Responsive image
博碩士論文 etd-0218105-011932 詳細資訊
Title page for etd-0218105-011932
論文名稱
Title
台灣杉遺傳多樣性之研究
The Genetic Diversity of Taiwania cryptomerioides Hayata
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
73
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2005-01-22
繳交日期
Date of Submission
2005-02-18
關鍵字
Keywords
遺傳多樣性、禿杉、簡單序列重複區間、台灣杉、內轉錄間隔區
genetic diversity, Taiwania flousiana Gaussen, internal transcribed spacers, inter- simple sequence repeat, Taiwania cryptomerioides Hayata
統計
Statistics
本論文已被瀏覽 5686 次,被下載 0
The thesis/dissertation has been browsed 5686 times, has been downloaded 0 times.
中文摘要
本研究利用PCR-amplified sequencing及ISSR等技術,以獲取台灣杉(Taiwania cryptomerioides Hayata)的分子標誌(molecular marker)。並進一步探討台灣杉族群的遺傳多樣性 (genetic diversity) ,以及台灣杉與禿杉 (Taiwania flousiana Gaussen) 間的分子親緣關係 (molecular phylogeny) 。在PCR- amplified sequencing的分析方面,針對演化過程中變異快速的核糖體DNA (ribosomal DNA) 的內轉錄間隔區 (internal transcribed spacer, ITS) 進行序列分析,總計分析來自於台灣8個不同族群的108個台灣杉樣本,以及來自中國雲南的12個禿杉樣本。結果顯示台灣杉的個體內ITS序列具異質性 (heterogeneity) ,各族群的核&#33527;酸歧異度 (nucleotide diversity) 亦高,平均為0.18153 ( π&#20516;)。經中性檢測 (Tajima’s D test) ,發現台灣杉的ITS在演化的過程中,序列之變異符合中性假說。在禿杉樣本的分析也發現個體內ITS具歧異性、高的π&#20516; (0.19751) 以及符合中性假說。然後將ITS序列進行群叢分析 (clustering analysis) 顯示台灣杉各族群間並無明顯分群。台灣杉與禿杉間亦沒有明顯分群。經Fst&#20516;的分析,發現台灣杉各族群間之Fst&#20516;均小於0.05,而台灣杉與禿杉之間有部分程度的分化 (Fst&#20516;0.0441~ 0.0856,平均為0.0611) 。在ISSR分析方面,經篩選100條ISSR引子,其中有4個引子的效果較好,可以獲得具有再現性條帶。總計可獲得24個條帶,其中有17個條帶具有多型性 (polymorphic) 。將上述分子資料進行遺傳距離換算及群叢分析,發現台灣杉各族群間及台灣杉與禿杉間並無明顯的分群。以AMOVA進一步分析台灣杉8個族群間及與雲南禿杉族群樣本的差異性,發現台灣杉與禿杉種間的變異佔38.54% (P < 0.001),而種內的變異則佔61.46% (P < 0.001),此表示種內的變異大於種間的變異程度。而在台灣杉族群間分析的結果,族群間的變異佔總變異的15.26% (P < 0.001),族群內的變異佔84.74% (P < 0.001),分析的結果顯示群內的變方成分 (variance component) 大於群間的變方成分。綜合上述的分子資料發現,台灣杉族群間無明顯的分化且基因流傳頻繁,其遺傳變異存在於族群內,而族群間則無顯著的差異。在台灣杉與禿杉之間,則因分離已有一段時間,呈現有些微程度的分化,但尚未達兩不同種。
Abstract
The aim of this study was to obtain the molecular marker of Taiwania cryptomerioides Hayata based on DNA sequence data of PCR- sequencing and inter-simple sequence repeat (ISSR), and to evaluate the genetic diversity of populations of Taiwania cryptomerioides Hayata and molecular phylogeny of T. cryptomerioides and Taiwania flousiana Gaussen. The sequence data based on the internal transcribed spacer (ITS) of a total of 108 samples of T. cryptomerioides were determined. Eight different populations of T. cryptomerioides and 12 samples of T. flousiana from Yunnan, China were analyzed. The finding of the study showed that heterogeneity of ITS region within individuals of T. cryptomerioides was high by showing high nucleotide diversity among ITS sequences both in T. cryptomerioides ( π = 0.18153) and T. flousiana ( π = 0.19751). The findings fit in Tajima’s D test of neutrality based on DNA sequence variation in the ITS region of T. cryptomerioides and T. flousiana. It is not obvious to incorporate into different population through clustering analysis based on data of the ITS region of T. cryptomerioides and T. flousiana. However, slightly genetic differentiation between T. cryptomerioides and T. flousiana was found, which figured of Fst (Fst = 0.0441~ 0.0856, an average value = 0.0611). On the other hand, the samples were studied by using ISSR markers. Of the 100 primers screened, 4 produced highly reproducible ISSR bands, and 24 discernible DNA fragments were generated with 17 being polymorphic. Based on cluster analysis of molecular data, the cluster is not clear among populations of T. cryptomerioides and T. flousiana. The analysis of AMOVA revealed that