Responsive image
博碩士論文 etd-0217112-160301 詳細資訊
Title page for etd-0217112-160301
論文名稱
Title
腫瘤易感基因TSG101對細胞自噬標幟蛋白MAP1LC3B的影響
The effect of Tumor susceptibility gene 101 on Autophagy Marker MAP1LC3B
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
87
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-01-31
繳交日期
Date of Submission
2012-02-17
關鍵字
Keywords
腫瘤易感基因101、細胞自噬、MVBs、ESCRT、LC3-II
LC3-II, ESCRT, MVBs, Tumor Susceptibility Gene-101, Autophagy
統計
Statistics
本論文已被瀏覽 5689 次,被下載 1262
The thesis/dissertation has been browsed 5689 times, has been downloaded 1262 times.
中文摘要
細胞自噬作用的異常在癌症、神經及心血管退化性疾病的形成及抵抗外來病菌防禦作用上,扮演相當重要之角色。細胞自噬作用泛指將細胞質內容物吞噬,形成自噬泡,並送到溶酶體內降解的路徑,其主要功能在於分解胞質內未適當折疊或異常聚集的蛋白及清除老化破損之胞器,以維持胞內代謝衡定及生理功能之正常運作。細胞內噬作用路徑的ESCRT複合體在協助多囊泡體形成,在膜受體的循環利用,蛋白分選及囊泡傳輸作用扮演重要角色。腫瘤易感基因TSG101屬於ESCRT-I成員之一,負責調節多囊泡體形成及ESCRT功能,文獻指出缺乏TSG101的細胞內會有自噬泡累積的現象,顯示其可能參與自噬作用之調節。本論文研究中將細胞培養在無血清及養分困乏環境下,會使得TSG101及自噬作用標幟蛋白LC3-II及ATG3皆增加,顯示誘導細胞自噬作用也會提升細胞內TSG101含量。進一步以轉染siRNA或TSG101表現載體以抑制或過度表現TSG101蛋白來觀察其對轉染細胞之自噬作用相關標幟蛋白如LC3-I轉變成LC3-II、ATG3表現 及泛素修飾蛋白聚集物標幟p62蛋白表現之影響。結果顯示以siRNA抑制HeLa細胞中TSG101蛋白表現量會提升LC3-II、ATG3、p62或是被泛素修飾蛋白質的表現量,與前人之報導相符;但在神經母細胞瘤SH-SY5Y中抑制TSG101表現時,卻會降低LC3-II與被泛素修飾蛋白質的表現量,顯示在神經母細胞瘤SH-SY5Y中TSG101對細胞自噬途徑及泛素修飾蛋白之steady-state含量之調節可能扮演極關鍵之角色。當以表達外源性HA-TSG101方式提升胞內TSG101含量時,發現皆會有LC3-II增加之趨勢,而在HeLa子宮頸上皮細胞中更同時增加ATG3表現量。因此,我們推測TSG101可能會幫助穩定細胞自噬體的形成,但我們也不排除TSG101可能會參與調節自噬作用之最終步驟,亦即自噬體與溶酶體的融合作用,當增加細胞中的HA-TSG101時可能使自噬作用路徑的進行更順暢,因為細胞中的ATG3含量也扮隨著上升。此外,本研究中也建立了GFP-LC3穩定表現細胞株,並觀察到細胞質與核中皆有TSG101與GFP-LC3共位的現象,提供探討TSG101在細胞自噬路徑功能之另一研究探討契機。
Abstract
Deregulation of autophagy plays an important role in the pathogenesis of diseases such as cancer, neuronal degenerative or cardiovascular disease. Autophagy is a process to engulf the cytoplasmic contents into autophagosome and deliver them for lysosomal degradation. Its major function is to clear unfolded protein or damage organelles for maintaining proper metabolic homeostasis and normal cell physiological activities. Autophagy and multivesicular bodies, MVBs, cooperate to regulate the turnover of intracellular macromolecule, defective organelles and signaling receptor. Endosomal sorting complex required for transport, ESCRT, is important for the formation of MVBs, which regulates membrane receptor recycling, protein sorting and vesicular trafficking. Tumor Susceptibility Gene 101(TSG101) is a member of ESCRT-I that plays an important role on MVBs formation and maintaining ESCRT function. Previous report indicated that autophagosome accumulation upon deprivation of TSG101, implying possible role of TSG101 during autophagic process. In this study, we observed the increase of TSG101 and autophagic marker proteins, such as LC3-II and ATG upon nutrient starvation. Furthermore, knockdown TSG101 in cervical carcinoma HeLa cell resulted in the elevation of LC3-II, ATG3 and ubiquitinated protein aggregates marker protein p62, which is congruous to other reports. However, in neuroblastoma SH-SY5Y cell, transfection of siRNA led to the decrease of LC-II and ubiquitinated protein level. These results indicated that TSG101 might be critical for autophagy and the maintenance of steady-state level of cellular ubiquitinated proteins. Ectopic upregulatory expression of HA-TSG101 led to the increase of LC3-II in both cell type. The elevation of ATG3 level is also observed in HeLa cell. Therefore, we speculated that TSG101 might be important for the formation of autophagosome, but our data did not exclude the possible role of TSG101 in regulation of the fusion of autophagosome and lysosome, because the increase of ATG3 indicated ectopic HA-TSG101 might facilitate the execution of autophagic flow. In addition, we have established GFP-LC3 expression cell lines. Our imaging data showed the colocalization of TSG101 and GFP-LC3 in both cytoplasm and nucleus that might be an interesting research topic for investigation the role of TSG101 in autophagic pathway.
目次 Table of Contents
致謝--------------------------------------------------------------2
中文摘要--------------------------------------------------------3
英文摘要--------------------------------------------------------5
前言--------------------------------------------------------------8
實驗目的--------------------------------------------------------20
材料與方法-----------------------------------------------------21
結果--------------------------------------------------------------34
討論--------------------------------------------------------------40
總結與展望-----------------------------------------------------49
參考文獻--------------------------------------------------------51
圖表--------------------------------------------------------------61
附錄--------------------------------------------------------------85
參考文獻 References
1. Arai, T., T. Nonaka, et al. (2003). "Neuronal and glial inclusions in frontotemporal dementia with or without motor neuron disease are immunopositive for p62." Neurosci Lett 342(1-2): 41-44.

