Responsive image
博碩士論文 etd-0218105-164956 詳細資訊
Title page for etd-0218105-164956
論文名稱
Title
在未分化甲狀腺癌及多發性甲狀腺乳突癌檢體中分析BRAFV600E致癌基因之突變
BRAFV600E mutation in anaplast thyroid carcinomas and multiple papillary thyroid carcinomas
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
41
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2005-01-31
繳交日期
Date of Submission
2005-02-18
關鍵字
Keywords
多發性甲狀腺乳突癌檢體、未分化甲狀腺癌
multiple papillary thyroid carcinomas, anaplast thyroid carcinomas
統計
Statistics
本論文已被瀏覽 5691 次,被下載 14
The thesis/dissertation has been browsed 5691 times, has been downloaded 14 times.
中文摘要
中文摘要:
依據最近的文獻報導,BRAF基因的突變只發生在甲狀腺乳突癌和未分化甲狀腺癌,並且未分化甲狀腺癌是由周邊良性及惡性的腫瘤所形成,其中也包括甲狀腺乳突癌。BRAF的突變大多發生在鹼基1799位置上,其Thymine被adenine所取代(T1799A;2004年以前被認為是T1796A),在exon15的第600個氨基酸位置,因突變而導致valine變成glutamate(V600E;2004年以前被認為是V599E)。我們在先前105個甲狀腺乳突癌的臨床檢體中,發現BRAF的突變率為47%(49/105),並且也分析了5個甲狀腺濾泡癌 (FTCs)、10個濾泡性腺瘤, 3個Hürthle氏細胞腺瘤和10個結節性甲狀腺腫的檢體,都沒有發現BRAFV600E的突變。在未分化甲狀腺癌和他們共存的甲狀腺腫瘤中,很少有文獻報導BRAFV600E的突變情形,另外,在多發性甲狀腺乳突癌中,也沒有文獻報導關於BRAFV600E的突變狀況。因此,本實驗進一步分析BRAF基因在未分化甲狀腺癌和多發性乳突狀甲狀腺癌檢體中的突變情形。在這個實驗,我們從高雄長庚紀念醫院的病理檔案中,選了25例甲狀腺癌的石蠟檢體,包括15例的未分化甲狀腺癌和10例的多發性腺乳突癌。在未分化甲狀腺癌的檢體中,其9例的未分化甲狀腺癌包含共存分化良好的甲狀腺腫瘤(3個濾泡癌及6個乳突癌),在多發性甲狀腺乳突癌的檢體中,我們從先前研究的105個甲狀腺乳突癌中,找出了10例具有多發性的小腫瘤,以顯微鏡觀察石蠟包埋的組織切片,只挑取腫瘤組織萃取DNA,檢測exon 15的BRAF基因的突變,利用聚合脢連鎖反應(polymerase chain reaction,PCR),將基因組DNA 放大並以自動定序方法檢測突變情形。在15例的未分化甲狀腺檢體中,我們發現有3例發生BRAFV600E突變(20%),其9例合併分化良好的腫瘤中,6例的甲狀腺乳突癌,有2個發生BRAF突變(33%),但是,在3例合併濾泡癌中並沒有發現BRAF突變,並且在合併甲狀腺乳突癌的檢體中,BRAFV600E突變並沒有同時表現在兩個腫瘤。另外在10例的多發性乳突癌的小腫瘤中,BRAF的表現,有5例是相同的、5例是不同的。因此,我們的實驗結果可以確定,在未分化甲狀腺癌和它所合併的分化性腫瘤中,有著BRAF不同的表現情形,這顯示:未分化甲狀腺癌或許不是由分化性腫瘤而形成的;另外,在多發性乳突癌不同的小腫瘤有著BRAF不同的表現情形,這也意味著多發性的小腫瘤有可能是經由甲狀腺內的淋巴管轉移而形成。
Abstract
Abstract:
Activating point mutations of the BRAF gene have been recently reported to be restricted to papillary thyroid carcinomas (PTCs) and anaplastic thyroid carcinomas (ATCs) arising from PTCs among various benign and malignant thyroid tumors. A thymine-to-adenine transversion at nucleotide 1799 (T1799A), formerly designated as T1796A, in exon 15 resulting in a valine to glutamate substitution at residue 600 (V600E), formerly designated as V599E, was the only mutational site reported in thyroid cancer. We have previously shown that BRAFV600E mutations were detected in 49 of 105 (47%) PTCs but not in 5 follicular thyroid carcinomas (FTCs), 10 follicular adenomas, 3 Hürthle cell adenomas and 10 nodular goiters. In contrast to PTC, to date only few studies have been published concerning the frequency of BRAFV600E in ATCs and their coexisting differentiated thyroid carcinomas. In addition, there is no report concerning the BRAF status in multiple PTCs. In this study, paraffin-embedded tumor tissues of 25 patients with thyroid cancer (15 ATCs and 10 PTCs) were obtained from the Department of Pathology of Chang Gung Memorial Hospital-Kaohsiung. Nine ATCs were found to contain a coexisting differentiated carcinoma, including three follicular and six papillary carcinomas. Ten cases of PTC with multiple tumor foci were selected from a cohort of 105 PTCs as previously reported. Paraffin blocks containing tumor were sectioned followed by microdissection to obtain tissue for DNA extraction. Mutational hot spot in exon 15 (codon 600) of the BRAF gene were amplified by PCR and sequenced with an automatic sequencer. BRAFV600E mutations were detected in 3 of 15 (20%) ATCs. In the 9 coexisting differentiated carcinomas, 2 out of 6 PTCs harbored BRAF mutations but not in the three follicular carcinomas. In none of 3 ATCs with coexisting PTCs were mutations detectable in both tumor types. Among the ten cases of PTCs with multiple tumor foci, 5 cases demonstrated the same BRAF status in each tumor foci whereas 5 cases showed distinct BRAF status in different tumor foci. We conclude that the distinct BRAF status in anaplastic carcinoma and its coexisting differentiated carcinoma suggests that anaplastic carcinoma might not arise from differentiated carcinoma.The distinct BRAF status in different tumor foci of multiple papillary carcinomas suggests that multifocal tumors might not be formed through intrathyroidal lymphatic metastasis.
目次 Table of Contents
背景介紹:
一、 甲狀腺腫瘤(thyroid tumor):
甲狀腺腫瘤大致可分為兩大類:良性腫瘤和惡性癌。在良性腫瘤中,又可細分為濾泡性腺腫(Follicular adenoma, FA)、結節性甲狀腺腫(Nodular goiter, NG),這腫瘤主要是由濾泡細胞衍生而來的,另有較為罕見的Hurthle氏細胞腺瘤(Hurthle cell adenomas, HA)。在惡性腫瘤中,依其分化程度而可細分為:分化良好的甲狀腺乳突癌(Papillary thyroid carcinomas, PTC)、甲狀腺濾泡癌(Follicular thyroid carcinomas, FC)及分化不良的未分化甲狀腺癌(Anaplastic thyroid carcinomas,ATC)。另有濾泡旁細胞型(parafollicular cell)的惡性腫瘤:甲狀腺髓質癌(Medullar thyroidcarcinomas,由濾泡旁細胞衍生而來的,平常較為少見。

