Responsive image
博碩士論文 etd-0217111-150118 詳細資訊
Title page for etd-0217111-150118
論文名稱
Title
時間解析光致螢光與光致電流成像技術應用於發光二極體的特性檢測
Characterizing LED with Time-Resolved Photo-Luminescence and Optical Beam Induced Current Imaging
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
54
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-01-28
繳交日期
Date of Submission
2011-02-17
關鍵字
Keywords
多重量子井、氮化鎵銦、光致電流、時間解析光致螢光、發光二極體
InGaN, Multi-quantum Wells (MQWs), Light Emitting Diode (LED), Optical Beam Induced Current (OBIC), Time-resolved Photoluminescence (TRPL)
統計
Statistics
本論文已被瀏覽 5682 次,被下載 2529
The thesis/dissertation has been browsed 5682 times, has been downloaded 2529 times.
中文摘要
發光元件發展的突飛猛進,發光二極體(Light emitting diode, LED)是目前發光元件中最具潛力之一的產品,在近幾年之中,由於發光效率的提升以及產品尺寸的縮小而應用在面顯示器上有顯著的影響,所帶來的市場價值頗大,故關於此元件方面的技術則備受重視,我們所實驗的目的之一即為快速且精確地檢測此類元件並得知其元件特性,以及達到非破壞性的檢測並且改良元件的缺陷。通常檢測此類元件的技術,以光致電流顯微技術和光致螢光顯微技術最被廣泛使用,我們即利用這兩項技術得知元件中載子特性。首先,我們利用脈衝雷射、掃描系統以及TCSPC將所得到的光致螢光結果做時間解析的分析,並且在樣品上外加不同的逆向偏壓,另一方面,同時收取光致電流訊號,其訊號通過前置放大器增強訊號之後,最後輸入於電腦處理成光致電流影像。我們只控制不同的逆向偏壓,其餘皆未改變下,發現時間解析光致螢光強度隨著逆向偏壓的增加而衰減,以及主動層內部之再度復合載子的復合時間縮短的現象,當我們測量衰減曲線時,是以兩個指數函數加上背景值測定,故最後得到兩種不同的載子復合時間(長復合時間載子時間與短復合載子時間),有趣的是,雖然兩種載子的復合時間接有所縮短,但載子數衰減的過程中,長復合時間的載子數會逐漸低於短復合時間的載子數,而使主宰整體的復合時間之載子有所變化,也就是說,我們發現其元件會因主導整體的載子改變而使元件的發光時間有所極限。另一方面,光致電流的結果與光致螢光的結果呈現了一種關聯,意即當逆向偏壓的增加,其兩種強度的變化為負相關在這裡,說明了逆向偏壓對於多重量子井所造成的影響,且與理論也符合。我們利用這兩種技術成功地直接觀察載子在元件中的動力學,這對於改良此類元件的特性是非常有幫助。
Abstract
With rapid development of light emitting device, the detection techniques of semiconductor are more and more important, which include time-resolved photoluminescence (TRPL) and optical beam induced current (OBIC) microscopy. In this thesis, we realize the carrier behaviors of active region with multiple quantum wells (MQWs) by these microscopies, and the samples are light emitting diodes (LEDs). However, PL intensity of LEDs increase but OBIC not due to external field compensates, on the other hand, reducing PL lifetime indicates the response time of device shorter with higher reverse bias.
