Responsive image
博碩士論文 etd-0218105-142607 詳細資訊
Title page for etd-0218105-142607
論文名稱
Title
溫度和濕度效應對光催化分解氣相揮發性有機物之影響
The effects of reaction temperature and humidity on the gas-phase photocatalytic degradation of volatile organic compounds
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
216
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2005-01-14
繳交日期
Date of Submission
2005-02-18
關鍵字
Keywords
溼度、光催化反應、揮發性有機物、動力模式、溫度、反應路徑
reaction pathway, temperature, humidity, Langmuir-Hinshelwood model, VOCs, photocatalysis
統計
Statistics
本論文已被瀏覽 5687 次,被下載 6364
The thesis/dissertation has been browsed 5687 times, has been downloaded 6364 times.
中文摘要
本研究旨在利用近紫外光/二氧化鈦程序(Near UV/TiO2),探討以溫度和溼度為主要操作參數,對於光催化分解揮發性有機物(VOCs)之影響。所選擇之VOCs包括苯、甲基第三丁基醚 (Methyl tert-Butyl Ether, MTBE)、四氯乙烯 (Perchloroethylene, PCE) 和甲苯。並根據實驗結果,挑選受溫度和溼度影響較為明顯的苯和MTBE進行產物分析,探討溫度和溼度效應對光催化反應路徑之影響機制。最後進行苯和MTBE之光催化反應動力研究分析,推導包含溫度、溼度、VOCs濃度和氧氣濃度等參數之光催化反應動力模式,並進行模擬研究。
本研究採用環型填充床反應器進行VOCs之光催化分解實驗,光催化反應器中央置放一支15W近紫外光燈管為光源,以填充披覆在3.0 mm Pyrex玻璃珠之Degussa P-25 TiO2為光觸媒。研究結果顯示,苯之光催化轉化率在溫度100~160℃隨反應溫度增加而增加,當反應溫度超過180℃時,轉化率隨溫度增加而下降;MTBE在反應溫度30~ 120℃之間,轉化率隨溫度增加而增加,超過120℃熱催化作用開始出現;PCE在反應溫度100~200℃之間,轉化率隨溫度增加而降低;甲苯則在溫度100~200℃範圍內,轉化率不受溫度明顯影響。根據氣固反應原理,反應溫度提高會提昇化學反應速率並降低反應物吸附於觸媒表面的平衡吸附量,若整體反應速率隨溫度增加,顯示反應物吸附的降低並不影響整體反應速率,因此化學反應為速率控制步驟;若反應溫度繼續提高,化學反應速率逐漸增加,反應物吸附逐漸減少,速率決定步驟可能由化學反應控制轉移為反應物吸附控制,因而造成整體反應速率隨溫度增加而降低。此外,溼度效應對於各VOCs之影響亦有很大差異。苯之轉化率隨水氣濃度的增加而提昇;MTBE則隨溼度增加呈先促進而後抑制;PCE則隨溼度增加而抑制;甲苯則隨溼度增加僅在高溫時略為增加。VOCs和水在觸媒表面的競爭吸附,是溼度和VOCs進流濃度此兩參數對VOCs轉化率形成促進和抑制作用的主要原因。
苯之CO和CO2產率和礦化率隨溫度、溼度、反應物濃度之變化不大,礦化率非常高,維持在0.85~1,CO和CO2之選擇性分別為5~15%和85~95%,其分解途徑似不受溫度、溼度、反應物濃度變化之影響。MTBE之光催化含碳有機產物以丙酮和第三丁醇(tert-Butyl Alcohol, TBA)為主,水氣的增加使反應路徑由生成丙酮為主朝向生成TBA為主。溫度的增加則使得反應路徑由生成TBA為主朝向生成丙酮為主。
在光催化VOCs之反應動力模式方面,本研究應用相互競爭且反應之雙分子L-H反應動力式,加入溫度項和氧氣項修正,模擬在不同反應溫度、溼度、VOCs進流濃度和氧氣濃度下,光催化分解苯和MTBE之情形。實驗值與模擬值相當吻合,因此,本研究認為VOCs和水氣在TiO2表面之行為,可以彼此反應且相互競爭同類型之活性位置來描述;氧氣在TiO2表面並未發現與MTBE和水互相競爭活性位置之情形,因此氧氣之吸附位置可能與VOCs和水不同。模式中之速率常數值隨溫度增加而增加;吸附平衡常數值隨溫度增加而降低,本修正模式即藉由此兩參數隨溫度之消長,模擬出溫度之促進與抑制作用。此外,由本修正模式亦可推算光催化VOCs之反應活化能和VOCs、水、氧氣等之吸附焓值。最後,經由模式敏感度分析得知,反應控制步驟轉移之溫度與水氣濃度和反應物進流濃度有關,在低水氣和低反應物進流濃度時,反應控制步驟轉移溫度可在較低溫時出現。
Abstract
This study investigated the effects of temperature and humidity on the photocatalytic oxidation of volatile organic compound (VOCs) over titanium dioxide. Benzene, methyl tert-butyl ether (MTBE), perchloroethylene (PCE), and toluene were selected to investigate the influences of temperature and humidity on photocatalytic conversion. Among these four VOCs, benzene and MTBE were selected for the investigation of reaction pathways and kinetics.
This work employed a self-designed annular packed-bed photocatalytic reactor to determine the conversion and reaction rates during photocatalytic degradation of VOCs. Degussa P-25 TiO2 was used as the photocatalyst and a 15 W near-UV lamp (350 nm) served as the light source. Benzene conversions increased with temperature below 160 ºC, but decreased above 160 ºC. Moreover, the conversions of MTBE increased with temperature from 30 to 120 ºC, and the thermocatalytic reaction began above 120 ºC. The conversions of PCE decreased as the temperature increased from 120 to 200 ºC. Toluene conversions almost remained constant at 100~200 ºC. Based on the gas-solid catalytic reaction theory, raising the reaction temperature could promote the chemical reaction rate and reduce reactant adsorption on TiO2 surfaces. The overall reaction rate increased with temperature, indicating that the reduction of reactant adsorption did not affect the overall reaction, and thus the chemical reaction was the rate-limiting step. As the chemical reaction rate gradually increased and the reactant adsorption decreased with temperature, the rate-limiting step could shift from the chemical reaction to the reactant adsorption, while the overall reaction rate decreased with temperature. Additionally, the competitive adsorption between VOCs and water for the active sites on TiO2 resulted in VOCs influent concentration and humidity promoting or inhibiting the reaction rate.
The mineralization of benzene and the selectivity of CO and CO2 were not obviously affected under various temperatures, humidities, and influent benzene concentrations. The benzene mineralization ratios ranged from 0.85 to 1.0, to which CO and CO2 contributed approximately 5~20% and 80~95%, respectively. Temperature and humidity variation did not influence the photocatalytic reaction pathway of benzene. Acetone (AC) and tert-butyl alcohol (TBA) were two major organic products for the photocatalysis of MTBE. The addition of water transferred the reaction pathway from producing AC to TBA, while the temperature increase transferred the reaction pathway from producing TBA to AC.
