 ,2000 。
科安企業 網站,2015 。
中國醫藥大學網站, 2015 2015。
黃明和 ,“鋁品工廠懸浮微粒之物化特徵及汙染源解析”,中山大學環境工程研 究所, 碩士論文高雄(2004) (2004) 。
褚柏胤 ,“電銲技術士世代資料庫與資訊系統建立”中國醫藥 大學環境 醫學 研究 所, 碩士論文台南 ,(200 (200 5)。
黃靖雯, 黃靖雯, 沈安麗,張站賽 沈安麗,張站賽 沈安麗,張站賽 沈安麗,張站賽 , "電銲煙塵危害及防範控制",職業健康與安全急救 ,職業健康與安全急救 ,上海,Vol.33,pp.25-33,2015。
何嘉達,“鋼鐵工業懸浮微粒物化特性及暴露評估”,中山大學環境工程研究所, 中山大學環境工程研究所, 碩士論文, 高雄(2004) (2004) 。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.17.203.68
論文開放下載的時間是 校外不公開

Your IP address is 3.17.203.68
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code