目次 Table of Contents
目 錄
誌 謝 ........................................................................................................................ i
中文摘要 ...................................................................................................................... iii
Abstract ......................................................................................................................... iv
目 錄 ....................................................................................................................... v
圖 次 ..................................................................................................................... vii
表 次 ...................................................................................................................... ix
第一章 導論 ................................................................................................................. 1
第二章 工作原理 ......................................................................................................... 3
2.1 光致電流 ........................................................................................................ 3
2.2 光致螢光 ........................................................................................................ 3
2.3 多重量子井 .................................................................................................... 4
2.4 逆向偏壓對於發光二極體的影響 ................................................................ 5
2.5 時間相關單光子計數 .................................................................................... 6
2.7 時間解析光致螢光 ........................................................................................ 8
2.8 雙光子激發效應 ............................................................................................ 8
第三章 實驗架設 ....................................................................................................... 10
3.1 樣品介紹 ...................................................................................................... 10
3.2 時間解析光致螢光實驗架設 ...................................................................... 11
3.3 光致電流實驗架設 ...................................................................................... 12
3.4 實驗架設說明 .............................................................................................. 13
第四章 結果與數據分析 ........................................................................................... 14
4.1 簡介 .............................................................................................................. 14
4.1.1 時間解析光致螢光影像 ................................................................... 14
4.1.2 光致電流影像 ................................................................................... 14
4.2 發光二極體 .................................................................................................. 14
4.2.1 時間解析光致螢光測量 ................................................................... 14
4.2.2 時間解析光致螢光數據分析 ........................................................... 24
4.2.3 光致電流影像 ................................................................................... 26
4.2.4 光致電流數據分析 ........................................................................... 29
第五章 結論 ............................................................................................................... 32
5.1 發光二極體 .................................................................................................. 32
參考文獻 ..................................................................................................................... 33
附錄 A 光量子環雷射二極體 ................................................................................... 36
A.1 摘要 ............................................................................................................. 36
A.2 光量子環雷射二極體 ................................................................................. 36
A.3 實驗架設 ..................................................................................................... 37
A.3.1 光量子環雷射二極體 ...................................................................... 37
A.3.2 光致電流實驗架設 .......................................................................... 39
A.4 實驗結果與分析 ......................................................................................... 40
A.4.1 實驗簡介 .......................................................................................... 40
A.4.2 光致電流影像 .................................................................................. 40
A.4.3 光致電流數據分析 .......................................................................... 42
A.5 結論 ............................................................................................................. 45
A.6 參考文獻 ..................................................................................................... 45
參考文獻 References
參考文獻
1. W. Shockley, U.S. Patent 2,569,347 (1951)
2. H. Kroemer, “A Proposed Class of Heterojunction Injection Lasers”, Proc. IEEE. 51, 1782 (1963)
3. Z. I. Alferov and R. F. Kazarinov, “Semiconductor laser with electrical pumping”, U.S.S.R. Patent 181737 (1963)
4. S. Takasu, “Application of OBIC/OBIRCH/OBHIC (Semiconductor Failure Analysis), Application & Research Center”, JEOL Ltd. (2001)
5. P.D. Pester and T. Wilson, “Time-dependent theory of optical-beam-induced current imaging of defects in semiconductors”, Jour. Appl. Phys. 64, 1131 (1988)