2. Amit, I., L. Yakir, et al. (2004). "Tal, a Tsg101-specific E3 ubiquitin ligase, regulates receptor endocytosis and retrovirus budding." Genes Dev 18(14): 1737-1752.

3. Ang, X. L. and J. Wade Harper (2005). "SCF-mediated protein degradation and cell cycle control." Oncogene 24(17): 2860-2870.

4. Azmi, I., B. Davies, et al. (2006). "Recycling of ESCRTs by the AAA-ATPase Vps4 is regulated by a conserved VSL region in Vta1." J Cell Biol 172(5): 705-717.

5. Babst, M. (2005). "A protein's final ESCRT." Traffic 6(1): 2-9.

6. Babst, M., G. Odorizzi, et al. (2000). "Mammalian tumor susceptibility gene 101 (TSG101) and the yeast homologue, Vps23p, both function in late endosomal trafficking." Traffic 1(3): 248-258.

7. Baisamy, L., S. Cavin, et al. (2009). "The ubiquitin-like protein LC3 regulates the Rho-GEF activity of AKAP-Lbc." J Biol Chem 284(41): 28232-28242.


8. Barth, S., D. Glick, et al. (2010). "Autophagy: assays and artifacts." J Pathol 221(2): 117-124.

9. Berkowitz, S. A., J. Katagiri, et al. (1977). "Separation and characterization of microtubule proteins from calf brain." Biochemistry 16(25): 5610-5617.

10. Blum, D., F. J. Hemming, et al. (2004). "Increased Alix (apoptosis-linked gene-2 interacting protein X) immunoreactivity in the degenerating striatum of rats chronically treated by 3-nitropropionic acid." Neurosci Lett 368(3): 309-313.

11. Bugiani, O. (2007). "The many ways to frontotemporal degeneration and beyond." Neurol Sci 28(5): 241-244.

12. Drake, K. R., M. Kang, et al. (2010). "Nucleocytoplasmic distribution and dynamics of the autophagosome marker EGFP-LC3." PLoS One 5(3): e9806.

13. Eskelinen, E. L., A. R. Prescott, et al. (2002). "Inhibition of autophagy in mitotic animal cells." Traffic 3(12): 878-893.