A modified bimolecule Langmuir-Hinshelwood kinetic model was developed to simulate the temperature and humidity related promotion and inhibition of the photocatalysis of benzene and MTBE. The competitive adsorption of VOCs and water on the active sites resulted in VOCs influent concentration and humidity promoting or inhibiting the reaction. The reaction rate constant increased with temperature while the adsorption equilibrium constants decreased, confirming that increasing reaction temperature enhanced the chemical reaction, but reduced the adsorption of VOCs and water. Furthermore, the correlation developed here was also used for determining the apparent activation energy of photocatalytic oxidation of VOCs and the adsorption enthalpies of benzene, MTBE, water vapor, and oxygen.
目次 Table of Contents
目錄
致謝…………………………….……………..………………. Ⅰ
摘要……………………………………….……………..……………….Ⅱ
英文摘要……………………………….……………..……………….Ⅳ
目錄……………………………………….…………..………………. Ⅵ
表目錄……………………………………….……………..…………ⅩⅠ
圖目錄……………………………………….……………..……….…ⅩⅢ
第一章 緒論……………………………….……………..…………...1-1
1.1 研究緣起……………………………….……………..………..…...1-1
1.2 研究目的……………………………….……………..………..…...1-8
第二章 文獻回顧……………………….……………..………...…...2-1
2.1 催化反應基本原理…………………….……………..………...…...2-1
2.1.1 催化反應之種類………………….……………..………...…...2-1
2.1.2 半導體光觸媒之能隙…………….……………..………...…...2-3
2.1.3 半導體光觸媒之分類…………….……………..………...…...2-6
2.2光催化反應之物理原理…………….………………...………...…...2-7
2.2.1 光催化反應之種類…………….………………..………...…...2-7
2.2.2 半導體的電子激發過程…………….……………..………....2-10
2.2.2.1 半導體能隙激發過程……….……………..…….…....2-10
2.2.2.2 半導體能帶邊緣之位置…….……………..…….…....2-12
2.2.2.3 半導體電荷載體阱…….…………………..…….…....2-14
2.2.2.4 半導體量子尺寸效應…….………………..…….…....2-14
2.2.3 光催化反應機制…………….………………..……….....…..2-16
2.3 二氧化鈦光催化反應原理…………….…………………………..2-17
2.3.1 二氧化鈦結晶型態和表面結構…….………………..……....2-17
2.3.2 二氧化鈦之製備…….………………………………..……....2-19
2.3.3 二氧化鈦表面之吸附及脫附行為…………………..……....2-21
2.3.3.1 水分子吸附……….……………..……………….…....2-22
2.3.3.2氧分子吸附…..…….……….……………..…….…....2-24
2.3.3.3 有機物吸附…………….…………………..…….…....2-24
2.3.4 二氧化鈦光催化反應機制…….…………………..…….…..2-25
2.4 光催化反應之反應動力分析…….……………….……..…….…..2-29
2.4.1 光催化反應動力步驟…….…………………..………….…..2-29
2.4.2 吸附等溫線……….…………………..………………….…..2-32
2.4.3 反應動力模式…….…………………..………………….…..2-33
2.4.4 速率決定步驟…….…………………..………………….…..2-38
2.4.5 反應速率常數和吸附平衡常數與反應溫度之關係…….…..2-39
2.4.6 反應速率隨溫度變化之關係………..……………..…….…..2-41
2.5 影響光催化反應之參數.…………………..…………………..…..2-42
2.5.1 反應溫度之影響.…………………..………….………….…..2-42
2.5.2 反應溼度之影響.…………………..………….………….…..2-45
2.5.3 氧氣濃度之影響.…………………..………….………….…..2-48
第三章 研究方法…………………..………….………………..…..3-1
3.1實驗材料及製備方法……………..………….………………….…..3-3
3.1.1實驗材料………………….…..………….………………..…..3-3
3.1.2 TiO2觸媒製備方法…………..………….……………..…..…..3-4
3.2 實驗設備…………….…..………….…………….……………..…..3-4
3.2.1 VOCs產生系統…………….…..………….…………….....…..3-4
3.2.2光催化反應系統…………….…..…………….………………..3-6
3.2.3 產物分析系統…………….…..………….………………..…...3-6
3.3 實驗方法…………….…..………….…………………………..…...3-6
3.3.1 操作參數及範圍…………….…..………….…..……………...3-6
3.3.2 系統穩定度測試………………………………………...…....3-10
3.3.3 氣體流速和停留時間估算……………………………...…....3-10
3.3.4 載體披覆觸媒量估算………………………………..…….....3-12
3.3.5 水蒸氣濃度估算……………………………………..…….....3-12
3.3.6 載體吸附和均相光反應測試………………………..…….....3-13
3.3.7 不照光反應測試……………………………………..…….....3-14
3.3.8 光活性持續測試……………………………………..…….....3-14
3.3.9 反應流量測試………………………..…………………….....3-14
3.3.10 產物分析方法…………………..…………………………...3-15
3.3.11 實驗室分析品保品管………………………..……..…….....3-18
第四章光催化反應實驗數據分析…..……...…..…….…………....4-1
4.1 系統特性測試………………………………………..……...……....4-2
4.1.1 載體吸附測試結果………………………..……..…….……....4-2
4.1.2 均相光反應測試結果………………………..……..…….…....4-5
4.1.3 不照光實驗測試結果………………………..……..…….…....4-5
4.1.4 光活性持續實驗測試結果………………………..…….....…..4-6
4.1.5 反應流量測試結果………………………..…………...……....4-9
4.2 反應溫度對光催化分解VOCs之影響……..……..……………....4-13
4.2.1 反應溫度對光催化分解苯之影響……..……..………….......4-13
4.2.2 反應溫度對光催化分解MTBE之影響……..……..……......4-18
4.2.3 反應溫度對光催化分解PCE之影響……..……..…….…….4-22
4.2.4 反應溫度對光催化分解甲苯之影響……..……..……...…....4-24
4.3 反應溼度對光催化分解VOCs之影響……..……..……………....4-27
4.3.1 反應溼度對光催化分解苯之影響……..……..………...…....4-27
4.3.2 反應溼度對光催化分解MTBE之影響……..……....……....4-32
4.3.3 反應溼度對光催化分解PCE之影響……..………………....4-34
4.3.4 反應溼度對光催化分解甲苯之影響……..……..……...…....4-36
4.4 VOCs進流濃度對光催化分解反應之影響……..………..……....4-39
4.4.1 苯進流濃度對光催化分解反應之影響……..……….……....4-39
4.4.2 MTBE進流濃度對光催化分解反應之影響……..…..…......4-44
4.5 氧氣濃度對光催化分解VOCs之影響……..……..……….…......4-44
4.6 反應時間對光催化分解VOCs之影響……..……..……….…......4-49
第五章 反應產物分析和反應路徑探討……..…………..……....5-1
5.1 光催化分解苯之產物分析及反應路徑……..……..………….…....5-1
5.1.1 操作條件對光催化分解苯氣相產物之影響……..……...…....5-1
