Responsive image
博碩士論文 etd-0217111-105648 詳細資訊
Title page for etd-0217111-105648
論文名稱
Title
人工濕地改善河川水質成效評估
Evaluation of the Effectiveness of Constructed Wetland on River Quality Improvement
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
292
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-01-18
繳交日期
Date of Submission
2011-02-17
關鍵字
Keywords
底泥、多變量統計分析、大型水生植物、微生物菌相
multivariate statistical analysis, sediment, constructed wetland, macrophytes, microbial diversity
統計
Statistics
本論文已被瀏覽 5693 次,被下載 0
The thesis/dissertation has been browsed 5693 times, has been downloaded 0 times.
中文摘要
由於在農村地區公共下水道系統污水接管率較低,在台灣超過20%的主要河川受到來自生活、工業及農業等廢水輕度到重度的污染。因此,建造或改造的濕地已被作為主要淨化污染河川的方法。人工濕地也適用於當作廢水處理廠二級放流水之第三段污水處理系統,以水回收利用之標準,並達到降低營運成本的目標。本研究場址高屏溪舊鐵橋人工濕地(Kaoping River Rail Bridge Constructed Wetland)曾為臺灣最大的人工濕地。是屬於一個多功能用途的人工濕地,主要是將受污染之渠道排水及造紙廠二級放流水,處理淨化後注入高屏溪。雖然人工濕地作為廢(污)水淨化為可行的處理技術,但濕地中底泥通常是匯集許多的有機物和金屬,影響水質處理效益。本研究對人工濕地中水質、底泥和大型水生植物進行定期的採樣分析,藉以瞭解人工濕地整體環境現況,並評估人工濕地水質淨化效益。
由定期的調查監測(由2007年至2009年)結果顯示,人工濕地系統移除超過97%的總大腸菌群(total coliform groups, TC)、55%的生化需氧量(biochemical oxygen demand, BOD)、30%的營養鹽[例如,總氮(total nitrogen, TN),總磷(total phosphorus, TP)]。然而,從底泥的分析結果顯示,人工濕地底泥中含有高濃度的重金屬(如銅,鐵,鋅,鉻,錳),有機質含量[底泥需氧量(sediment oxygen demand, SOD) = 1.77.6 g O2/m2day],以及營養鹽(高達18.7 g N/kg的氮和1.22 g P/kg的磷)。因此,底泥應該定期進行挖掘,以防止污染物釋放到濕地系統和濕地造成水質惡化。在聚合酶鏈反應(polymerase chain reaction, PCR),變性梯度凝膠電泳(denaturing gradient gel electrophoresis, DGGE)和核苷酸序列分析(nucleotide sequence analysis)結果發現,在濕地系統中微生物菌相(microbial diversities)有增加的趨勢。從DGGE分析結果顯示,所有底泥樣本含有大量可能有助於去除碳與氮之微生物菌種(microbial ribospecies)。通過人工濕地的自然衰減機制,大腸桿菌順著濕地系統的流動逐漸減少。因子分析能將研究場址17項水質項目簡化為4至6個主因子,可分為氮營養鹽因子、磷營養鹽因子、優養化因子、有機物因子及環境背景因子等,由因子分析結果可看出影響濕地之主要因子為氮磷營養鹽因子及優養化因子。以集群分析發現本研究場址測站可分為2至3個集群,主要是以進出流測站分屬不同集群,此外,將各測站歷年監測數據進行分析,發現各池檢測項目之分群結果與各測站以因子分析之主因子組成成分相近。最後透過時間序列分析(ARIMA)建立濕地A、B系統出流水中指標污染物濃度趨勢模式,以B7池整體結果較佳。本研究由濕地水質處理效益目標擬定操作管理維護的模式,將定期監測結果透過多變量分析進行剖析,獲得各項水質特性、處理效率及時空變異等資訊,藉以評估人工濕地目前操作維護條件是否達成設定的水質處理目標。若無法符合預期目標,亦可藉由各項分析結果及目前操作條件,歸納推測出可能之因素或機制,並參考過去操作之經驗與相關文獻提出改善策略方案,藉由不斷修正改善策略之執行以達到水質處理目標。最後,以ARIMA模式模擬未來水質變動趨勢,作為預先管理及操作維護之參考。
由研究結果可知,濕地系統具有顯著水質改善的效益,並在注入下游水體前能有效消除社區排水系統中大部分的污染物。本研究人工濕地場址其他環境效益包括以下內容:提供更多的河畔綠化面積,為大眾提供更多的親水生態池塘與生態公園,恢復自然生態系統。高屏溪舊鐵橋人工濕地已在台灣成為一個最成功的多功\能型人工濕地。從本研究獲得的經驗將有助於類似自然河川水質改善和廢水處理的處理型濕地系統之設計。
Abstract
In Taiwan, more than 20% of the major rivers are mildly to heavily pollute by domestic, industrial, and agricultural wastewaters due to the low hook-up rate of public underground sewerage systems in rural areas. Thus, constructed or engineered wetlands have been adopted as the major alternatives to cleanup polluted rivers. Constructed wetlands are also applied as the tertiary wastewater treatment systems to polish the secondary wastewater effluents to meet water reuse standards with lower operational costs. The studied Kaoping River Rail Bridge Constructed Wetland (KRRBCW) is the largest constructed wetland in Taiwan. It is a multi-function wetland and is used for polluted creek water purification and secondary wastewater polishment before they discharge into the Kaoping River. Although constructed wetlands are feasible for contaminated water treatment, wetland sediments are usually the sinks of organics and metals. In this study, water, sediment and macrophytes samples were collected from the major wetland basins in KRRBCW.
The quarterly investigation (from 2007 to 2009) results show that more than 97% of total coliforms (TC), 55% of biochemical oxygen demand (BOD), and 30% of nutrients [e.g., total nitrogen (TN), total phosphorus (TP)] were removed via the constructed wetland system. However, results from the sediment analyses show that wetland sediments contained high concentrations of metals (e.g., Cu, Fe, Zn, Cr, and Mn), organic contents (sediment oxygen demand = 1.7 to 7.6 g O2/m2-d), and nutrients (up to 18.7 g/kg of TN and 1.22 g/kg of TP). Thus, sediments should be excavated periodically to prevent the release the pollutants into the wetland system and causing the deterioration of wetland water quality. Results of polymerase chain reaction (PCR), denaturing gradient gel electrophoresis (DGGE), and nucleotide sequence analysis reveal that an increase in microbial diversities in the wetland systems was observed. Results from the DGGE analysis indicate that all sediment samples contained significant amounts of microbial ribospecies, which might contribute to the carbon degradation and nitrogen removal. Gradually disappearing of E. coli was also observed along the flow courses through the natural attenuation mechanisms. The factor analysis of SPSS 12.0 shows that 17 water-quality items of the study site could obtain four to six principal components, including nitrate factor, phosphorus factor, eutrophication factor, organic factor, and environmental background factor, the major influencing components are nutrition factor and eutrophication factor. The ponds of the study site were classified into two or three clusters depend on in-and-out flow location. This study attempted to establish a forecasting model of wetland pollutants concentration through the time series (ARIMA), results show that the outcome of the B7 pond was better than others. Results indicate that the ARIMA model can be used to simulate the trend of treatment efficiency using the wetland system. Experience and results obtained from this study would provide solutions for water quality control.