14. Feng, G. H., C. J. Lih, et al. (2000). "TSG101 protein steady-state level is regulated posttranslationally by an evolutionarily conserved COOH-terminal sequence." Cancer Res 60(6): 1736-1741.

15. Filimonenko, M., S. Stuffers, et al. (2007). "Functional multivesicular bodies are required for autophagic clearance of protein aggregates associated with neurodegenerative disease." J Cell Biol 179(3): 485-500.

16. Fujii, K., J. H. Hurley, et al. (2007). "Beyond Tsg101: the role of Alix in 'ESCRTing' HIV-1." Nat Rev Microbiol 5(12): 912-916.

17. Gaullier, J. M., A. Simonsen, et al. (1998). "FYVE fingers bind PtdIns(3)P." Nature 394(6692): 432-433.

18. Glick, D., S. Barth, et al. (2010). "Autophagy: cellular and molecular mechanisms." J Pathol 221(1): 3-12.

19. Harper, J. W., G. R. Adami, et al. (1993). "The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases." Cell 75(4): 805-816.

20. Haupt, Y., R. Maya, et al. (1997). "Mdm2 promotes the rapid degradation of p53." Nature 387(6630): 296-299.

21. He, L., X. Y. Lu, et al. (2003). "Spongiform degeneration in mahoganoid mutant mice." Science 299(5607): 710-712.

22. Hemming, F. J., S. Fraboulet, et al. (2004). "Early increase of apoptosis-linked gene-2 interacting protein X in areas of kainate-induced neurodegeneration." Neuroscience 123(4): 887-895.

23. Hershko, A., H. Heller, et al. (1983). "Components of ubiquitin-protein ligase system. Resolution, affinity purification, and role in protein breakdown." J Biol Chem 258(13): 8206-8214.

24. Holm, I. E., E. Englund, et al. (2007). "A reassessment of the neuropathology of frontotemporal dementia linked to chromosome 3." J Neuropathol Exp Neurol 66(10): 884-891.

25. Ichimura, Y., T. Kirisako, et al. (2000). "A ubiquitin-like system mediates protein lipidation." Nature 408(6811): 488-492.

26. Ichimura, Y., T. Kumanomidou, et al. (2008). "Structural basis for sorting mechanism of p62 in selective autophagy." J Biol Chem 283(33): 22847-22857.

27. Jiao, J., K. Sun, et al. (2009). "Abnormal regulation of TSG101 in mice with spongiform neurodegeneration." Biochim Biophys Acta 1792(10): 1027-1035.

28. Jin, S. (2006). "Autophagy, mitochondrial quality control, and oncogenesis." Autophagy 2(2): 80-84.

29. Johansen, T. and T. Lamark (2011). "Selective autophagy mediated by autophagic adapter proteins." Autophagy 7(3): 279-296.

30. Jolliffe, C. N., K. F. Harvey, et al. (2000). "Identification of multiple proteins expressed in murine embryos as binding partners for the WW domains of the ubiquitin-protein ligase Nedd4." Biochem J 351 Pt 3: 557-565.

31. Kabeya, Y., N. Mizushima, et al. (2000). "LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing." EMBO J 19(21): 5720-5728.

32. Kabeya, Y., N. Mizushima, et al. (2004). "LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation." J Cell Sci 117(Pt 13): 2805-2812.

33. Kalejta, R. F. and J. L. Hamlin (1997). "The dual effect of mimosine on DNA replication." Exp Cell Res 231(1): 173-183.

34. Katzmann, D. J., M. Babst, et al. (2001). "Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I." Cell 106(2): 145-155.

35. Kihara, A., T. Noda, et al. (2001). "Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae." J Cell Biol 152(3): 519-530.

36. Kim, B. Y., J. A. Olzmann, et al. (2007). "Spongiform neurodegeneration-associated E3 ligase Mahogunin ubiquitylates TSG101 and regulates endosomal trafficking." Mol Biol Cell 18(4): 1129-1142.

37. Kirkin, V. and I. Dikic (2007). "Role of ubiquitin- and Ubl-binding proteins in cell signaling." Curr Opin Cell Biol 19(2): 199-205.

38. Kirkin, V., T. Lamark, et al. (2009). "A role for NBR1 in autophagosomal degradation of ubiquitinated substrates." Mol Cell 33(4): 505-516.