5.1.2 光催化分解苯之反應路徑……..……..………………..…....5-2
5.2 光催化分解MTBE之產物分析及反應路徑探討……..…….…....5-11
5.2.1 水氣濃度協同溫度對於MTBE光催化產物之影響….…......5-11
5.2.2 氧氣濃度協同溫度對於MTBE光催化產物之影響…..…....5-17
第六章 光催化分解反應動力模式分析…..……………………..6-1
6.1 光催化分解苯之反應動力模式分析……….……………………....6-1
6.2 光催化分解MTBE之反應動力分析………………...…………....6-13
6.2.1光催化分解MTBE之反應動力模式分析…………………....6-13
6.2.2 敏感度分析……………………………………………...…....6-26
第七章 結論與建議……………………………………………….....7-1
7.1 結論…………………………………………………………..……...7-1
7.2 建議……………………………………………………………..…...7-4
參考文獻…………………………………………………………..…...8-1
附錄A……………………………………………………………...…...A-1
附錄B……………………………………………………………...…...B-1
附錄C……………………………………………………………...…...C-1
附錄D……………………………………………………………...…...D-1

表目錄
表1.1 常用有機溶劑可能導致之危害……….………………………..1-2
表1.2 環保署建議優先管制之揮發性有機污染物清單……….…..…1-5
表1.3 各種揮發性有機污染物處理方法之比較……….……….……..1-7
表1.4 可利用光催化法處理之VOCs種類……….…………….……..1-9
表2.1固體觸媒之分類……….………….……………………………..2-2
表2.2光催化反應與熱催化反應的比較……….………….…………..2-3
表2.3 半導體之能隙寬度和激發所需光波波長……….……..……....2-5
表2.4半導體金屬氧化物之分類……….……………..….…………....2-7
表2.5不同鍛燒溫度下以烴氧化物製備TiO2的特性..….……..…....2-20
表2.6 TiO2鍛燒溫度與孔隙度和比表面積之關係.……...………..... 2-20
表2.7 物理吸附和化學吸附的比較…………..….…………..…….....2-23
表2.8 光催化反應動力模式…….……………..….………………....2-34
表2.9 溫度效應影響光催化反應之文獻歸納…..….…………..….....2-43
表2.10 溼度效應影響光催化反應之文獻歸納…..….…………….....2-46
表3.1 光催化分解苯之實驗操作參數及範圍..….………………….....3-8
表3.2 光催化分解MTBE之實驗操作參數及範圍…………………....3-8
表3.3 光催化分解PCE之實驗操作參數及範圍……………………....3-9
表3.4 光催化分解甲苯之實驗操作參數及範圍……………………....3-9
表3.5不同反應溫度下之空床流速、填充床流速和雷諾數…….......3-11
表4.1不同VOCs之載體吸附測試操作條件……………………….…4-3
表4.2 苯、MTBE和甲苯吸附於光觸媒之可能中間產物……….…...4-10
表4.3不同VOCs之攜行流量測試操作條件………………….……..4-11
表4.4 反應溫度對於光催化分解VOCs之影響測試條件……..…….4-14
表4.5 苯、MTBE、PCE和甲苯之反應速率比較………….…...…….4-25
表4.6 反應溼度對於光催化分解VOCs之影響測試條件……..…….4-28
表5.1 光催化分解苯和酚在TiO2觸媒上之可能中間產物……......….5-4
表5.2 苯和酚之光催化反應中間產物基本性質……………………..5-10
表6.1 不同反應溫度下,雙分子L-H修正模式(式(6-1))迴歸光
催化分解苯之反應速率常數及吸附平衡常數值………………6-3
表6.2 含溫度項之雙分子L-H修正模式(式(6-5))迴歸參數值……….6-8
表6.3 不同反應溫度下,雙分子L-H修正模式(式(6-8))迴歸之
反應速率常數及吸附平衡常數值……………………………..6-16
表6.4 含溫度項之雙分子L-H修正模式(式(6-13))迴歸參數值……..6-20
表A-1 TiO2的基本性質及應用…………………...…………………..A-1
表A-2 TiO2之基本物理化學特性………………...… ………………..A-1
表A-3 P-25 TiO2之物理化學特性………………...…………………..A-2
表B-1 TiO2(anatase)XRD之JCPDS card………...…………………....B-1
表B-2 TiO2(rutile)XRD之JCPDS card………...……………………....B-1
表D-1 光催化分解苯在各操作條件下之實驗數值…………………..D-1
表D-2 光催化分解苯在各操作條件下之實驗數值和模式模擬結果..D-5
表D-3 光催化分解MTBE之轉化率和產物產率在各操作條件
下之實驗數值………...………………………………...……....D-7
表D-4 光催化分解MTBE在各操作條件下之實驗數值和模式
模擬結果………...………………………………...……..…....D-10
表D-5 光催化分解PCE在各操作條件下之實驗數值…………..…..D-13
表D-6 光催化分解甲苯在各操作條件下之實驗數值…………...….D-14


圖目錄
圖2.1 金屬、半導體和絕緣體之能帶圖……….……………..………...2-4
圖2.2 反應物之初始激發過程……….…………………………....…..2-9
圖2.3半導體能隙激發過程中電子-電洞對遵循的可能路徑…....…..2-11
圖2.4常用半導體的能帶邊緣位置….…………………….……...…..2-13
圖2.5 觸媒內部和表面電荷載體阱示意圖……………….……...…..2-15
圖2.6 銳鈦礦和金紅石之能隙和能帶邊緣位置示意圖…….…...…..2-18
圖2.7光催化反應動力步驟示意圖………………………….…...…..2-30
圖3.1 研究實驗架構圖………………………………………….….…..3-2
圖3.2 VOCs氣體鋼瓶配置圖……..…………………………….....…..3-5
圖3.3 環形填充床反應器…………………………………………..…..3-7
圖3.4 光催化反應設備示意圖………………………….………….…..3-7
圖4.1不同VOCs之載體吸附和均相光測試結果……………………...4-4
圖4.2 不同VOCs之TiO2吸附測試結果……………………………….4-7
圖4.3 不同VOCs之活性持續測試結果………………………………4-8
圖4.4 不同VOCs之攜行流量測試結果……………………………...4-12
圖4.5 在不同溼度條件下,光催化分解苯之轉化率隨反應
溫度變化之趨勢…….………………………………………….4-15
圖4.6 在不同苯進流濃度條件下,光催化分解苯之轉化率
隨溫度變化之趨勢…….………………………………………4-17
圖4.7在不同溼度條件下,光催化分解MTBE之轉化率隨
溫度變化之趨勢 ([MTBE] = 150 ppmv, [H2O] = 1,500
~23,000 ppmv, [O2] = 20%, 反應時間 = 2.0 sec, 光照
強度 = 3.5 mW/cm2, 觸媒量 = 0.28 g)……………………....4-19

圖4.8 在不同MTBE進流濃度下,光催化分解MTBE之轉
化率隨溫度變化之趨勢………………………………………..4-20
圖4.9 在不同氧氣濃度下,光催化分解MTBE之轉化率隨
溫度變化之趨勢………………………………………………..4-21
圖4.10在不同溼度條件下,光催化分解PCE轉化率隨反應
溫度變化之趨勢………………………………………………..4-23
圖4.11在不同溼度條件下,光催化分解甲苯轉化率隨反應
溫度變化之趨勢………………………………………………..4-26
圖4.12圖4.12在不同反應溫度條件下,光催化分解苯轉化
率隨溼度變化之趨勢([C6H6] = 100 ppmv, [H2O] = none
added~21,500 ppmv, [O2] = 20%, 反應時間 = 7.2 sec,
光照強度 = 3.5 mW/cm2, 觸媒量 = 0.2 g)…………………..4-29
圖4.13在不同反應溫度條件下,光催化分解MTBE轉化率
隨溼度變化之趨勢……………………………………………..4-33
圖4.14在不同反應溫度條件下,光催化分解PCE轉化率隨
溼度變化之趨勢………………………………………………..4-35
圖4.15 在不同反應溫度條件下,光催化分解甲苯轉化率隨
溼度變化之趨勢………………………………………………..4-37
圖4.16在不同反應溫度條件下,光催化分解苯轉化率隨苯
進流濃度變化之趨勢([C6H6] = 75~150 ppmv, [H2O]
= 21,500 ppmv, [O2] = 20%, 反應時間 = 7.2 sec,
光照強度 = 3.5 mW/cm2, 觸媒量 = 0.2 g)………………..…4-40
圖4.17在反應溫度100~160℃條件下,光催化分解苯反應速率
隨苯進流濃度和溼度變化趨勢圖。(a)[C6H6] = 75~150
ppmv, [H2O] = 21,500 ppmv, [O2] = 20%, 反應時間= 7.2 sec,
光照強度 = 3.5 mW/cm2, 觸媒量= 0.2 g,(b)[C6H6] =100
ppmv, [H2O] = 0~21,500 ppmv, [O2] = 20%, 反應時間= 7.2