the variance component between species of T. cryptomerioides and T. flousiana was 38.54% (P < 0.001); however, the variance component within species is 61.46 (P < 0.001). The variation within population of T. cryptomerioides was 84.74% (P < 0.001) and the variance between populations is 15.26% (P < 0.001), indicating that the genetic diversity of individuals within population was high. The aforementioned data suggest that gene flow among different populations of T. cryptomerioides was high, indicating that the genetic diversity was high among individuals of T. cryptomerioides but was low between populations. Furthermore, it is concluded both species are genetically closer and could be grouped into the same species.
目次 Table of Contents
第一章 前言.........................................................1
一、台灣杉 (Taiwania cryptomerioides Hayata)簡介....................1
二、核糖體DNA (rDNA) 相關研究.......................................4
三、ISSR技術原理及其應用............................................7
四、研究目的........................................................10
第二章 材料與方法...................................................11
一、採樣............................................................11
二、基因體DNA (genomic DNA) 的萃取..................................13
三、定量DNA.........................................................14
四、聚合&#37238;鏈鎖反應 (polymerase chain reaction,PCR).................15
五、DNA純化.........................................................20
六、DNA接合作用 (ligation)........................................21
七、轉形作用(transformation)......................................21
八、菌落篩選........................................................22
九、質體純化........................................................22
十、質體限制&#37238;切割及核酸定序........................................23
十一、ISSR條帶的電泳、染色及照相....................................24
十二、ITS序列分析...................................................25
十三、ISSR條帶分析..................................................28
第三章 結果.........................................................31
一、ITS序列的分析...................................................31
二、族群內與族群間遺傳變異的分析....................................32
三、ISSR分析........................................................38
四、歸群分析的結果..................................................44
第四章 討論.........................................................49
第五章 結論.........................................................57
參考文獻............................................................59
附錄一..............................................................66
參考文獻 References
孔繁熙,1974。台灣杉遺傳性改良之研究--台灣杉種源(一)之研究。台灣省林業試驗所研究報告第254號。13pp。
王子定、高清、楊政川、徐政國,1976。台灣杉過氧化同位酵素之變異。國立台灣大學實驗林研究報告第118號。15pp。
田玉娟、郭幸榮、鍾年鈞,2003。台灣杉營養芽發育之物候模式-不同營養系在二試驗地之變異。台灣林業科學18(3):191-200。
呂錦明,1973。台灣杉不同種源苗木之變異。台灣省林業試驗所研究報告第246號。18pp。
呂錦明,1975。台灣杉不同種源苗木之變異(Ⅱ)。台灣省林業試驗所研究報告第261號。16pp。
呂錦明,1981。台灣杉種源試驗—七年生造林木之表現。台灣省林業試驗所研究報告第350號。13pp。
姜家華,1974。台灣杉不同種源發芽種子之呼吸量及早期生長之測定。中華農學會報第88號。pp.23-31。
黃士元,2002。特有植物台灣粗榧保育之研究----以族群遺傳變異及生態生理特性之觀點。國立中興大學植物學研究所博士論文。
黃 生,1991。基因流傳與族群分化。生物科學34 (2):19- 32。
劉業經、鄭宗元、賀主伯、歐辰雄、朱成本、呂金誠,1985。台灣杉種源之研究。中華林學季刊18 (1):1-8。
劉棠瑞,1991。植物分類學,卷肆。國立編譯館,台北市。pp.73-74。
劉業經、呂福原、歐辰雄,1994。台灣樹木誌。pp. 69。
鍾永立,1995。台灣杉母樹毬果及種子之變異比較。林業試驗所研究報告季刊。10(3):309-314。
鍾年鈞、郭幸榮、徐新武、許世宏,1998。台灣杉種子園開花結實之研究。兩岸林木種源交流研討會論文集。pp.1-8。
蘇鴻傑,1982。台灣杉之生物系統學研究及杉科系統分類之數示評估。國立臺灣大學森林學研究所博士論文。
Appels, R., W. L. Gerlach, E. S. Dennis, H. Swift, and W. J. Peacock. 1980. Molecular and chromosomal organization of DNA sequence coding for the ribosomal RNAs in cereals. Chromosoma 78: 293- 311.