Thus, the wetland system has a significant effect on water quality improvement and is capable of removing most of the pollutants from the local drainage system before they are discharged into the downgradient water body. Other accomplishments of this constructed wetland system include the following: providing more green areas along the riversides, offering more water assessable eco-ponds and eco-gardens for public, and rORPabilitating the natural ecosystem. The Kaoping River Rail Bridge Constructed Wetland has become one of the most successful multi-function constructed wetlands in Taiwan. The experience obtained from this study will be helpful in designing similar natural treatment systems for river water quality improvement and wastewater treatment.
目次 Table of Contents
誌謝 i
摘要 iii
Abstract v
目錄 vii
表目錄 x
圖目錄 xii
符(代)號說明 xv
第一章、前言 1
1.1 研究緣起 1
1.2 研究場址地點 2
1.3 研究目的 3
第二章、文獻回顧 5
2.1 人工濕地簡介 5
2.1.1 濕地概論 5
2.1.2 人工濕地背景 10
2.1.3 人工濕地的類型 11
2.1.4 人工濕地系統介紹 13
2.1.5 水質淨化機制 18
2.1.6 人工濕地應用 23
2.2 人工濕地之底泥 26
2.2.1 底泥定義 26
2.2.2 底泥污染的意義 27
2.3 人工濕地之微生物 29
2.3.1 人工濕地中微生物扮演角色 29
2.3.2 運用生物化學及分子生物技術監測環境微生物 32
2.4 人工濕地之水生植物 36
2.4.1 濕地植物扮演的角色 36
2.4.2 水生植物的去除機制 37
2.4.3 濕地植物對氮、磷去除的影響 38
2.5 人工濕地之操作管理維護 40
2.5.1 操作管理原則 40
2.5.2 綠色永續經營改念 42
2.6 運用統計分析評估濕地水質現況 43
2.6.1 多變量統計分析應用於環境科學領域之研究 44
2.6.2 多變量統計分析應用於濕地之研究 47
2.6.3 時間序列方法 49
第三章、工作內容與方法 51
3.1 研究場址簡介 52
3.1.1 人工濕地背景 52
3.1.2 場址水文 52
3.1.3 場址植物 55
3.2 現場環境調查與監測 56
3.2.1 水文量測及水質監測 56
3.2.2 底泥採樣分析 58
3.2.3 底泥菌相採樣鑑定 61
3.2.4 水生植物調查與採樣分析 65
3.3 八八風災後場址變遷環境調查 67
3.3.1 環境景觀變遷 67
3.3.2 生態棲地調查 68
3.4 多變量統計分析方法 70
3.4.1 因子分析法 70
3.4.2 集群分析及判別分析法 73
3.4.3 時間序列分析方法 76
第四章、結果與討論 81
4.1 水文與水質分析及水質淨化效益評估 81
4.1.1 水文量測結果 81
4.1.2 水質監測結果 85
4.1.3 水質淨化效益探討 103
4.1.4 人工濕地優養化程度評估 113
4.2 底泥物化特性分析及探討 121
4.2.1 底泥特性分析結果 121
4.2.2 底泥中重金屬 127
4.3 底泥微生物菌相分析與鑑 131
4.3.1 底泥中菌相差異分析 131
4.3.2 底泥菌種定序 138
4.3.3濕地水質與底泥菌相之探討 141
4.4 水生植物調查分析及探討 145
4.4.1 水生植物調查結果 145
4.3.2 水生植物含量分析結果 150
4.4.3 藻類調查分析 156
4. 5 運用統計分析方法評估人工濕地水質 158
4.5.1 因子分析 158
4.5.2 集群及判別分析 168
4.5.3 時間序列 176
4.5.4應用統計分析於濕地管理模式 183
4.6 人工濕地消失後對生態環境之影響 185
4.6.1 濕地場址歷年環境變遷情形 185
4.6.2 濕地消失後對生態之影響 196
4.6.3 人工濕地的建置對當地之其他影響 204
第五章、結論與建議 205
5.1 結論 205
5.2 建議 210
參考文獻 212
附錄一、原始數據
附錄二、多變量統計分析操作設定
個人簡歷
參考文獻 References
American Public Health Association, American Water Works Association & Water Pollution Control Federation, Standard Methods for the Examination of Water and Wastewater, 1998, 20th ed., Method 3125B, APHA, Washington, D.C., USA.
APHA (American Public Health Association) (2001). Standard Methods for the Examination of Water and Wastewater. 21th Ed, APHA-AWWA-WEF, Washington, DC.
Babatunde A.O., Zhao Y.Q., O'Neill M., and O'Sullivan B. (2008). Constructed wetlands for environmental pollution control: A review of developments, research and practice in Ireland. Environ. International, 34(1),116-126.
Bachand, P.A.M. and Horne, A.J., (2000). Denitrification in constructed free-water surface wetlands: II. Effects of vegetation and temperature. Ecological Engineering, 14(1-2), 17-32.
Borg, H., Andersson, P., Nyberg, P., and Olofsson, E. (1995). Influence of wetland liming on water chemistry of acidified mountain streams in Lofsdalen, Central Sweden. Water Air Soil Pollut., 85(2), 907-912.
Braskerud, B.C., (2001). The influence of vegetation on sedimentation and resuspension of soil particles in small constructed wetlands. J. Environ. Qual., 30(4), 1447-1457.
Brix, H. (1997). Do macrophytes play a role in constructed treatment wetland?. Water Science and Technology. 35(5), 11-17.
Browning, C., (2003). Nutrient Removal and Plant Growth in a Subsurface Flow Constructed Wetland in Brisbane. School of Environmental Engineering Faculty of Environmental Sciences Griffith University, Nathan, Australia.
Burke, D.G., Meyers, E.J., Tiner Jr, R.W. and Groman, H. (1988). Protect nontidal wetlands. American Planning Association.
Capar, S.G. and Yess, N.J., (1996). US food and drug administration survey of cadium, lead and other elements in clams and oysters. Food Additives and Contaminants, 13(5), 553-560。
Carbonell, A.A., Aarabi, M.A., de Laune, R.D., Gambrell, R.P. and Patrick Jr., W.H., (1998). Bioavailability and uptake of arsenic by wetland vegetation: Effects on plant growth and nutrition. J. Environ. Sci. Health, Part A, Environ. Sci. Eng., 33(1), 45-66.
Catharine, B.Sc. (2003). Nutrient removal and plant growth in a subsurface flow constructed wetland in Brisbane, Australia. School of Environmental Engineering Faculty of Environmental Sciences Griffith University.
Chang, W.L. and Tang, J.L., (1996). Application of multivariate statistical method to analyze irrigation water pollution in Taipei suburb. Journal of Taiwan Water Conservancy, 44(3), 54-66.
Chen C.S. (2008). Application of Constructed Wetland for Water Quality Improvement. Master thesis, Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan.
Chen T.Y., Kao C.M., Yeh T.Y., Chien H.Y., and Chao A.C. (2006). Application of a constructed wetland for industrial wastewater treatment: A pilot-scale study. Chemosphere, 64(3), 497-502.
Cheng S.H. (2008). The bacterial diversity in a Kaoping River constructed wetland for wastewater treatment. Master thesis, Department of Biological Science, National Sun Yat-Sen University, Kaohsiung, Taiwan.
Chimney, M.J. and Pietro, K.C. (2006). Decomposition of macrophyte litter in a subtropical constructed wetland in south Florida (USA). Ecol. Eng., 27(4), 301-321.