sec,光照強度 = 3.5 mW/cm2, 觸媒量= 0.2 g………………...4-41
圖4.18在反應溫度180~260℃條件下,光催化分解苯反應速率
隨苯進流濃度和溼度變化趨勢圖。(a)[C6H6] = 75~150
ppmv, [H2O] = 21,500 ppmv, [O2] = 20%, 反應時間= 7.2
sec,光照強度 = 3.5 mW/cm2, 觸媒量= 0.2 g,(b)[C6H6] =
100 ppmv, [H2O] = 0~21,500 ppmv, [O2] = 20%, 反應時間
= 7.2 sec, 光照強度 = 3.5 mW/cm2, 觸媒量= 0.2 g……..…..4-42
圖4.19在不同反應溫度條件下,光催化分解MTBE轉化率
隨MTBE進流濃度變化之趨勢………………………………..4-45
圖4.20在不同反應溫度條件下,光催化分解MTBE反應速率
隨MTBE進流濃度和溼度變化之趨勢。(a)[MTBE] = 50~450
ppmv, [H2O] = 23,000 ppmv, [O2] = 20%,反應時間 = 2.0 sec,
光照強度 = 3.5 mW/cm2, 觸媒量= 0.28 g,(b)[MTBE] = 150
ppmv, [H2O] = 0~23,000 ppmv, [O2] = 20%, 反應時間 = 2.0 sec ,
光照強度 = 3.5 mW/cm2, 觸媒量= 0.28 g………………...…4-46
圖4.21在不同反應溫度條件下,光催化分解MTBE轉化率隨
氧氣濃度變化之趨勢…………………………………………..4-48
圖4.22在不同反應溫度條件下,光催化分解苯轉化率隨停留
時間變化之趨勢………………………………………...……..4-51
圖4.23在不同反應溫度條件下,光催化分解苯之C/C0隨停留
時間變化之趨勢………………………………………...……..4-52
圖5.1 在不同反應溼度、苯進流濃度、反應時間操作下,光
催化苯之礦化率隨反應溫度之變化趨勢。W1~W4:不
同反應溼度(W1~W4 = none added~21,500 ppmv ([C6H6]
= 100 ppmv, [O2] = 20%));B1~B4:不同苯進流濃度
(B1~B4 = 75~150 ppmv ([H2O] = 21,500ppmv, [O2] = 20%))….5-3
圖5.2 光催化分解苯之可能反應路徑(a)苯之分解途徑(b)酚
之分解途徑(c)苯環斷鍵後之分解途徑………………………...5-6
圖5.3 光催化分解苯之可能反應機制…………………………………5-8
圖5.4光催化分解MTBE產物-AC、TBA和TBF產率與水分子
濃度及反應溫度之關係([MTBE]=150 ppmv;[H2O]= 1,500
〜23,000 ppmv;[O2]=20 %;反應溫度= 30~120℃;停留
時間= 2.0sec;光照強度= 3.5 mW/cm2;觸媒量= 0.28 g)…….5-12
圖5.5 光催化分解MTBE反應路徑…………………………………..5-15
圖5.6光催化分解MTBE產物-AC和TBA產率與氧氣濃度
及反應溫度之關係([MTBE]= 150 ppmv;[H2O]= 23,000
ppmv;[O2]=1~20 %;反應溫度= 30~120℃;停留時間=
2.0 sec;光照強度= 3.5 mW/cm2;觸媒量= 0.28)……….……5-18
圖6.1 雙分子L-H修正模式數值迴歸中,反應速率常數(kLH)
、苯吸附平衡常數(KB)和水吸附平衡常數(KW)之回歸
值與反應溫度之關係……………………………………………6-4
圖6.2 ln k或ln K + 0.5lnT 隨1/T 變化之關係 (a)苯之表觀
活化能 (E), (b)苯之吸附焓(ΔHB), (c)水之吸附焓(ΔHW) …..…6-7
圖6.3 在不同苯進流濃度下,苯光催化反應速率隨反應溫度
之影響……………………………………………………………6-9
圖6.4 在不同水分子濃度下,苯光催化反應速率隨反應溫度
之影響…………………………………………………………..6-10
圖6.5 在100~200℃溫度下,苯進流濃度和水分子濃度對苯
光催化反應速率之影響。(a),(b)苯進流濃度和反應速
率之關係,(c),(d)水氣濃度對反應速率之關係([H2O]
= 21,500 ppmv, [O2] = 20%, 反應時間 = 8.0 sec, 光照
強度= 3.5 mW/cm2, 觸媒量 = 0.20 g )……………….……….6-11
圖6.6在不同苯進流濃度和水分子濃度操作下,苯光催化反
應速率隨反應溫度之模式預測結果…………………………..6-14
圖6.7 雙分子L-H修正模式數值迴歸中,反應速率常數(kLH)
、MTBE吸附平衡常數(KM)、水吸附平衡常數(KW)和
氧吸附平衡常數(KO)之迴歸數值隨反應溫度之關係………..6-17
圖6.8 ln k 或 ln K + 0.5lnT 隨1/T 變化之關係 (a) MTBE
之表觀活化能(E), (b)MTBE之吸附焓(ΔHM),(c)水之
吸附焓(ΔHW), (d) 氧之吸附焓(ΔHO)…………………………6-19
圖6.9在不同實驗參數下,MTBE光催化反應速率隨反應溫
度之影響(a)不同之MTBE進流濃度([H2O] = 23,000
ppmv, [O2] = 20%),(b)不同之水分子濃度([MTBE] =
150 ppmv, [O2] = 20%),(c)不同之氧氣濃度([MTBE]
= 150 ppmv, [H2O] = 23,000 ppmv)……………………………6-22
圖6.10光催化分解MTBE之反應速率隨MTBE進流濃度
之影響…………………………………………………………..6-23
圖6.11光催化分解MTBE之反應速率隨水分子濃度之影響……….6-24
圖6.12光催化分解MTBE之反應速率隨氧氣濃度之影響………….6-25
圖6.13在不同MTBE進流濃度下,MTBE光催化反應速率
隨反應溫度之模式預測結果…………………………………..6-27
圖6.14在不同MTBE進流濃度和水分子濃度操作下,MTBE
光催化反應速率隨反應溫度之模式預測結果………………..6-29
圖6.15在不同MTBE進流濃度和水分子濃度操作下,MTBE
光催化反應速率隨反應溫度之模式預測結果………………..6-30
圖6.16在不同MTBE進流濃度和水分子濃度操作下,MTBE
光催化反應速率隨反應溫度之模式預測結果………………..6-31
圖6.17在不同MTBE進流濃度和水分子濃度操作下,MTBE
光催化反應速率隨反應溫度之模式預測結果………………..6-32
圖B-1 TiO2之XRD圖譜…………………………………………..…..B-2
圖B-2 TiO2掃描式電子顯微鏡放大104倍照片…………………..…..B-2
圖B-3 EDS之TiO2訊號譜圖…………………………………………..B-3
圖C-1 C6H6之檢量線圖………………………………………………..C-1
圖C-2 MTBE檢量線…………………………………………………..C-2
圖C-3 TBA檢量線……………………………………………………..C-2
圖C-4 Acetone檢量線…………………………………………..……..C-3
圖C-5 C2Cl4之檢量線圖…………………………………………...…..C-4
圖C-6 C7H8之檢量線圖………………………………………………..C-5
圖C-7 CO2之檢量線圖………………………………………….……..C-6
圖C-8 CO之檢量線圖……………………………………………..…..C-7
參考文獻 References
參考文獻
Adamson, A. W., “Physical chemical of surface”, 5th ed. John Wiley & Sons, New York (1990)
Anderson, M. A., Xu, Q., “Preparation of titanium oxide ceramic membranes”, U.S. paten, Patten No. 5096745 (1992)
Anderson, M. A., Yamazaki-Nishida, A., Cervera-March, S., “Photodegradation of trichloroethylene in the gas phase using TiO2 porpous ceramic membranes”, in Photocatalytic Purification and Treatment of Water and Air, Ollis, D. F., Al- Ekabi, H., Eds., Elsevier: Amsterdam, p.405 (1993)
Anpo, M., Shima, T., Kubokawa, Y., “ESR and photoluminescence evidence for the photocatalytic formation of hydroxyl radicals on small TiO2 particles”, Chemitry Letters, The Chemical Society of Japan, p.1799 (1985)
Atkinson, R., “Gas-phase tropospheric chemistry of organic compounds: a review,” Atoms. Environ. 24A, p.1 (1990)
Avila P., Bahamonde A., Blanco, J., Sanchez, B., Cardona, A.I, Romero M., “Gas-phase photo-assisted minerlization of volatile organic compounds by monolithic titania catalysts”, Appl. Catal. B: Environ. 17, p.75 (1998)