Avise, J.C. 2000. Phylogeography: The history and formation of species. Harvard Univeristy Press London.
Baldwin, B. G., M. J. Sanderson, J. M. Poter, M. F. Wojciechowski, C. S. Campbell, and M. J. Donoghue. 1995. The ITS region of nuclear ribosomal DNA: A valuable source of evidence on angiosperm phylogeny. Ann. Miss. Bot. Gard. 82: 247-277.
Barker, R. F., N. P. Harberd, M. G. Jarvis, and R. B. Flavell. 1988. Structure and evolution of the intergenic region in a ribosomal DNA repeat unit of Wheat. J. Mol. Biol. 201: 1- 17.
Chase, M. W., and H. H. Hills. 1991. Silica gel: An ideal material for field preservation of leaf samples for DNA studies. Taxon 40: 215-220.
Chiang, T. Y., B. A. Schaal, and C. I. Peng. 1998. Universal primers for amplification and sequencing a noncoding spacer between atpB and rbcL genes of chloroplast DNA. Bot. Bull. Acad. Sin. 39: 245- 250.
Cole, C. T., and D. D. Biesboer. 1992. Monomorphism, reduced gene flow, and cleistogamy in rare and common species of Lespedeza (Fabaceae). Amer. J. Bot. 79: 567- 575.
D'Ovidio, R. 1992. Nucleotide sequence of a 5.8S rDNA gene and of the internal transcribed spacers from Populus deltoides. Plant Mol. Biol. 19: 1069- 1072.
Endler, J. A. 1973. Gene flow and population differentiation. Science 179: 243- 250.
Excoffier, L. 1993. Analysis of Molecular Variance. Version 1.55. Genetics and Biometry Laboratory University of Geneva.
Futuyma D. J. 1986. Evolution Biology Sinauer Assciates Inc.
Ge Xue-Jun, Yan Yu, Nan-Xian Zhao, Hai- Shan Chen, and Wen-Qing Qi. 2003. Genetic variation in the endangered Inner Mogolia endemic shrub Tetraena mongolica Maxim. (Zygophyllaceae). Biological Conservation 111: 427- 434.
Godwin, I. D., E. A. B. Aitken, and L. W. Smith. 1997. Application of inter simple sequence repeat (ISSR) markers to plant genetics. Electrophoresis 18: 1524- 1528.
Hamrick, J. L. and M. J. W. Godt. 1989. Allozyme diversity in plant species. In A. H. D. Brown, M. T. Clegg, A. L. Kahler and B. S. Weri [eds.]. Plan population genetics, breeding and genetic resources: p.43-63. Sinauer. Sunderland, M. A.
Hall, T. A. 1999. BioEdit: A user- friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids. Symp. Ser. 41: 95- 98.
Hamby, R. K., and E. A. Zimmer. 1988. Ribosomal RNA sequences for inferring phylogeny within the grass family (Poaceae). Plant Syst. Evol. 160: 29- 37.
Hills, D. M., and M. T. Dixon. 1991. Ribosomal DNA: Molecular Evolution and Phylogenetic Inference. The Quart. Rev. Biol. 66 (4): 411- 446.
Hizume, M. 1995. Physical Mapping of 5S rRNA Genes in Cycas revoluta. Cytologia 60: 389- 393.
Huang, T. C. 1988. The vegetational history of Taiwan as reflected by geopalynological studies. In: Edward K. Y. Chen (ed): The Palaeoenvironment of East Asia from the Mid- Tertiary Vol. 1. pp 528- 559. Centre of Asian Studies, Univ. H. K.