Ciria, M.P., Solano, M.L.,and Soriano, P., (2005). Role of macrophyte Typha latifolia in a constructed wetland for wastewater treatment and assessment of its potential as a biomass fuel. Biosyst. Eng., 92(4), 1537-5110.
de Mars, H., (1997). Interrelationship between water quality and groundwater flow dynamics in a small wetland system along a sandy hill ridge. Hydrol. Process., 11(4), 335-351.
Diaz O.A., Daroub S.H., Stuck J.D., Clark M.W., Lang T.A. and Reddy K.R. (2006). Sediment inventory and phosphorus fractions for water conservation area canals in the Everglades. Soil Sci. Soc. Am. J., 70(3), 863-871.
Duineveld B.M., Kowalchuk G.A., Keijzer A., van Elsas J.D. and van Veen J.A. (2001). Analysis of bacterial communities in the rhizosphere of Chrysanthemum via denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA as well as DNA fragments coding for 16S rRNA. Appl. Environ. Microbiol., 67(1), 172-178.
El-Din A.G. and Smith, D.W., (2002). A combined transfer-function noise model to predict the dynamic behavior of a full-scale primary sedimentation tank. Water Res., 36(15), 3747-3764.
El-Khateeb M.A., Al-Herrawy A.Z., Kamel M.M. and El-Gohary F.A. (2009). Use of wetlands as post-treatment of anaerobically treated effluent. Desalination, 245(1-3), 50-59.
Fagervold S.K., Watts J.E.M., May H.D. and Sowers K.R. (2005). Sequential reductive dechlorination of meta-chlorinated polychlorinated biphenyl congeners in sediment microcosms by two different Chloroflexi phylotypes. Appl. Environ. Microbiol., 71(12), 8085-8090.
Fahrbach M. (2006). Anaerobic degradation of steroid hormones by novel denitrifying bacteria. Ph.D. thesis, RWTH Aachen University, Germany.
Faulwetter J.L., Gagnon V., Sundberg C., Chazarenc F., Burr M.D., Brisson J., Camper A.K. and Stein O.R. (2009). Microbial processes influencing performance of treatment wetlands: A review. Ecological Engineering, 35(6), 987-1004.
Fountoulakis M.S., Terzakis S., Chatzinotas A., Brix H., Kalogerakis N., and Manios T. (2009). Pilot-scale comparison of constructed wetlands operated under high hydraulic loading rates and attached biofilm reactors for domestic wastewater treatment. Sci. Total Environ., 407, 2996-3003.
Garcia, M., Soto, F., Gonzalez, J.M. and Becares, E., (2008). A comparison of bacterial removal efficiencies in constructed wetlands and algae-based systems. Ecological Engineering, 32(3), 238-243.
Garcia, M., Sotob, F., Gonzalezb, J.M. and Becaresc, E. (2008). A comparison of bacterial removal efficiencies in constructed wetlands and Algae-ased systems. Ecol. Eng., 32, 238-243.
Gau, H.S., Chen, T.C., Chen, J.S. and Liu, C.W., (2007). Time series decomposition of groundwater level changes in wells due to the Chi-Chi earthquake in Taiwan: a possible hydrological precursor to earthquakes. Hydrol. Process., 21(4), 510-524.
Greenway, M. and Woolley, A. (1999). Constructed wetlands in Queensland: Performance efficiency and nutrient bioaccumulation. Ecol. Eng., 12(1-2), 39-55.
Gregory, Christopher T. (2010). Temperature and infiltration characterization of a constructed wetland for wastewater treatment. Oregon State University, USA.
Gu, B., Chimney M.J., Newman J., Nungesser M.K., (2006). Limnological characteristics of a subtropical constructed wetland in south Florida (USA). Ecological Engineering, 27(4), 268-278.
Hammer, D. A., (1996). Creating freshwater wetlands. 2nded, Lewis.
Han, B.C., Jeng, W.L., Chen, R.Y., Fang, G.T., Hung, T.C. and Tseng R.J.. (1998). Estimation of target harzard quotients and potential health risks for metals by consumption of seafood in Taiwan. Arch. Environ. Contam. Toxicol. 35(4), 711-720.
Harrington R. and McInnes R. (2009). Integrated Constructed Wetlands (ICW) for livestock wastewater management. Bioresource Technology, 100(22), 5498-5505.
Hensel, B.R. and Miller, M.V., (1991). Effects of wetlands creation on groundwater flow. J. Hydrol., 126(3-4), 293-314.
Hernandez-Romero, A.H., Tovilla- -Hernandez, C., Malo, E.A. and Bello-Mendoza, R., (2007). Water quality and presence of pesticides in a tropical coastal wetland in southern Mexico. Marine Pollution Bulletin, 48(11-12), 1130-1141.
Hu, M.H., Ao, Y.S., Yang, X.E. and Li, T.Q., (2008). Treating eutrophic water for nutrient reduction using an aquatic macrophyte (Ipomoea aquatica Forsskal) in a deep flow technique system. Agric. Water Manage., 95(5), 607-615.
Hu, W.F., Lo, W., Chua, H., Sin, S.N. and Yu, P.H.F. (2001). Nutrient release and sediment oxygen demand in an eutrophic land-locked embayment in Hong Kong. Environ. int., 26(5-6), 369-375.
Hunt , P.G., Matheny, T.A. and Szogi, A.A. (2003). Denitrification in constructed wetlands used for treatment of swine wastewater. Journal of environmental quality, 32(2), 727-735.
Imfeld, G., Braeckevelt, M., Kuschk, P. and Richnow, H.H., (2009). Monitoring and assessing processes of organic chemicals removal in constructed wetlands. Chemosphere, 74(3), 349-362.
International Water Association (IWA). (2000). Constructed wetlands for pollution control, processes, performance, design and operation, IWA Publishing, London.
International Water Association (IWA). (2000). Special Group on Use of Macrophytes in Water Pollution Control, Constructed Wetlands for Pollutant Control. Scientific and Technology Report No. 8. IWA Publishing, London, England.
Ji, G.D., Sun, T.H. and Ni, J.R. (2007). Surface flow constructed wetland for heavy oil-produced water treatment. Bioresource Technology, 98(2), 436-441.
Jing, S.R. and Lin, Y.F., (2004). Seasonal effect on ammonia nitrogen removal by constructed wetlands treating polluted river water in southern Taiwan. Environ. Pollut., 127(2), 291-301.
Jing, S.R., Lin, Y.F., Shih, K.C. and Lu, H.W. (2008). Applications of constructed wetland for water pollution control in Taiwan: Review. Pract. Period. Hazard., Toxic, Radioact. Waste Manag. 12(4), 249-259.
Juhasz A.L., Stanley G.A. and Britz M.L. (2000). Microbial degradation and detoxification of high molecular weight polycyclic aromatic hydrocarbons by Stenotrophomonas maltophilia strain VUN 10003. Lett Appl Microbiol., 30(5), 396-401.
Kadlec, R.H. (2003). Pond and wetland treatment. Water Sci. Tech., 48(5), 1-8.
Kadlec, R.H. (2005). Phosphorus removal in emergent free surface wetlands. Environ. Sci. Health A Toxic/Hazard. Substances Environ. Eng., 40(6-7), 1293-1306.
Kadlec, R.H. (2006). Free surface setlands for phosphorus removal: The position of the everglades nutrient removal project. Ecol. Eng., 27(4), 361-379.
Kadlec, R.H. (2008). The effects of wetland vegetation and morphology on nitrogen processing. Ecol. Eng., 33(2), 126-141.
Kadlec, R.H. and Bevis, F.B., (2009). Wastewater treatment at the Houghton Lake wetland: Vegetation response. Ecological Engineering, 35(9), 1312-1332.