Augugliaro, V., Coluccia, S., Loddo, V., Martra, G., Palmisano, L., Schiavello, M., “Photocatalytic oxidation of gaseous toluene on anatase TiO2 catalyst”, Appl. Catal. B: Environ. 20(1), p.15 (1999)
Bahnemann, D., Henglein, A., Lilie, J., Spanhel, L., “Flash photolysis observation of the adsorption spectra of trapped positive holes and electrons in colloidal titanium dioxide”, J. Phys. Chem., 88, p.709 (1984)
Blake, N. R, Griffin, G. L., “Selectivity control during the photoassisted oxidation of 1-butanol on titanium dioxide”, J. Phys. Chem. 92, p.5697 (1988)
Blanco, J., Avila, P., Bahamonde, A., Alvarez, E. Sanchez, B, Romero, M., “Photocatalyyic destruction of toluene and xylene at gas phase on a titania based monolithic catalyst”, Catal. Today 29, p.437 (1996)
Buckley, T. J., Pleil, J. D., Bowyer, J. R., Davis, J. M., “ Evaluation of methyl tert-butyl ether (MTBE) as an interference on commercial breath-alcohol analyzers”, Forensic Science International 123(2-3), p.111 (1997)
Burdett, J. K., Hughbands, T, Gordon, J. M., Richardson, J. W., Smith, J. V., J. Am. Chem. Soc. 109, p.3639 (1987)
Cao, L., Huang, A., Spiess, F.-J., Suib, S. L.,”Gas-phase oxidation of 1-butene using nanoscale TiO2 photocatalysts”, J. Catal. 188, p.48 (1999)
Cao, L., Spiess, F.-J., Huang, A., Suib, S. L., Obee, T. N., Hay, S. O., Freihaut, J.D., “Heterogeneous photocatalytic oxidation of 1-butene on SnO2 and TiO2 films”, J. Phys. Chem. B 103, p.2912 (1999)
Carlson, T., Griffin G. L., “Photooxidation of methanol using V2O5/TiO2 and MoO3/TiO2 surface oxide monolayer catalysts”, J. Phys. Chem. 90, p.5896 (1986)
Carter, W. P., “A detailed mechanism for the gas-phase atmosphere reactions of organic compounds,” Atmos. Environ. 24A, p.481 (1990)
Choi, W. Y., Ko, J. Y., Park, H. W., Chung, J. S., “Investigation on TiO2-coated optical fibers for gas-phase photocatalytic oxidation of acetone”, Appl. Catal. B: Environ. 31( 3), p.209 (2001)
Corp, R., “Control techniques for volatile organic emissions from stationary source, USEPA, EPA-450/2-78-022 (1978)
Cundall, R. B., Rudham, R., Salim, M. S., “Photocatalytic oxidation of propan-2-ol in the liquid phase by rutile” , J. Chem. Soc. Faraday Trans. I. 72, p.1642 (1976)
Drissen, M. D., Grassian, V. H., “Photooxidation of trichloro-ethylene on Pt/TiO2”, J. Phys. Chem. B 104, p.1418 (1998)
d’Hennezel, O., Pichat, P., Ollis, D. F., “Benzene and toluene gas-phase photocatalytic degradation over H2O and HCL pretreated TiO2: by-products and mechanisms”, J. Photochem. Photobiol. A: Chem. 118, p.197 (1998)
Dibble, L. A., Raupp, G. B., “Fluidized-bed photocatalytic oxidation of trichloroethylene in contaminated air streams”, Environ. Sci. Technol. 26, p.492 (1992)
Dumitriu, D, Bally, A. R., Ballif, C., Hones, P., Schmid, P. E., Sanjines, R., Levy, F., Parvulescu, V. I., “Photocatalytic degradation of phenol by TiO2 thin films prepared by sputtering”, Appl. Catal. B Environ. 25, p.83 (2000)
Einaga, H., Futamura, S., Ibusuki, T., “Heterogeneous photocatalytic oxidation of benzene, toluene, cyclohexene and cyclohexane in humidified air: comparison of decomposition behavior on photoirradiated TiO2 catalyst”, Appl. Catal. B: Environ. 38, p.215 (2002)
Eleftherios G., Stavros P., Constantine P., “Photocatalytic destruction of methyl tert-butyl ether in the gas phase using titanium dioxide”, J. Environ. Eng. A37(9), p.1665 (2002)
Falconer, J. L., Magrini-Bair, K. A., “Photocatalytic and thermal catalytic oxidation of acetaldehyde on Pt/TiO2”, J. Catal. 179, p.171 (1998)
Fogler, H. S., “Elements of chemical reaction engineering”, 3rd ed. Prentice Hall (1999)
Fox, M. A.; Dulay, M. T., “Hetergeneous photocatalysis”, Chem Rev 3, 93, p.341 (1989)
Fu, X. F., Zeltner, W. A. Anderson, M. A., ” Gas-phase photocatalytic mineralization of benzene on porous titania-based catalysts”, Appl. Catal. B: Environ. 6, p.209 (1995)
Fu, X. F., Clark, L. A., Zeltner, W. A., Anderson, M.A., “Effect of reaction temperature and water vapor content on the heterogeneous photocatalytic oxidation of ethylene”. J. Photochem. Photobiol. 97, p.181 (1996)
Fukuzawa, K. S., Kwan, T., “Photoadsorption and photodesorption of oxygen on titanium dioxide”, J. Catalysis 11, p.364 (1968)