6. P.D. Pester and T. Wilson, “Photoluminescence and optical beam induced current imaging of defects”, phys. stat. sol. (a) 103, 107 (1987)
7. H. Bergner, K. Hempel, A. Krause, and U. Stamm, “Application of the time-resolved optical-beam-induced current method to the investigation of n-metal-oxide-semiconductor inverters”, Jour. Appl. Phys. 71, 3010 (1992)
8. H. Bergner, K. Hempel, and U. Stamm, “Dynamic behavior of internal elements of high-frequency integrated circuits studied by time-resolved optical-beam-induced current (OBIC) method”, Proc. SPIE 1362, 484 (1991)
9. Yasuaki Masumoto, Shigeo Shionoya and Hitoshi Kawaguchi, “Picosecond time-resolved study of excitons in GaAs-A1As multi-quantum-well structures”, Phys. Rev. B 29, 2324 (1984)
10. A. Nakamura, K. Fujiwara, Y. Tokuda, T. Nakayama, and M. Hirai, “Dynamics of photoexcited carriers sinking into an enlarged well in a GaAs/AlAs short-period superlattice”, Phys. Rev. B, 34, 12 (1986)
11. Y. D. Jho, J. S. Yahng, E. Oh, and D. S. Kim, “Measurement of piezoelectric field and tunneling times in strongly biased InGaN/GaN quantum wells”, Appl. Phys. Lett. 79, 8 (2001)
12. Brent R. Fisher, Hans-Jurgen Eisler, Nathan E. Stott, and Moungi G. Bawendi, “Emission Intensity Dependence and Single-Exponential Behavior In Single Colloidal Quantum Dot Flourescence Lifetimes”, J. Phys. Chem. B 108, 143 (2004)
13. J. F. Ryan, R. A. Taylor, A. J. Turberfield, Angela Maciel, J. M. Worlock, A. C. Gossard and W. Wiegmann, “Time-Resolved Photoluminescence of Two-Dimensional Hot Carriers in GaAs-AlGaAs Heterostructures”, Phys. Rev. Lett. 53, 1841 (1984)
14. S.M. Sze, “Semiconductor device physics and technology”, Murray Hill, Chapter 3 (2001)
15. 陳建隆, “發光二極體之原理與製程”, 全華圖書, Chapter 3 (2006)
16. A. Beiser, “Concepts of modern physics”, Sixth edition, McGraw-Hill, Chapter 2 (2002)
17. G. Bautista Jr., C.M. Blanca, and C. Saloma, “Two-photon optical beam-induced current microscopy of light-emitting diodes” Science Diliman 16, 61 (2004)
18. A.C. Ribes, S. Damaskinos, H.F. Tiedje, A.E. Dixon, and D.E. Brodie, “Reflected-light, photoluminescence and OBIC imaging of solar cells using a confocal scanning laser MACROscope/microscope” Solar Energy Materials and Solar Cells 44, 439 (1996)
19. C.K. Sun, K.G. Gan, F.J. Kao, M.K. Huang, Y.S. Wang, M.P. Mack and S.P. DenBaars, “Two-photon photoluminescence and current images of bulk GaN and InGaN green LEDs” LEOS. ’99. IEEE. 1, 39 (1999)
20. M. Meneghini, N. Trivellin, M. Pavesi, M. Manfredi, U. Zehnder, B. Hahn, G. Meneghesso,1 and E. Zanoni, “Leakage current and reverse-bias luminescence in InGaN-basedlight-emitting diodes”, Appl. Phys. Lett. 95, 173507 (2009)
21. Y. M. Park, J. K. Son, H. J. Chung, C. Sone, and Y. Park, InGaN multi-quantum well structure with a reduced internal electric field and carrier decay process by tunneling, Appl. Phys. Lett. 95, 231917 (2009)
22. M. Segal and M.A. Baldo, “Reverse bias measurements of the photoluminescent efficiency of semiconducting organic thin films” , Org. Ele. 4, 191–197 (2003)
23. M. S. Minsky, S. B. Fleischer, A. C. Abare, J. E. Bowers, E. L. Hu, S. Keller and S. P. Denbaars, “Characterization of high-quality InGaN/GaN multiquantum wells with time-resolved photoluminescence”, Appl. Phys. Lett. 72, 9 (1998)
24. M. Pophristic and F. H. Long, C. Tran, I. T. Ferguson and R. F. Karlicek, Jr., “Time-resolved photoluminescence measurements of InGaN light-emitting diodes”, Appl. Phys. Lett. 73, 24 (1998)
25. S. F. Chichibu, T. Azuhata, T. Sota T. Mukai and S. Nakamura, “Localized quantum well excitons in InGaN single-quantum-well amber light-emitting diodes”, Jour. Appl. Phys. 88, 9 (2000)
26. Y. D. Jho, J. S. Yahng, E. Oh and D. S. Kim, Measurement of piezoelectric field and tunneling times in strongly biased InGaN/GaN quantum wells”, Appl. Phys. Lett. 79, 8 (2001)
27. Y. D. Jho, J. S. Yahng, E. Oh and D. S. Kim, “Field-dependent carrier decay dynamics in strained InxGa1-xN/GaN quantum wells”, Phys. Rev. B 66, 035334 (2002)
28. Mee-Yi Ryu, Phil Won Yu, Eunsoon Oh, Chulsoo Sone, Okhyun Nam and Yongjo Park, “Optical properties and recombination dynamics of InGaN/GaN multiple quantum wells with Si-doped barriers”, Sol. Sat. Comm. 118, 547-551 (2001)
29. T. A. Louis, G. Ripamonti and A. lacaita, “Photoluminescence lifetime microscope spectrometer based on time-correlated single-photon counting with an avalanche diode detector”, Rev. Sci. lnstrum. 61, 1 (1990)
30. W. Becker, A. Bergmann, M. A. Hink, K. Konig, K. Benndorf, and C. Biskup, Microsc. Res. Tech. 63, 58-66 (2004)
31. 陳德請, 吳世揚, “生物光電工程導論”, 全華圖書, Chapter 10, (2003)
32. W. Denk, J.H. Strickler, and W.W. Webb, “Two-photon laser scanning fluorescence microscopy”, Science 248, 73 (1990)
33. 陳哲聰, “利用扭曲量子井布拉格式飽和吸收鏡之被動鎖模鈦藍寶石雷射特性”, 國立交通大學光電工程研究所碩士論文 (2000)
34. 翁兆泓, “共焦螢光影像光譜儀研究”, 國立清華大學電機工程學系碩士班碩士論文 (2006)
35. C. Xu and W. Denk, “Comparison of one- and two-photon optical beam-induced current imaging” Jour. Appl. Phys. 86, 2226 (1999)
36. E. S. Jeon, V. Kozlov, Y.-K. Song, A. Vertikov, M. Kuball, A. V. Nurmikkoa, H. Liu, C. Chen, R. S. Kern, C. P. Kuo, and M. G. Craford, “Recombination dynamics in InGaN quantum wells”, Appl. Phys. Lett. 69, 27 (1996)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code