Kadlec, R.H. and Reddy, K.R., (2001). Temperature effects in treatment wetlands. Water Environ. Res., 73(5), 543-557.
Kadlec, R.H. and Wallace, S.D., (2009). Treatment Wetlands. 2nd, Taylor & Francis Group, LLC, NW, U.S.A.
Kadlec, R.H., (2005). Phosphorus removal in emergent free surface wetlands. J. Environ. Sci. Health, Part A, Environ. Sci. Eng., 40(6), 1293-1306.
Kadlec, R.H., (2006). Free surface wetlands for phosphorus removal: The position of the Everglades Nutrient Removal Project. Ecological Engineering, 27(4), 361-379.
Kadlec, R.H., (2008). The effects of wetland vegetation and morphology on nitrogen processing. Ecological Engineering, 33(2), 126-141.
Kadlec, R.H., (2009a). Comparison of free water and horizontal subsurface treatment wetlands. Ecological Engineering, 35(2), 2009, 159-174.
Kadlec, R.H., (2009b). Wastewater treatment at the Houghton Lake wetland: Hydrology and water quality. Ecological Engineering, 35(9), 1287-1311.
Kadlec, R.H., (2009c). Wastewater treatment at the Houghton lake wetland: Soils and sediments. Ecological Engineering, 35(9), 1333-1348.
Kadlec, R.H., (2009d). Wastewater treatment at the Houghton Lake wetland: Temperatures and the energy balance. Ecological Engineering, 35(9), 1349-1356.
Kadlec, R.H., and Knight, R.L. (1996). Treatment wetlands. Lewis Publishers, Boca Raton, FL.
Kao, C.M., Wang, J.Y., Lee, H.Y. and Wen, C.K. (2001). Application of a constructed wetland for non-point source pollution control. Wat. Sci. Tech., 44(11), 585-590.
Karathanasis, A., Potter, C. and Coyne, M. (2004). Vegetation effects on fecal bacteria, BOD, and suspended solid removal in constructed wetlands treating domestic wastewater. Ecol. Eng. 20(2), 157–169.
Kimberly, A.H. (2006). Evaluation of the nutrient removal efficiency of a constructed wetland system. Texas A&M University.
Kivaisi, A.K., (2001). The potential for constructed wetlands for wastewater treatment and reuse in developing countries: A review. Ecological Engineering, 16(4), 545-560.
Kjellin, J., Worman, A., Johansson, H. and Lindahl, A., (2007). Controlling factors for water residence time and flow patterns in Ekeby treatment wetland, Sweden. Advances in Water Resources, 30(4), 838-850.
Klomjek, P. and Nitisoravut, S., (2005). Constructed treatment wetland: a study of eight plant species under saline conditions. Chemosphere, 58(5), 585-593.
Knight, R.L., (1997). Wildlife habitat and public use benefits of treatment wetlands. Water Sci. Technol., 35(5), 35-43.
Ko, J.Y., Day, J.W., Lane, R.R. and Day, J.N. (2004). A comparative evaluation of money-based and energy-based cost-benefit analyses of tertiary municipal wastewater treatment using forested wetlands vs. sand filtration in Louisiana. Ecol. Econ. 49(3), 331-347.
Landin, M.C., Dardeau Jr., E.A., and Miller, J.L., (1992). Wetland restoration and creation guidelines for mitigation, Water resources planning and management: Saving a threatened resource- In search of solutions. Proceedings of the Water Resources Sessions at Water Forum. 439-444.
Lee, M.S., Kao, C.M., Yeh, T.Y., Wu, T.N. and Hong, J.L., (2004). Application of a constructed wetland for industrial wastewater treatment. UNEP 2nd International Conference on Environmental Concerns: Innovative Technologies and Management Options, Xiamen, China, 1412-1417.
Li , X. and Jiang , C. (1995). Constructed wetland systems for water pollution control in North China. Wat. Sci. Tech., 32(3), 349-356.
Li, E.H., Li, W., Liu, G.H. and Yuan, L.Y., (2008). The effect of different submerged macrophyte species and biomass on sediment resuspension in a shallow freshwater lake. Aquat. Bot., 88(2), 121-126.
Liao S.W. and Chang W.L., (2004). Interpretation of soil properties in Kuan-Tu wetlands, Taiwan. Pract. Period. Hazard., Toxic, Radioact. Waste Manag., 8(3), 199-207.
Lim, P.E., Wong, T.F. and Lim, D.V., (2001). Oxygen demand, nitrogen and copper removal by free-water-surface and subsurface-flow constructed wetlands under tropical conditions. Environ. Int., 26(5-6), 425-431.
Lin Y.F., Jing S.R., Lee D.Y., Chang Y.F., Chen Y.M., and Shih K.C. (2005). Performance of a constructed wetland treating intensive shrimp aquaculture wastewater under high hydraulic loading rate. Environ. Pollut., 134(3), 411-421.
Lin, Y.F., Jing, S.R., Lee, D.Y. and Wang, T.W., (2002). Nutrient removal from aquaculture wastewater using a constructed wetlands system. Aquaculture, 209(1-4), 169-184.
Lin, Y.F., Jing, S.R., Wang, T.W., and Lee, D.Y. (2002). Effects of macrophytes and external carbon sources on nitrate removal from groundwater in constructed wetlands. Environ. Pollut., 119, 413-420.
Maine, M.A., Sune, N., Hadad, H., Sanchez G. and Bonetto C., (2006). Nutrient and metal removal in a constructed wetland for wastewater treatment from a metallurgic industry. Ecological engineering, 26(4), 341-347.
Maine, M.A., Sune, N., Hadad, H., Sanchez, G. and Bonetto, C., (2007). Removal efficiency of a constructed wetland for wastewater treatment according to vegetation dominance. Chemosphere, 68(6), 1105-1113.
Matthies C., Evers S., Ludwig W. and Schink B. (2000). Anaerovorax odorimutans gen. nov., sp. Nov., a putrescine-fermenting strictly anaerobic bacterium. Int. J. Syst. Evol. Microbiol. 50(4), 1591-1594.
Meincke M., Krieg E. and Bock E. (1989). Nitrosovibrio spp., the dominant ammonia-oxidizing bacteria in building sandstone. Appl. Environ. Microbiol., 55(8), 2108-2110.
Merz, S.K. (2000). Guidelines for Using Free Water Surface Constructed Wetlands to Treat Municipal Sewage. Queensland Department of Natural Resources.
Mitsch, W.J. and Gosselink, J.G., (2000). The value of wetlands: importance of scale and landscape setting. Ecological Economics, 35(1), 25-33.
Mitsch, W.J. and Gosselink, J.G., (2000). Wetlands. 3rd ed. John Wiley, New York.
Mitsch, W.J., Day, J.W., Zhang, L. and Lane, R.R., (2005). Nitrate-nitrogen retention in wetlands in the Mississippi River Basin. Ecological Engineering, 24(4), 267-278.
Mitsh , W.J. and Gosselink J.G. (1993). Wetlands. 113-119, 443-460. Van Nostrand Reinhold, New York.
Mungur, A.S., Shutes, R.B.E., Revitt, D.M. and House, M.A., (1997). An assessment of metal removal by a laboratory scale wetland. Water Sci. Technol., 35(5), 125-133.
Nahlik, A.M. and Mitsch, W.J., (2006). Tropical treatment wetlands dominated by free-floating macrophytes for water quality improvement in Costa Rica. Ecological Engineering, 28(3), 246-257.