Galanos, E., Poulopoulos, S., Philippopoulos, C., “Photocatalytic destruction of methyl tert-butyl ether in the gas phase using titanium dioxide”, J. Environ. Sci. & Health: A37(9), p.1665 (2002)
Gerischer, H. in Photocatalytic Purification and Treatment of Water and Air, Ollis, D. F., Al- Ekabi, H., Eds., Elsevier: Amsterdam (1993)
Gopel, W., Rocker, G., “Intrinsic defects of TiO2(110): Interaction with chemisorbed O2, H2, CO, and CO2”, Feierabend, R. Phys. Rev. B 28, p.3427 (1983)
Gust, D., Moore, T. A., “Mimicking photosynthesis”, Science 244, p.35 (1989)
Henglein, A., “Small-particles research: physicochemical properties of extremely small colloidal metal and semiconductor particles”, Chem.Rev. 89, p.1861 (1989)
Hoffmann, M.R., Martin, S.T., Choi, W., and Bahnemann, D.W., “Environmental applications of semiconductor photocatalysis” Chem. Rev. 20, p.69 (1995)
Howe, R. F., “EPR spectroscopy in surface chemistry: recent developments,” Advances in Colloid and Interface Science 18, p.1 (1982)
Howe, R. F., and Gratzel, M., “EPR study of hydrated anatase under UV irradiation,” J. Phys. Chem. 91, p.3906 (1987)
Hugenschmidt, M. B., Gamble, L., Campbell, C. T. Surf. Sci. 302, p.329 (1994)
Hung, C. H., Marinas, B. J., “Role of chlorine and oxygen in the photocatalytic degradation of trichloroethylene vapor on TiO2 films”, Environ. Sci. Technol. 31(2), p.562 (1997)
Hung, C.-H., Marinas, Benito, J., "Role of water in the photocatalytic degradation of trichloroethylene vapor on TiO2 films", Environ. Sci. Technol. 31(5), p.1440 (1997)
Hung, C.-H., "Gas-phase photocatalytic degradation of trichloroethylene and formation of reaction products on immobilized titanium dioxide ", Ph. D. Dissertation, Purdue Univ. (1995)
Ibusuki, T., Takeuchi, K., “Toluene oxidation on U.V.-irradiated titanimn dioxide with and without O2, NO2, or H2O at ambient temperature”, Atoms. Environ. 20, p.1711 (1986)
Ibusuki, T., Kutsuna S., Takeuchi., K., Shin-Kai, K., Sasamoto, T., Miyamoto, M., “Removal of low concertration air pollutionts through photoassisted heterogeneous catalysis”, in Photocatalytic Purification and Treatment of Water and Air, Ollis, D.F., Al-Ekabi, H., Eds., Elsevier: Amsterdam, p.375 (1993)
Inoue, T., Fujishima, A. Konishi, S., Honda, K., “Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders”, Nature(London) 277, p.637 (1979)
Izumi, I., Dunn, W. W., Wilbourn, K. O., Fan, F. R., Bard, A. J., “Heterogeneous photocatalytic oxidation of hydrogens on platinized TiO2 powders,” J. Phys. Chem. 84(24), p.3207 (1980)
Jacoby, W. A., Nimlos, M. R., Blake, D. M., “Products, intermediates, mass balances, and reaction pathways for the oxidation of trichloroethylene in air via heterogeneous photocatalysis”, Environ. Sci. Technol. 28, p.1661 (1994)
Jacoby, A.W., Blake, D. M., Noble, R. D., Koval, C. A., “Kinetic of the oxidation of trichlorothylene in air via heterogeneous photocatalysis”, J. Catal. 157, p.87 (1995)
Jacoby, A. W., Blake, D. M., Fennell, J. A., Boulter, J. E., Vargo, L. M., “Hetrogeneous photocatalysis for control of volatile organic compounds in indoor air”, The 88th Air & Water Management Association 46, p.891 (1996)
Jaeger, C. D. Bard, A. J., “Spin trapping and electron spin resonance detection of radical intermediates in the photodecomposition of water at TiO2 particulate system”, J. Phys. Chem. 83(24), p.3146 (1979)
Kamat, P. V., “Photochemistry on nonreactive and reactive (semiconductor) surfaces”, Chem. Rev. 93, p.267 (1993)
Kato, K., “Synyhesis of TiO2 photocatalyst with high activity by the alkoxide method”, in Photocatalytic Purification and Treatment of Water and Air, Ollis, D.F., Al-Ekabi, H., Eds., Elsevier: Amsterdam, p.809 (1993)
Kurtz, R. L., Stockbauer, R., Madey, T. E., Roman, E., de Segovia, J. L., Sur. Sci. 218, p.178 (1989)
Laidler, K. J., Meiser, J. H., “Physical Chemistry”, John Wiley & Sons, Inc. (1982)
Lawless, D., Serpone, N., Meisel, D., “Role of OH radicals and trapped holes in photocatalysis:a plus radiolysis study”, J. Phys. Chem. 95, p.5166 (1991)
Legan, R. W., “Ultraviolet light takes on CPI roles”, Chem. Eng., January, p.95 (1982)
Levenspiel, O., “Chemical reaction engineering”, 2rd ed. John Wiley & Sons, New Yark (1990)
Lewis, N. S. Annu. Rev. Phys. Chem. 42, p.543. (1991)