39. Kirkin, V., D. G. McEwan, et al. (2009). "A role for ubiquitin in selective autophagy." Mol Cell 34(3): 259-269.

40. Klionsky, D. J., H. Abeliovich, et al. (2008). "Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes." Autophagy 4(2): 151-175.

41. Koegl, M., T. Hoppe, et al. (1999). "A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly." Cell 96(5): 635-644.

42. Koonin, E. V. and R. A. Abagyan (1997). "TSG101 may be the prototype of a class of dominant negative ubiquitin regulators." Nat Genet 16(4): 330-331.

43. Kostelansky, M. S., C. Schluter, et al. (2007). "Molecular architecture and functional model of the complete yeast ESCRT-I heterotetramer." Cell 129(3): 485-498.

44. Krempler, A., M. D. Henry, et al. (2002). "Targeted deletion of the Tsg101 gene results in cell cycle arrest at G1/S and p53-independent cell death." J Biol Chem 277(45): 43216-43223.

45. Kuznetsov, S. A. and V. I. Gelfand (1987). "18 kDa microtubule-associated protein: identification as a new light chain (LC-3) of microtubule-associated protein 1 (MAP-1)." FEBS Lett 212(1): 145-148.

46. Levine, B. and D. J. Klionsky (2004). "Development by self-digestion: molecular mechanisms and biological functions of autophagy." Dev Cell 6(4): 463-477.

47. Levine, B. and G. Kroemer (2008). "Autophagy in the pathogenesis of disease." Cell 132(1): 27-42.

48. Li, L. and S. N. Cohen (1996). "Tsg101: a novel tumor susceptibility gene isolated by controlled homozygous functional knockout of allelic loci in mammalian cells." Cell 85(3): 319-329.

49. Li, L., J. Liao, et al. (2001). "A TSG101/MDM2 regulatory loop modulates MDM2 degradation and MDM2/p53 feedback control." Proc Natl Acad Sci U S A 98(4): 1619-1624.

50. Liang, X. H., S. Jackson, et al. (1999). "Induction of autophagy and inhibition of tumorigenesis by beclin 1." Nature 402(6762): 672-676.

51. Mann, S. S. and J. A. Hammarback (1994). "Molecular characterization of light chain 3. A microtubule binding subunit of MAP1A and MAP1B." J Biol Chem 269(15): 11492-11497.

52. Martin-Serrano, J., T. Zang, et al. (2003). "Role of ESCRT-I in retroviral budding." J Virol 77(8): 4794-4804.

53. Martinez-Vicente, M. and A. M. Cuervo (2007). "Autophagy and neurodegeneration: when the cleaning crew goes on strike." Lancet Neurol 6(4): 352-361.

54. Maucuer, A., J. H. Camonis, et al. (1995). "Stathmin interaction with a putative kinase and coiled-coil-forming protein domains." Proc Natl Acad Sci U S A 92(8): 3100-3104.

55. Mellman, I. (1996). "Membranes and sorting." Curr Opin Cell Biol 8(4): 497-498.

56. Mizushima, N. (2007). "Autophagy: process and function." Genes Dev 21(22): 2861-2873.

57. Mizushima, N. (2010). "The role of the Atg1/ULK1 complex in autophagy regulation." Curr Opin Cell Biol 22(2): 132-139.

58. Mizushima, N., T. Noda, et al. (1998). "A protein conjugation system essential for autophagy." Nature 395(6700): 395-398.

59. Mizushima, N., H. Sugita, et al. (1998). "A new protein conjugation system in human. The counterpart of the yeast Apg12p conjugation system essential for autophagy." J Biol Chem 273(51): 33889-33892.

60. Mizushima, N., A. Yamamoto, et al. (2001). "Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells." J Cell Biol 152(4): 657-668.

61. Morita, E., V. Sandrin, et al. (2007). "Identification of human MVB12 proteins as ESCRT-I subunits that function in HIV budding." Cell Host Microbe 2(1): 41-53.

62. Nasmyth, K. (1996). "Viewpoint: putting the cell cycle in order." Science 274(5293): 1643-1645.

63. Nickerson, D. P., M. R. Russell, et al. (2007). "A concentric circle model of multivesicular body cargo sorting." EMBO Rep 8(7): 644-650.

64. Nowak, J., C. Archange, et al. (2009). "The TP53INP2 protein is required for autophagy in mammalian cells." Mol Biol Cell 20(3): 870-881.