Neff, J.M. (1997). Ecotoxicology of arsenic in the marine environment. Environ. Toxicol Chem., 16, 917- 927。
Nelson, M., Odum, H.T., Brown, M.T. and Alling, A. (2001). Living off the land:Resource efficiency of wetland wastewater treatment. Elsevier Science, 27(9), 1547-1556
NIEA (National Institute of Environmental Analysis, Taiwan EPA) (2004). Method of River Flow Rate Analysis, NIEA W022.51C.
Palleroni N.J., Port A.M., Chang H.K. and Zylstra G.J. (2004). Hydrocarboniphaga effuse gen. nov., sp. Nov., a novel member of the γ-Proteobacteria active in alkane and aromatic hydrocarbon degradation. Int. J. Syst. Microbiol., 54(4), 1203-1207.
Pekarova, P., Onderka, M., Pekar, J., Rončak, P. and Miklanek, P., (2009). Prediction of water quality in the Danube River under extreme hydrological and temperature conditions. Journal of Hydrology and Hydromechanics, 57(1), 3-15.
Peng, L.Y., Dong, B., Wahl, M., Sun, N.N., Brown, L., Zheng, C.J., Wang, J.Z. (2009). Study on Hydraulic Residence Time through Tracer Experiment in the Pond Wetland. Journal of Irrigation and Drainage, 28(6), 30-34.
Perlack, R.D., Wright, L.L., Turhollow, A.F., Graham, R.L., Stokes, B.J. and Erbach, D.C. (2005). Biomass as feedstock for a bioenergy and bioproducts industry: the Technical Feasibility of a Billion-ton Annual Supply. A joint study sponsored by US DOE and USDA. Oak Ridge, TN: Oak Ridge National Laboratory.
Ping, Z. and Shu, W.W. (2004). A comparison of the sustainability of original and constructed wetlands in Yancheng Biosphere Reserve,China:implications from emergy evaluation. Environ Sci. Policy, 7(4), 329-343.
Prasad, M.N.V. (2005). Emerging phytotechnologies for remediation of heavy meal contaminated/ polluted soil and water. Lake EcoSystems, Issue25, Newsletter, Western Ghats Biodiversity Information System, India.
Reddy, K.R., Kadlec, R.H., Flaig, E. and Gale, P.M., (1999). Phosphorus retention in streams and wetlands: A review. Critical Reviews in Environmental Science and Technology, 29(1), 83-146.
Reinoso, R., Torresa, L.A. and Becaresb, E., (2008). Efficiency of natural systems for removal of bacteria and pathogenic parasites from wastewater. Sci. Total Environ., 395(2-3), 80-86.
Resnick S.M. and Gibson D.T. (1996). Regio-and stereospecific oxidation of fluorine, dibenzofuran, and dibenzothiophene by naphthalene dioxygenase from Pseudomonas sp. Strain NCIB 9816-4. Appl. Environ. Microbiol., 62(11), 4073-4080.
Rogge, W.F., Medeiros, P.M. and Simoneit, B.R.T. (2007). Organic marker compounds in surface soils of crop fields from the San Joaquin Valley fugitive dust characterization study. Atmos. Environ., 41(37), 8183–8204.
Samanta S.K., Bhushan B. and Jain R.K. (2001). Efficiency of naphthalene and salicylate degradation by a recombinant Pseudomonas putida mutant strain defective in glucose metabolism. Appl. Environ. Microbiol., 55(5), 627-631.
Sami Muhammad, Waseem Amir, Akbar Sher, (2006). Quantitative estimation of dust fall and smoke particles in Quetta Valley. Journal of Zhejiang University SCIENCE B, Vol. 7(7), 542-547.
Saunders, D.L. and Kalff, J., (2001). Nitrogen retention in wetlands, lakes and rivers. Hydrobiologia, 443(1-3), 205-212.
Scholz, M., Xu, J., Dodson, H.I., (2001). Comparison of filter media , plant communities and microbiology within constructed wetlands treating wastewater containing heavy metals. J Chem.
SFWMD. (2008). The Ripple Effect. Report of The South Florida Water Management District, Florida, USA.
Shanshin, T, Odum, H.T., Delfino, J.J. (1998). Ecological-economic evaluation of wetland managrment alternatives. Eco. Eng., 11(1-4), 291-302
Siracusa, G. and La Rosa, A.D., (2006). Design of a constructed wetland for wastewater treatment in a Sicilian town and environmental evaluation using the energy analysis. Ecol. Modell., 197(3-4), 490-497.
Sohsalam, P. and Sirianuntapiboon, S. (2008). Feasibility of using constructed wetland treatment for molasses wastewater treatment. Bioresource Technol., 99(13), 5610-5616.
Spieles, D.J. and Mitsch, W.J., (2000). The effects of season and hydrologic and chemical loading on nitrate retention in constructed wetlands: a comparison of low-and high-nutrient riverine systems. Ecological Engineering, 14(1-2), 77-91.
Steeby J.A., Hargreaves J.A. and Tucker C.S. (2004). Factors affecting sediment oxygen demand in commercial channel catfish ponds. J. World Aquac. Soc., 35(3), 322-334.
Suda, K., Shahbazi, A. and Li, Y. (2009). The feasibility of using Cattails from constructed wetlands to produce bioethanol. Proceedings of the 2007 National Conference on Environmental Science and Technology, Springer New York, 9-15.
Svetlikova, D., Kohnova, S., Szolgay, J., Komornikova, M. and Hlavčova, K., (2009). Analysis of monthly discharge and precipitation time series for selected wetlands in Slovakia. International Symposium on Water Management and Hydraulic Engineering, Ohrid, Macedonia, 827-840.
Svetlikova, D., Komornikova, M., Kohnova, S., Szolgay, J. and Hlavčova, K., (2008). Analysis of discharge and rainfall time series in the region of the Kaštorske luky wetland in Slovakia. International Symposium on Water Management and Hydraulic Engineering, Ohrid, Macedonia.
Tanaka, N., Jinadasa, K.B.S.N., Werellagama, D.R.I.B., Mowjood, M.I.M. and Ng, W.J., (2006). Constructed tropical wetlands with integrated submergent-emergent plants for sustainable water quality management. J. Environ. Sci. Health, Part A, Environ. Sci. Eng., 41(1-2), 2221-2236.
TEPA (2004). Water Pollution Control Act. Taipei, Environmental Protection Administration, Taiwan.
TEPA (2004). Water Pollution Control Act. Taipei, Environmental Protection Administration, Taiwan.
TEPA (Taiwan Environmental Protection Administration) (2009). Annual Report for Water Pollution Control. Environmental Protection Administration, Taipei, Taiwan.
Thullen, J.S., Sartoris, J.J. and Nelson, S.M., (2005). Managing vegetation in surface-flow wastewater-treatment wetlands for optimal treatment performance. Ecol. Eng., 25(5), 583-593.
Thullen, J.S., Sartoris, J.J. and Walton, W.E., (2002). Effects of vegetation management in constructed wetland treatment cells on water quality and mosquito production. Ecological Engineering, 18(4), 441-457.
Truu M., Truu J. and Ivask M. (2008). Soil microbiological and biochemical properties for assessing the effect of agricultural management practices in Estoniancultivated soils. Eur J Soil Biol., 44(2), 231-237.
Tsai Y. I. (2005). Atmospheric visibility trends in an urban area in Taiwan 1961–2003. Atmospheric Environment, 39(30), 5555-5567.