Lichtin, N. N., Sadeghi, M., “Oxidation photocatalytic degradation of benzene vapor over TiO2”, J. Photochem. Photobiol. A: Chem. 113 (1), p.81 (1998)
Liljestand, H. M., Sattler, M. L., “Photocatalytic oxidation processes for indoor air pollution”, The 89th Air & Water Management Association Annul Meeting (1996)
Linsebigier, A. L., Lu, G., Yates, J. T., “Photocatalysis on TiO2 surface:principles, mechanism, and selected results” Chem. Rev. 95, p.735 (1995)
Luo, Y., Ollis, D. F., “Heterogeneous photocatalytic oxidation of trichlorethylene and toluene mixture in air: kinetic promotion and inhibition, time-dependent catalyst activity”, J. Catal. 163, p.1 (1996)
Martin, S. T., Herrmann, H., Choi, W., Hoffmann, M.R., “Time-resolved microwave conductivity”, J. Chem. Soc. Faraday Trans. I. 90, p.3315 (1994)
Martra, G., Coluccia, S., Marchese, L., Augugliaro, V., Loddo, V., Palmisano, L., Schiavello, M., “The role of H2O in photocatalytic oxidation of toluene in vapor-phase on anatase TiO2 catalyst-A FTIR study”, Catal. Today 53(4), p.695 (1999)
Matthews, R. W. “Kinetics of photocatalytic oxidation of organic solutes over titanium dioxide,” J. Catal. 111, p.264 (1988)
Mehlman, M. A. “Pollution by gasoline containing hazardous methyl tertiary butyl ether(MTBE)”, Archives of Environmental Health 53, p.245 (1998)
Meriaudeau, P., Vedrine, J. C., "Electron paramagnetic resonance investigation of oxygen photoadsorption and its reactivity with carbon monoxide on titanium dioxide: the O3-3 species", J. Chem. Soc. Faraday. Trans. II 72, p.472 (1976)
Mitani, M. M., Keller, A. A., Bunton, C. A.; Rinker, R. G., Sandall, O. C. “Kinetics and products of reactions of MTBE with ozone and ozone/hydrogen peroxide in water”, J. Hazardous Materials 89(2-3), p.197 (2002)
Murasawa, S., Takaoka, Y., “Several applications of TiO2 photocatalyst for water and air purification”, in The First International Conference on Advanced Oxidation Technologies for Water and Air Remediation Abstracts, Canada (1994)
Naccache, C., Meriaudeau, P., Che, M., Tench, A., “Identification of oxygen species adsorbed on reduced titanium dioxide,” J. Trans. Faraday Soc. 67, p.506 (1971)
Nair, M. R., Jacoby, W. A., Blake, D. M., Milne, T. A., “Detection of intermediates from the gas-phase photocatalytic oxidation of trichlorothylene,” Proceeding of the 1st International Conference on TiO2 Photocatalytic Purification and Treatment of Water and Air, London, Ontario, Canada, November (1992)
National Research Council, “Rethinking the ozone Problem in Urban and Regional Air Pollution,” National Academy Press, Washington, D.C. (1991)
Nimlos, M. R., Jacoby, W. A., Blake, D. M., Milne, T. A., “Direct mass spectrometric studies of the destruction of hazardous wastes. 2. gas-phase photocatalytic oxidation of trichloroethylene over TiO2: products and mechanisms”, Environ. Sci. Technol. 27, p.732 (1993)
Nimlos, M. R., Wolfrum, E. J., Brewer, M. L., Fennell, J. A., Bintner, G. B., “Gas-ghase heterogeneous photocatalytic oxidation of ethanol: pathway and kinetic modeling”, Environ. Sci. Technol. 30, p.3102 (1996)
Nosaka, Y., Fox, M. A., “Kinetics for electron transfer from laser-pulse- irradiated colloidal semiconductors to adsorbed methylviologen. dependence of the quantum yield on incident pulse width”, J. Phys. Chem. 92, p.1893 (1988)
Obee, T. N., Brown, R. T., "TiO2 photocatalysis for indoor air applications: effects of humidity and trace contaminant levels on the oxidation rates of formaldehyde, toluene, and 1,3-butadiene", Environ. Sci. Technol. 29, p.1223 (1995)
Obee, T. N., “Photooxidation of sub-parts-per-million toluene and formaldehyde levels on titania using a glass-plate reactor”, Environ. Sci. Technol. 303, p.3578 (1996)
Obee, T. N., Hay, S. O., “Effects of moisture and temperature on the photooxidation of ethylene on titania”, Environ. Sci. Technol. 31 p.2034 (1997)
Oills, D. F., “Contamination degradation in water-heterogenous photocatalysis degrades halogenated hydrocarbon contaminants,” Envirion. Sci. Technol. 19(6), p.481 (1985)
Okamoto, K., Yamamoto, Y., Hanaka, H., Tanaka, M., “Hetrogeneous photocatalytic decomposition of phenol over TiO2 powder”, Bull. Chem. Soc. Jpn. 58, p.2015 (1985)
Park, S. E., Joo, H., Kang, J. W., “Photodegradation of methyl tertiary butyl ether (MTBE) vapor with immobilized titanium dioxide”, Solar Energy Materials and Solar Cells 80(1), p.73 (2003)