65. Oh, H., C. Mammucari, et al. (2002). "Negative regulation of cell growth and differentiation by TSG101 through association with p21(Cip1/WAF1)." Proc Natl Acad Sci U S A 99(8): 5430-5435.

66. Ohsumi, Y. (2001). "Molecular dissection of autophagy: two ubiquitin-like systems." Nat Rev Mol Cell Biol 2(3): 211-216.

67. Olzmann, J. A., L. Li, et al. (2007). "Parkin-mediated K63-linked polyubiquitination targets misfolded DJ-1 to aggresomes via binding to HDAC6." J Cell Biol 178(6): 1025-1038.

68. Pankiv, S., T. H. Clausen, et al. (2007). "p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy." J Biol Chem 282(33): 24131-24145.

69. Parkinson, N., P. G. Ince, et al. (2006). "ALS phenotypes with mutations in CHMP2B (charged multivesicular body protein 2B)." Neurology 67(6): 1074-1077.

70. Petiot, A., E. Ogier-Denis, et al. (2000). "Distinct classes of phosphatidylinositol 3'-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells." J Biol Chem 275(2): 992-998.

71. Pillay, C. S., E. Elliott, et al. (2002). "Endolysosomal proteolysis and its regulation." Biochem J 363(Pt 3): 417-429.

72. Proikas-Cezanne, T., S. Ruckerbauer, et al. (2007). "Human WIPI-1 puncta-formation: a novel assay to assess mammalian autophagy." FEBS Lett 581(18): 3396-3404.

73. Ravikumar, B., S. Imarisio, et al. (2008). "Rab5 modulates aggregation and toxicity of mutant huntingtin through macroautophagy in cell and fly models of Huntington disease." J Cell Sci 121(Pt 10): 1649-1660.

74. Ringstad, N., Y. Nemoto, et al. (1997). "The SH3p4/Sh3p8/SH3p13 protein family: binding partners for synaptojanin and dynamin via a Grb2-like Src homology 3 domain." Proc Natl Acad Sci U S A 94(16): 8569-8574.

75. Rusten, T. E., M. Filimonenko, et al. (2007). "ESCRTing autophagic clearance of aggregating proteins." Autophagy 4(2).

76. Rusten, T. E. and H. Stenmark (2009). "How do ESCRT proteins control autophagy?" J Cell Sci 122(Pt 13): 2179-2183.

77. Sadoul, R. (2006). "Do Alix and ALG-2 really control endosomes for better or for worse?" Biol Cell 98(1): 69-77.

78. Saksena, S., J. Sun, et al. (2007). "ESCRTing proteins in the endocytic pathway." Trends Biochem Sci 32(12): 561-573.

79. Seibenhener, M. L., J. R. Babu, et al. (2004). "Sequestosome 1/p62 is a polyubiquitin chain binding protein involved in ubiquitin proteasome degradation." Mol Cell Biol 24(18): 8055-8068.

80. Sherr, C. J. (1996). "Cancer cell cycles." Science 274(5293): 1672-1677.

81. Sherr, C. J. and J. M. Roberts (1999). "CDK inhibitors: positive and negative regulators of G1-phase progression." Genes Dev 13(12): 1501-1512.

82. Skibinski, G., N. J. Parkinson, et al. (2005). "Mutations in the endosomal ESCRTIII-complex subunit CHMP2B in frontotemporal dementia." Nat Genet 37(8): 806-808.

83. Sloboda, R. D., S. A. Rudolph, et al. (1975). "Cyclic AMP-dependent endogenous phosphorylation of a microtubule-associated protein." Proc Natl Acad Sci U S A 72(1): 177-181.

84. Sou, Y. S., I. Tanida, et al. (2006). "Phosphatidylserine in addition to phosphatidylethanolamine is an in vitro target of the mammalian Atg8 modifiers, LC3, GABARAP, and GATE-16." J Biol Chem 281(6): 3017-3024.

85. Strack, B., A. Calistri, et al. (2003). "AIP1/ALIX is a binding partner for HIV-1 p6 and EIAV p9 functioning in virus budding." Cell 114(6): 689-699.

86. Tan, J. M., E. S. Wong, et al. (2008). "Lysine 63-linked ubiquitination promotes the formation and autophagic clearance of protein inclusions associated with neurodegenerative diseases." Hum Mol Genet 17(3): 431-439.