Hudson, R. R., M. Slatkin, and W. P. Waddison. 1992. Estimation of levels of gene flow from DNA sequence data. Genetics 132: 583- 589.
Hwang, S. Y., H. W. Lin, Y. S. Kuo, and T. P. Lin. 2001. RAPD variation inrelation to population differentiation of Chamaecyparis formosensis and Chamaecyparis obtuse var. formosana. Bot. Bull. Acad. Sin. 42 : 173- 179.
Jupe, E. R., R. L. Chapman, and E. A. Zimmer. 1988. Nuclear ribosomal rNA genes and algal phylogeny- The Chlamydomonas example. Biol. Sys. 21: 223- 230.
Karvonen, P., A. E. Szmidt, and O. Savolainen. 1994. Length variation in the internal transcribed spacer of ribosomal DNA in Picea abies and related species. Theor. Appl. Genet. 89: 969- 974.
Kato, A., T. Nakajima, J. Yamashita, K. Yakura, and S. Tanifuji. 1990. The structure of the large spacer region of the rDNA in Vicia faba and Pisum sativum. Plant Moil. Bio. 14: 983- 993.
Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evo. 16: 111- 120.
Kimura, M. 1983a. Rare variant alleles in the light of the neutral theory. Mol. Biol. Evol. 1: 84- 93.
Kimura, M. 1983b. The neutral theory of molecular evolution. Cambridge University Press. Cambridge.
Kumar, S., K. Tamura, I. B. Jakobsen, and M. Nei. 2001. MEGA 2: Molecular Evolutionary Genetics Analysis software. Bioinformatics 17: 1244-1245.
Lai, J. A., W. C. Yang, and J. Y. Hsiao. 2001. An assessment of genetic relationships in cultivated tea clones and native wild tea in Taiwan using RAPD and ISSR markers. Bot. Bull. Acad. Sin. 42: 93- 100.
Lin, T. P., C. S. Lu, and Y. L. Yang. 1993. Allozyme variation in four populations of Taiwania cryptomerioides in Taiwan. Silvae Genetica 42: 278- 284.
Liston, A., W. A. Robinson, J. M. Oliphant, and E. R. Alvarez-Buylla. 1996. Length variation in the nuclear ribosomal DNA internal transcribed spacer region of non-flowering seed plants. Syst. Bot. 21: 109- 121.
Loveless, M. D. and J. L. Hamrick. 1984. Ecological determinants of genetic structure in plant populations. Ann. Rev. Ecol. Syst. 15: 65- 95.
Martin, A. P. and S. R. Palumbi. 1993. Body size, metabolic rate, generation time, and the molecular clock. Proc. Natl. Acad. Sci. USA 90: 4087- 4091.
Maruyama, T. and M. Nei. 1981. Genetic variability maintained by mutation and overdominant selection in finite population. Genetics 98: 441- 459.
McLaughlin, S. P. 1986. Differentiation among population of tetraploid Grindelia Camporum. Amer. J. Bot. 73: 1748- 1754.
Miller, M. P. 1998. AMOVA-PREP 1.01: A program for the preparation of the AMOVA input files from dominant-marker raw data. Department of Biological Sciences. Northern Arizona University, Flagstaff, AZ.
Muster, W., K. Boon, C. A. F. M. van der Sande, H. van Herrikhuizan, and R. J. Planta. 1990. Functional analysis of transcribed spacers of yeast ribosomal DNA. EMBO J. 9: 3989- 3996.
Nei, M. 1987. Molecular Evolution Genetics. Columbia University Press. New York. U.S.A.
Owens, J. N. 1995. Constrains to seed production:temperate and tropical forest trees. Tree Physiol. 15: 477- 484.
Page, R. D. M. and E. C. Holmes, 1998. Molecular Evolution: A Phylogenetic Approach. Blackwell Science. Oxford.
Prevost, A. and M. J. Wilkinson. 1999. A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theor. Appl. Genet. 98: 107- 112.
Qian, W., S. Ge, and D-Y. Hong. 2001. Genetic variation within and among populations of a wild rice. Oryza granulata from China deteted by RAPD and ISSR markers. Theor. Appl. Genet. 102 : 440-449.