U.S. EPA, (2002). Vegetated submerged beds and other high-specific-surface anaerobic reactors, Technology Fact Sheet 5. Onsite Wastewater Treatment Systems Manual, TFS23-30.
U.S. EPA, Vegetated Submerged Beds and Other High-Specific-Surface Anaerobic Reactors, Technology Fact Sheet 5. Onsite Wastewater Treatment Systems Manual, TFS23-30, 2002.
U.S. EPA. (2000b). Manual for constructed wetlands treatment of municipal wastewaters, Untied Stated Environmental Protect Agency, EPA/625/R-99/010, Cincinnati.
U.S. EPA. (2000c). Onsite wastewater treatment systems technology fact sheet 7, Stabilization ponds, FWS constructed wetlands, and other aquatic systems. Untied Stated Environmental Protect Agency, EPA/625/R-00/008, Cincinnati.
U.S. EPA. (2003). Vegetated submerged beds and other high-specific-surface anaerobic reactors. Office of Solid Waste and Emergency Response, U.S. EPA.
U.S. EPA. (2005). Constructed Wetlands Handbooks.
U.S. EPA. (2007). Green Remediation and the Use of Renewable Energy for Remediation Projects, Office of Solid Waste and Emergency Response, U.S. EPA.
U.S. EPA. and ASCE. (2001). Urban Stormwater BMP Performance Monitoring-A Guidance Manual for Meeting the National Stormwater BMP Database Requirements”, EPA-821-B-02 -001.
U.S. EPA., (1993). Constructed Wetlands Treatment of Municipal Wastewaters.
U.S. EPA., (2000a). Constructed Wetlands Treatment of Municipal Wastewater. Manual, 128-140.
U.S. NOAA. (1999). Sediment Quality Guidelines developed the National Status and Trends Program. http://reaponse.restoration.noaa.gov/cpr/sediment/SQGs.htm
Ulo M. and Mitsch, W.J. (2009). Pollution control by wetlands. Ecol. Eng., 35(2), 153-158.
United States Environmental Protection Agency(USEPA)(1993). Constructed Wetland for Wastewater Treatment and Wildlife Habitat:17 Case Studies. U.S.A.
US EPA (US Environmental Protection Agency) (2000). Constructed Wetlands Treatment of Municipal Wastewaters, Office of Research and Development, US Environmental Protection Agency, Cincinnati, Ohio, EPA/625/R-99/010.
US EPA (US Environmental Protection Agency) (2000d). Test Methods for Evaluating Solid Waste Physical/Chemical Methods. SW-846. US EPA.
V. Sai Bhaskar and Mukesh Sharma (2008). Assessment of fugitive road dust emissions in Kanpur, India: A note. Transportation research Part D, 13(6), 400-403.
Verhoeven, J.T.A. and Meuleman, A.F.M., (1999). Wetlands for wastewater treatment: Opportunities and limitations. Ecological Engineering, 12(1-2), 5-12.
Vymazal, J., (2005). Removal of enteric bacteria in constructed treatment wetlands with emergent macrophytes: A review. J. Environ. Sci. Health, Part A, Environ. Sci. Eng., 40(6), 1355-1367.
Vymazal, J., (2007). Removal of nutrients in various types of constructed wetlands. Sci. Total Environ., 380(1-3), 48-65.
Vymazal, J., (2007). Removal of nutrients in various types of constructed wetlands. Science of The Total Environment, 380(1-3), Pages 48-65
Watanabe K. (2001). Microorganisms relevant to bioremediation. Current Opinion in Biotechnology, 12(3), 237-241.
Werker, A.G., Dougherty, J.M., McHenry, J.L. and Van Loon, W.A., (2001). Treatment variability for wetland wastewater treatment design in cold climates. Ecological Engineering, 19(1), 1-11.
Whitney, D., Rossman, A., and Hayden, N. (2003). Evaluating an existing subsurface flow constructed wetland in Akumal, Mexico. Ecol. Eng., 20(1), 105–111.
Wu, C.Y., Kao, C.M., Lin, C.E., Chen, C.W. and Lai, Y.C. (2010). Using a constructed wetland for non-point source pollution control and river water quality purification: A case study in Taiwan. Water Sci. Technol., 61(10), 2549-2555.
Wu, C.Y., Kao, C.M., Lin, C.E., Lai, Y.C., Liang, S.H., (2009). Application of constructed wetland for river water quality improvement. The 3rd IWA-ASPIRE Conference and Exhibition, Taipei, Taiwan, 135.
Wu, H.L. and Feng, Z.Y. (2006). Ecological engineering methods for soil and water conservation in Taiwan. Ecological Eng., 28(3), 333-344.
Wu, T.N., Huang, Y.C., Lee, M.S. and Kao, C.M., (2005). Source identification of groundwater pollution with the aid of multivariate statistical analysis. IWA Specialist Group Conference on Water Economics, Statistics, and Finance, Rethymno, Greece, 353-359.
Yang, L., Chang, H.T. and Huang, M.L., (2001). Nutrient removal in gravel- and soil-based wetland microcosms with and without vegetation. Ecological Engineering, 18(1), 91-105.
Yang, T.C., Kao, C.M., YEh, T.Y., Lin, C.E. and Lai, Y.C. (2006). Application of multimedia model for the development of watershed management strategies: A case study. WSEAS Transactions on Mathematics, 5(4), 409-415.
Yeh T.Y. and Kao C.M. (2006) Nitrogen removal within hybrid constructed wetlands for sewage purification. WSEAS Transactions on Mathematics, 5(4), 423-428.
Yeh, T.Y., (2008). Removal of metals in constructed wetlands: Review. American Society of Civil Engineers, Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 12(2), 96-101.
Yeh, T.Y., Chou, C.C. and Pan, C.T., (2009). Heavy metal removal within pilot-scale constructed wetlands receiving river water contaminated by confined swine operations. Desalination, 249, 368-373.
Yeh, T.Y., Pan, C.T., Ke, T.Y. and Kuo, T.W., (2010). Organic matter and nitrogen removal within field-scale constructed wetlands: Reduction performance and microbial identification studies. Water Environment Research, 82, 27-33.
Yurekli, K. and Kurunc, A., (2006). Simulating agricultural drought periods based on daily rainfall and crop water consumption. Journal of Arid Environments, 67(4), 629-640.
Zipper, C. and Reneau Jr, R.B. (2009). On-site sewage treatment alternatives. Communications and Marketing, College of Agriculture and Life Sciences, Virginia Polytechnic Institute and State University, USA.