Peral, J., Ollis, D. F., “Heterogeneous photocatalytic oxidation of gas-phase organics for air purification : acetone, 1-butanol, butyraldehyde, formaldehyde, and m-xylene oxidation”, J. Catal. 134, p.554 (1992)
Rafael, M.-R., Nelson, C.-M., “Relationship between the formation of surface species and catalyst deactivation during the gas-phase photocatalytic oxidation of toluene”, Catal. Today 40, p.353 (1998)
Ramamurthy, V., “Photochemistry in organized and constrained media”, VCH: New York (1991)
Raupp, G. B., Junio, C. T., “Photocatalytic oxidation of oxygenated air toxics”, Appl. Sur. Sci. 72, p.321 (1993)
Raupp, G. B., Dumesic, J. A., “Adsorption of carbon monoxide, carbon dioxide, hydrogen, and water on titania surfaces with different oxidation states”, J. Phys. Chem. 89, p.5240 (1985)
Richard, C., Boule, P., “Photocatalytic oxidation of phenolic derivatives:influence of OH• and h+on the distribution of products”, New J. Chem. 18, p.547 (1994)
Rothenberger, G., Moser, J., Gratzel, M., Serpone, N., Sharma, D. K., ” Charge carrier trapping and recombination dynamics in small semiconductor particles”, J.Am. Chem. Soc., 107, p.8054 (1985)
Preis, S., Falconer, J. L., “Gas-Phase photocatalytic oxidation of motor fuel oxygenated additives”, Environ. Sci. Technol. 49(4), p.141 (2004)
Scheff, P. A., Wadded, R. A., “Receptor modeling of volatile organic compounds-emission inventory and validation”, Envirion. Sci. Technol. 27(4), p.257 (1993)
Schiavello, M., Sclafani, A. “Thermodynamic and kinetic aspects in photocatalysis”, in Photocatalysis Fundamental and Applications, edited by Serpone, N.; Pelizztti, E. John Wiley & Sons, New Yark (1989)
Serpone, N., Terzian, R., Minero, C., Pelizztti, E., “Heterogeneous photocatalyzed oxidation of phenol, cresols, and fluorophenols in TiO2 aqueous suspensions”, in Photosensitive metal-organic systems: Mechanistic principles and applications, American Chemical Society, Washington (1993)
Sitkiewitz, S., Heller, A., “Photocatalytic oxidation of benzene and stearic acid on sol-gel derived TiO2 thin films attached to glass”, New J. Chem. 20, p.233 (1996)
Stumn, W., “Chemistry of the Solid-Water Interface”, John Wiley & Sons, New York (1992)
Turchi, C. S., Ollis, D. F., “Mixed reactant photocatalysis: intermediates and mutual rate inhibition” J. Catal. 119, p.483 (1989)
Wang, W., Ku, Y., “Photocatalytic degradation of gaseous benzene in air streams by using an optical fiber photoreactor”, J. Photochem. Photobiol. A: Chem. 159, p.47 (2003)
Wang, K. H., Tsai, H. H., Hsieh, Y. H., “The kinetics of photocatalytic degradation of trichloroethylene in gas phase over TiO2 supported on glass bead”, Appl. Catal. B: Environ. 17, p.313 (1998)
Watanabe, T., Kitamura A., Kojima E., Nakayama, C., Hashimoto, K., Fujishima, A ., “Photocatalytic activity of TiO2 thin film under room light”, The First International Conference on TiO2 Photocatalytic Purification and Treatment of Water and Air., Canada (1992)
Yuan, C.-S., Hung, C.-H., “Gas-phase photocatalytic degradation of trichloroethylene on Pyrex pellets immobilized with anatase TiO2”, J. Chinese Institute of Environ. Eng. 8 (1), p.11 (1998)
王仁澤譯,“毒物學概論”,高立圖書有限公司,1997。
李秉傑,邱宏明,王奕凱譯, “非均勻系催化原理與應用”, 渤海堂出版社,1992。
李外郎,戴樂蓉,程虎民,馬季銘 “表面化學,”科學出版社,1994。
胡振國譯,“半導體原件-物理與技術”,全華圖書公司,1989。
吳榮宗,“工業觸媒概論”,黎明書局,1985。
劉宗榮,“毒性化學物質與危害特性”,甲級毒性專責人員教材, 1989。
劉國棟,“VOC管制趨勢展望”,工業污染防治,48期,1993。
藤山鳥昭,橋本和仁,渡部俊也,”光觸媒之奧秘”,日本實業出版社,2000。
工業局, “石化工業因應揮發性有機污染物管制規範之對策研究”,經濟部工業局專案研究計劃,1994。
顧洋,江立偉,“以紫外線/二氧化鈦程序處理氣相苯、甲苯及二甲苯污染物反應行為之研究”,第十六屆空氣污染控制技術研討會論文集,1999。
王國華,“以UV/TiO2程序處理氣相中三氯乙烯之研究”,國立中興大學環境工程研究所博士論文,1998。
林蔡毓,“以CVD法製備二氧化鈦光觸媒去除甲苯之研究”,國立中興大學環境工程研究所碩士論文,2001。
吳永俊,“近紫外光/二氧化鈦光催化分解三氯乙烯之研究”,國立中山大學環境工程研究所碩士論文,1996。
洪雨利,“溶膠凝膠法製備奈米二氧化鈦觸媒進行光催化還原二氧化碳之批次反應研究”,國立中山大學環境工程研究所碩士論文,2004。
洪楨琳,“溫度與濕度效應對光催化分解苯蒸氣之影響研究”,國立中山大學環境工程研究所碩士論文,2001。
許伯彰,“二氧化鈦光觸媒分解含氯揮發性有機污染物之產物分析集反應路徑探討”,國立中山大學環境工程研究所碩士論文,1998。
馬志明,“以紫外線/二氧化鈦程序處理氣相三氯乙烯污染物反應行為之研究”,國立台灣科技大學化學工程技術研究所碩士論文,1998。
劉安治,“近紫外光/二氧化鈦光催化分解氣相中低濃度四氯乙烯之操作參數探討”,國立中山大學環境工程研究所碩士論文,1997。
賴瑞明,“氣相光催化氧化甲基第三丁基醚之分解效能與反應途徑分析”,國立高雄第一科技大學環境與安全衛生工程系碩士論文,2004
蕭德福,“以改質之TiO2光觸媒探討四氯乙烯分解率及礦化率之影響”, 國立中山大學環境工程研究所碩士論文, 2000。
蘇世昌,“溫溼度協同效應對四氯乙烯光催化分解反應影響之探討”, 國立高雄第一科技大學環境與安全衛生工程系碩士論文,2003。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code