Quijada, A., A. Liston, P. Delgado, A. Vazquez-Lobo, and E. R. Alvarz-Buylla. 1998. Variation in the nuclear ribosomal DNA internal transcribed spacer (ITS) region of Pinus rzedowskii revealed by PCR-RELP. Theor. Appl. Genet. 96: 539- 544.
Rohlf, F. J. 1997. NTSYS-pc. Applied Biostatistics. Inc. New York.
Rozas, J. and R. Rozas. 1999. DnaSP version 3.0: An integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics 15: 174- 175.
Schaal, B. A. 1980. Measurement of gene flow in Lupinus texensis. Nature 284: 450- 451.
Schaal, B. A. and G. H. Learn. 1988. Ribosomal DNA variation within and among plant populations. Ann. Miss. Bot. Gard. 75: 1207- 1216.
Slatkin, M. 1985a. Rare alleles as indicators of gene flow. Evolution 39: 53- 65.
Slatkin, M. 1985b. Gene flow in nature populations. Ann. Rev. Ecol. Syst. 16: 393- 430.
Slatkin, M. 1987. Gene flow and the geographic structure of natural  population. Science 236: 787- 792.
Smith, D. E. and A. S. Klein. 1994. Phylogenetic inference on the relationship of north american and european Picea based on nuclear ribosomal 18S sequences and the internal transcribed spacer 1 region. Mol. Phylogenet. Evol. 3: 17- 26.
Tajima, F. 1989. Statistical method for testing the neutral mutation hypothesis byDNA polymorphism. Genetics 123: 585- 595.
Takaiwa, F., S. Kikuchi, K. Oono, and M. Sugiura. 1985. Nucleotide sequence of the 17- 25S spacer region from rice rDNA. Plant Moil. Biol. 4: 355- 364.
van der Sande, C. A., M. Kwa, R. W. van Nues, H. van Heerikhuizen, H. A. Raue, and R. J. Planta. Functional analysis of internal transcribed spacer 2 of Saccharomyces cerevisiae ribosomal DNA. J. Mol. Biol. 1992. 223: 899- 910.
van Nues, R. W., J. M. Rientjes, C. A. van der Sande, S. F. Zerp, C. Sluiter, J. Venema, R. J. Planta, and H. A. Rau&eacute;. 1994. Separate structural elements within internal transcribed spacer 1 of Saccharomyces cerevisiae precursor ribosomal RNA direct the formation of 17S and 26S rRNA. Nucleic Acids Res. 22: 912- 919.
Vogel, J. M. and P. A. Scolnik. 1997. Direct amplification from microsatellites: Detection of simple sequence repeat- based polymorphisms without cloning. DNA Markers pp 133-150.
Vos P., R. Hogers, M. Bleeker, M. Reijans, Lee TVD, M. Hornes, A. Frijters, J. Pot, J. Peleman, M. Kuiper, and M. Zabeau. 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 23: 4407- 4414.
Waldron, J., P. Dunsmuir, and J. Bedbrook. 1983. Characterization of the rDNA repeat units in the Mitchell Petunia genome. Plant Mol. Biol. 2: 57- 65.
Wendel, J. F. and C. R. Parks. 1985. Genetic diversity and population structure in Camellia japonica L. (Theaceae). Amer. J. Bot. 72: 52- 65.
White, T. J., T. Bruns, S. Lee, and J. Taylor. 1990. Amplication and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A guide to methods and applications. M. Innis, D. Gelfand, J. Sninsky, and T. white (eds). pp. 315- 322. Academic Press, San Diego.
Williams, J. G. K., A. R. Kubelik, K. J. Livak, J. A. Rafalski, and S.V. Tingey. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research 18(22): 6531-6535.
Wright, J. W. 1976. Introduction to forest genetics. Academic Press. New York.
Wright, S. 1965. The interpretation of population structure by F- statistics with special regard to systems of mating. Evolution 19: 395- 420.
Young, A., T. Boyle, and A. Brown. 1996. The population genetic consequences of habitat fragmentation for plants. Trends in Ecology and Evolution 11: 413- 418.
Zietkiewicz, E., A. Rafalski, and D. Labuda.1994. Genome fingerprinting by simple sequence repeat (SSR)- anchored polymerase chain reaction amplication. Genome 20: 176- 183.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.118.140.108
論文開放下載的時間是 校外不公開

Your IP address is 18.118.140.108
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code