王瑞君,1998,以多變量統計方法區分屏東平原地下水含水層水質特性與評估井體之維護探討,國立台灣大學農業工程研究所碩士論文,台北市。
古靜洋,2005,高屏溪右岸舊鐵橋人工濕地的規劃與設計,台灣濕地雜誌6 月號第57 期,22-35。
左惠文,2002,以人工濕地處理校園污水之功能性探討,嘉南藥理科技大學環境工程與科學系碩士論文,台南縣。
交通部高雄港務局,2008,九十七年度港區淤泥、生態及水質委託監測工作期末報告。
行政院公共工程委員會,2004,建立人工溼地設置與操作作業程序及技術之研究,研究報告-0940245。
行政院公共工程委員會,2005,建立人工濕地設置與操作作業程序及技術手冊。
行政院環保署,2001,90年鹽水溪環境水體整體調查監測計畫。
行政院環保署,2001,河川流域經營管理與成效評估計畫,EPA-90-G103-02-203。
行政院環保署,2002,九十一年河川環境水體整體調查監測計畫,EPA-91-L102-02-220。
行政院環保署,2006,水質自然淨化工法操作維護彙編。
行政院環保署,2006,水質評估指標。
行政院環保署,2007,水質自然淨化-人工濕地規劃設計操作管理參考手冊。
行政院環保署,2008,人工溼地工程手冊。
行政院環境保護署,2002,九十一年河川環境水體整體調查監測計畫,期末報告。
行政院環境保護署,2005,河川水質淨化工法設計研究計畫,期末報告。
行政院環境保護署,2006,水質淨化設施操作維護手冊。
行政院環境保護署,2007,建立河川水質淨化工法指導原則暨評鑑計畫,期末報告,EPA-96-U1G1-02-101。
行政院環境保護署,2007,毒性化學物質環境流布背景調查計畫,EPA-96-J104-02-207。
行政院環境保護署環境檢驗所,2004,台灣地區七條河川水體、底泥污染物及生物相調查分析,期末報告。
何奇峰,1997,多變量統計分析在河川水質特性分析之應用,逢甲大學土木及水利工程研究所碩士論文,台中市。
何秉均及尹彰,2002,基隆港外海有義波高時間序列不同轉換法之ARMA模式模擬研究,海洋工程學刊,第2卷,第1期,第73-92頁。
吳行正,2008,台股加權指數於時間序列模式最適解之探討,南華大學企業管理系管理科學碩士論文,嘉義縣。
吳明隆,2007,SPSS統計應用學習實務問卷分析與應用統計,加樺國際有限公司,台北縣。
李正豐、蕭任雄、謝惠紅及鄭士仁,2006,多變量分析應用於河川水質評估之研究,農業工程研討會,台南市。
李宙奇,2004,貝氏統計隨機模式與時間序列模式運用於顧客價值分析之比較,國立中央大學資訊管理研究所碩士論文,桃園縣。
李建南,2007,多變量統計結合SWOT分析方法應用在廚餘資源化方法選擇之研究,國立高雄海洋科技大學海洋環境工程研究所碩士論文,高雄市。
李黃允,2001,以二階段人工濕地去除生活污水中之營養鹽,中山大學環境工程研究所碩士論文,高雄市。
李駿智,1995,人工溼地承受高強度廢水之操作表現,國立屏東技術學院環境工程技術研究所,屏東。
杜政榮,2005,台灣濕地環境之永續管理,生活科學學報,第9期,第93-114頁。
周明顯、彭致豪,2005,人工溼地污水處理技術(上),經濟部水利署永續發展簡訊 12,1-7。
林建三編著,2000,環境工程概論,鼎茂書局。
林炤映,2004,以水質自動監測系統與統計方法分析日月潭水庫之水質變化趨勢,大葉大學環境工程學系碩士班碩士論文,彰化縣。
林茂文,2006,時間數列分析與預測:管理與財經之應用 3版,華泰文化事業股份有限公司,台北市。
林震岩,2007,多變量分析:SPSS的操作與應用,智勝文化事業有限公司,台北市。
林曉武、魏慶琳及龔國慶,1993,鹿港與香山地區牡蠣與沈積物及懸浮物重金屬相關性之研究調查。
邱文彥,2001,關懷消失中的台灣溼地-溼地公園的規劃與課題,科學月刊32(7),571-577。
邱文彥,2004,工濕地及其景觀生態之應用,行政院公共工程委員會編輯生態工法案例編選集第十一章。
邱文雅、章盛傑譯,William J. Mitsch and James G. Gosselink 著,1998,「溼地」,地景企業股份有限公司。
邱皓政,2000,量化研究與統計分析:SPSS中文視窗版資料分析範例解析,五南圖書出版股份有限公司,台北市。
邱賢瑋,2010,應用多變量統計分析探討污染場址之地下水水質特徵,中山大學環境工程研究所碩士論文,高雄市。
柯淳涵、范致豪、朱益君、鄧家基,2004,地下滲濾設施之規劃設計、成效評估及維護管理,河川水質自然淨化工法規劃設計與建造講習會。
美國華盛頓州生態管理署網站,1995,底泥管理標準,http://www.ecy.wa.gov/proams/tcp/smu/sed_standards.htm
胡智瑋,2005,時間序列分析法於環境振動模態參數識別之應用,國立成功大學航空太空工程學系碩士論文,台南市。
唐麗英及王春和,2007,SPSS統計分析(12.0中文版),儒林圖書有限公司,台北縣。
馬家珍,2005,以厭氣法串聯人工溼地處理生活污水之操作性能研究,國立中山大學環境工程研究所。
高雄縣政府水利局,2001,高屏溪右岸高屏大橋至舊路鐵橋高灘地綠美化工程規劃報告書,狄斯唐工程公司執行,高雄縣。
高雄縣政府水利局,2002,高屏溪右岸高屏大橋至舊鐵橋高灘地綠美化工程規劃設計整體規劃定案報告書。
高雄縣政府水利局,2006,高屏溪右岸舊鐵橋河川生態復育工程後續監測計畫報告書,高雄市野鳥學會、中山大學水資源中心及台灣濕地保護聯盟共同執行。
高雄縣政府環境保護局,2006,高屏溪水污染稽查管制暨重要河川水質監測計畫,期末報告書。
高雄縣政府環境保護局,2007,高雄縣舊鐵橋人工濕地效益評估計畫,期末報告書。
高雄縣政府環境保護局,2008,高雄縣舊鐵橋人工濕地效益評估計畫,期末報告書。
高雄縣政府環境保護局,2009,高雄縣舊鐵橋人工濕地效益評估計畫,期末報告書。
張文亮,1996,以多變量統計分析台北近郊的灌溉水質污染,台灣水利季刊,第44卷,第3期,第27-41 頁。
張文亮、邱文雄及郭勝豐,1997,以多變量統計分析方法區分關渡溼地內水質之變異性,農業工程研討會。
張文賢,2005,建立人工濕地設置與操作作業程序及技術之研究,行政院公共工程委員會,計畫編號930034。
張尊國、黃國珍及徐貴新,1997,土壤重金屬污染特性探討-因子分析,農工學報第43卷第2期。
張誠信,2003,濁水溪沖積扇含水層之氮化合物污染潛勢評估,國立台灣大學生物環境系統工程學研究所博士論文,台北市。
張維泰,2002,空氣污染之線性趨勢分析檢定方法的比較,國立中正大學數學研究所碩士論文,嘉義縣。
教育部生態工法暨生物多樣性人才培育計畫,生態工法及生物多樣性研討會論文集,96年。
陳仁祥,1999,以多變量統計區分香山、七股、圳頭溼地水質土壤變異性,國立台灣大學農業工程研究所碩士論文,台北市。
陳文輝, 2008,全球化綠色環保規範發展近況與因應措施,經濟部工業局,永續產業發展雙月刊,國際環保指令與綠色供應鍊專輯,第42期,第3-19頁。
陳世偉、吳俊毅、高志明及張有義,2006,高屏溪舊鐵橋人工濕地水質淨化功能探討:一個親水的自然系統,中華民國環境保護學會河川水質淨化工法論文專刊(行政院環境保護署補助計畫),第29 卷,第二期,14-30。