87. Tanida, I., N. Minematsu-Ikeguchi, et al. (2005). "Lysosomal turnover, but not a cellular level, of endogenous LC3 is a marker for autophagy." Autophagy 1(2): 84-91.

88. Tanida, I., E. Tanida-Miyake, et al. (2002). "Human Apg3p/Aut1p homologue is an authentic E2 enzyme for multiple substrates, GATE-16, GABARAP, and MAP-LC3, and facilitates the conjugation of hApg12p to hApg5p." J Biol Chem 277(16): 13739-13744.

89. Tanida, I., E. Tanida-Miyake, et al. (2001). "The human homolog of Saccharomyces cerevisiae Apg7p is a Protein-activating enzyme for multiple substrates including human Apg12p, GATE-16, GABARAP, and MAP-LC3." J Biol Chem 276(3): 1701-1706.

90. Tanida, I., T. Ueno, et al. (2004). "LC3 conjugation system in mammalian autophagy." Int J Biochem Cell Biol 36(12): 2503-2518.

91. Teo, H., D. B. Veprintsev, et al. (2004). "Structural insights into endosomal sorting complex required for transport (ESCRT-I) recognition of ubiquitinated proteins." J Biol Chem 279(27): 28689-28696.

92. Thrower, J. S., L. Hoffman, et al. (2000). "Recognition of the polyubiquitin proteolytic signal." EMBO J 19(1): 94-102.

93. Trioulier, Y., S. Torch, et al. (2004). "Alix, a protein regulating endosomal trafficking, is involved in neuronal death." J Biol Chem 279(3): 2046-2052.

94. Vadlamudi, R. K., I. Joung, et al. (1996). "p62, a phosphotyrosine-independent ligand of the SH2 domain of p56lck, belongs to a new class of ubiquitin-binding proteins." J Biol Chem 271(34): 20235-20237.

95. Ventruti, A. and A. M. Cuervo (2007). "Autophagy and neurodegeneration." Curr Neurol Neurosci Rep 7(5): 443-451.

96. von Schwedler, U. K., M. Stuchell, et al. (2003). "The protein network of HIV budding." Cell 114(6): 701-713.

97. Watanabe, M., Y. Yanagi, et al. (1998). "A putative tumor suppressor, TSG101, acts as a transcriptional suppressor through its coiled-coil domain." Biochem Biophys Res Commun 245(3): 900-905.

98. Webber, J. L., A. R. Young, et al. (2007). "Atg9 trafficking in Mammalian cells." Autophagy 3(1): 54-56.

99. Welchman, R. L., C. Gordon, et al. (2005). "Ubiquitin and ubiquitin-like proteins as multifunctional signals." Nat Rev Mol Cell Biol 6(8): 599-609.

100. Williams, R. L. and S. Urbe (2007). "The emerging shape of the ESCRT machinery." Nat Rev Mol Cell Biol 8(5): 355-368.

101. Xie, W., L. Li, et al. (1998). "Cell cycle-dependent subcellular localization of the TSG101 protein and mitotic and nuclear abnormalities associated with TSG101 deficiency." Proc Natl Acad Sci U S A 95(4): 1595-1600.

102. Xie, Z. and D. J. Klionsky (2007). "Autophagosome formation: core machinery and adaptations." Nat Cell Biol 9(10): 1102-1109.

103. Young, A. R., E. Y. Chan, et al. (2006). "Starvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomes." J Cell Sci 119(Pt 18): 3888-3900.

104. Zhou, B., N. Boudreau, et al. (1997). "Microtubule-associated protein 1 light chain 3 is a fibronectin mRNA-binding protein linked to mRNA translation in lamb vascular smooth muscle cells." J Clin Invest 100(12): 3070-3082.

105. Zhou, B. and M. Rabinovitch (1998). "Microtubule involvement in translational regulation of fibronectin expression by light chain 3 of microtubule-associated protein 1 in vascular smooth muscle cells." Circ Res 83(5): 481-489.

106. Zuchner, S., M. Noureddine, et al. (2005). "Mutations in the pleckstrin homology domain of dynamin 2 cause dominant intermediate Charcot-Marie-Tooth disease." Nat Genet 37(3): 289-294.

104.游韻真 (2008) GSK-3β是維持TSG101蛋白穩定之胞內訊息傳遞路徑
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code