陳弘成、王一雄及顏瑞泓,1999,河川魚貝類累積毒研究調查及標準方法建立,行政院環境保護署 EPA-88-1502-03-01。
陳正昌、程炳林、陳新豐及劉子鍵,2009,多變量分析方法統計軟體應用,第5版,五南圖書出版股份有限公司,台北市。
陳有祺,2003,人工濕地構築與濕地復育評估,國際水利生態工法研討會論文集,75-81。
陳有祺,2003,濕地生態工程,滄海書局,台中市。
陳志峰,2005,高雄港區沉積物及底層水中重金屬之分佈探討,國立中山大學環境工程研究所碩士論文,高雄市。
陳忠勳,2008,人工濕地之水質淨化效益研究,中山大學環境工程研究所碩士論文,高雄市。
陳枋萱,2006,都會溼地公園棲地水環境營造與管理之研究-以洲仔溼地公園為例,國立中山大學海洋環境及工程研究所,高雄。
陳秋妏,2006,港區沉積物重金屬污染調查與海洋棄置模擬,國立中山大學環境工程研究所博士論文,高雄。
陳偉傑,2005,多變量分析應用於河川人工溼地之水質淨化研究,立德管理學院資源環境學系碩士班碩士論文,台南市。
陳惠玲,2004,非點源污染控制措施不同方法除污效率之探討,國立臺北科技大學環境規劃與管理研究所碩士論文,台北市。
陳順宇,2004,多變量分析,華泰文化事業股份有限公司,台北市。
陳順宇及鄭碧娥,2004,基礎統計學,華泰文化事業股份有限公司,台北市。
陳瑞娥、陸挽中、賴慈華、黃智昭、費立沅及江崇榮,2003,屏東平原地下水水源保護區劃定之芻議,中央地質研究所。
陳寬裕,王正華,2010,論文統計分析實務SPSS與AMOS的運用,五南圖書出版股份有限公司,台北市。
陳麗瑜,2005,都會溼地公園水質淨化功能及規劃策略之研究,國立中山大學海洋環境及工程研究所,高雄。
陳耀茂,2004a,變異數分析與多重比較的SPSS使用手冊,鼎茂圖書出版有限公司,台北市。
陳耀茂,2004b,多變量分析的SPSS使用手冊,鼎茂圖書出版有限公司,台北市。
陳耀茂,2005a,時間數列分析的SPSS使用手冊,鼎茂圖書出版有限公司,台北市。
陳耀茂,2005b,統計分析的SPSS使用手冊,鼎茂圖書出版有限公司,台北市。
陳耀茂,2005c,多變量分析的SPSS使用手冊,鼎茂圖書出版有限公司,台北市。
陳耀茂,2005d,共變異數構造分析入門,鼎茂圖書出版有限公司,台北市。
章裕民,許文國,胡偉興,周芷玫,2006,裸露地PM10排放特性及植生效益評估之研究,第二十三屆空氣污染控制技術研討會論文集,278。
曾明遜,1998,溼地保育價值與評價,中興大學法商學報,34,273~306。
游程凱,2002,利用穩定塘連接人工濕地處理社區污水效能之探討,嘉南藥理科技大學環境工程與科學系碩士論文,台南。
黃信源,2003,台灣地區行動電話需求預測模式之建構與評估-時間序列之應用,國立台北大學企業管理學系碩士班碩士論文,台北市。
黃俊英,2000,多變量分析(第七版),翰蘆圖書出版有限公司,台北市。
黃建源,2000,多變量統計方法在日月潭水庫水質管理之應用,逢甲大學土木及水利工程研究所碩士論文,台中市。
黃國珍,1995,重金屬污染之評價及因子分析,國立台灣大學農業工程研究所碩士論文,台北市。
黃壹皇,2005,去除地下水硝酸鹽之人工溼地的動態變化研究,嘉南藥理科技大學環境工程與科學系,台南。
黃麗倩,2000,台灣地區地下水品質之統計研究,國立中央大學統計研究所碩士論文,桃園縣。
楊奕農,2005,時間序列分析-經濟與財務上之應用,雙葉書廊有限公司,台北市。
楊浩二,1995,多變量統計方法,華泰文化事業股份有限公司,台北市。
楊喜男、王漢泉、劉鎮山、王世冠、彭瑞華、郭季華、楊禮源、李俊宏及徐美榕,2003,台灣河川水體、底泥及生物監測分析研究。
溼地生物多樣性硏討會論文集,1990, (Wetland biodiversity : proceedings of the symposium of biodiversity in wetlands) ,蔣鎮宇、許再文編輯,農委會特有生物中心。
廖少威,2003,以統計分析探討環境因子對溼地植物分佈的影響,國立台灣大學生物環境系統工程學研究所博士論文,台北市。
歐文生、林憲德及荊樹人,2006,景觀化人工濕地淨化校園污水效益與公共衛生之研究,建築學報,56,183-202。
蔡凱元,2004以人工溼地處理垃圾滲出水可行性之研究,國立中山大學海洋環境及工程研究所,高雄。
鄭育麟,1997,環工指標微生物,第四版,復文書局。
鄭美娟,陳瑞仁,黃國林,林志忠,高仁和,黃招斌,2005,屏東縣砂石開採專區大氣微粒特性探討,第二十二屆空氣污染控制技術研討會論文集,230。
鄭博仁,2003,應用多變量統計方法探討高雄縣地區地下水值之特性,國立屏東科技大學環境工程與科學研究系碩士班碩士論文,屏東縣。
盧師敏,2007,人工濕地水質淨化與能值分析之研究–以高屏溪舊鐵橋人工濕地為例,國立中山大學海洋環境工程研究所碩士論文,高雄市。
蕭文龍,2007,多變量分析最佳入門實用書:SPSS+LISREL(SEM),?眳p資訊股份有限公司,台北市。
賴恩華,2003,以人工濕地處理工業廢水之研究,中山大學環境工程研究所碩士論文,高雄。
環保署監資處,2010,受東北季風影響,空氣品質不佳,環保署提醒民眾注意防範,環保新聞,發佈日期2010年11月09日,Available at: http://ivy5.epa.gov.tw/enews/fact_Newsdetail.asp?InputTime=0991109202509。
謝仁傑,2006,中台灣懸浮微粒與植物體樹葉中重金屬含量研究,弘光科技大學環境工程研究所碩士論文,台中市。
謝明奇,2005,自然溼地與人工溼地系統底泥特性之探討,嘉南藥理科技大學環境工程與科學系,台南。
謝嘉峰,2000,河川魚貝類累積毒調查及標準方法之建立,行政院環境保護署,EPA-89-E3S5-03-01。
顏月珠,1998,統計學,三民書局股份有限公司,台北市。
顏宛珍,2006,以人工濕地處理校園化糞池出流水之研究, 國立臺灣科技大學化學工程系碩士論文,台北。
魏文宜、林宗岳、游進裕、楊佳純及徐貴新,2009,應用人工濕地現地處理設施淨化河川水質在台灣地區之操作維護情況,第二屆海峽兩岸生態工法研討會,207-217。
羅雅鈴,2005,應用能值分析方法評估台灣水田多樣性功能之價值,國立宜蘭大學自然資源學研究所,宜蘭。
羅瑋琪,2002,以人工溼地處理煉油及煉鋼廢水之研究,國立中山大學海洋環境及工程研究所,高雄。
羅錦忠,2004,都會區在槽式人工濕地淨化生活污水效益之探討-以談南市竹溪為例,嘉南藥理科技大學環境工程與科學系碩士論文,台南縣。
蘇秋生,2009,多變量統計與時間序列分析於地下水質管理上之應用-以嘉南平原地下水分區為例,崑山科技大學環境工程系碩士論文,台南縣。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.222.125.171
論文開放下載的時間是 校外不公開

Your IP address is 18.222.125.171
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code