乳突癌(papillary carcinoma):
此為最常見的一種甲狀腺癌,由濾泡上皮細胞所衍生而來,好發年齡為30-40歲,大約占甲狀腺癌的80-85%,女性比男性發生率為高,癌瘤生長緩慢,病患10年存活率約為90%。乳突癌缺少筴膜,常為多發性的,約30-40%的乳突癌患者,會轉移至局部淋巴腺。


濾泡癌(follicular carcinoma):
也是由濾泡上皮細胞所衍生而來,約佔甲狀腺癌的5-10%,臨床表現與乳突癌類似,生長緩慢,通常屬於單發性的,女性比男性發生率高,一般在40歲以後發生,較易經由血液轉移至肺、骨骼、及肝臟等器官。

髓質癌(medullary carcinoma):
此癌細胞是由濾泡旁細胞(parafollicular cell , C-cells)衍生而來,較為少見,約占1-2%。較易發生在40歲以後,女性稍多於男性,可分家族遺傳性和偶發性兩種,其中家族性約占20%,偶發性約占80%。髓質癌的惡性程度介於濾泡癌與未分化癌之間,10年存活率約為60-70%。可經由腺內淋巴轉移到腺內其他部位或局部淋巴結,也可藉由血流而轉移至遠處如肺、骨骼及肝臟等。

未分化癌(undifferentiated or anaplastic cancer):
它是由濾泡上皮細胞衍生而來,約佔甲狀腺癌的5%,一般在50歲以後發生,而以女性稍多。它極為惡性,且常迅速侵犯周邊組織或轉移到全身各器官,造成局部淋巴結腫大及疼痛、聲音沙啞、呼吸喘鳴及吞嚥困難等。患者常在診斷確定後數月內死亡。




二、甲狀腺腫瘤的致癌基因(The oncogene of thyroid carcinomas):
在甲狀腺腫瘤中,RET基因的重組、NTRK1的重組、RAS點突變及BRAF點突變(摘錄一),是造成癌化的四種致癌基因原(proto-nocogene)。以下逐一對這些致癌基因進行簡略的介紹:

RET 致癌基因:
RET致癌基因原,所轉譯出的蛋白是一個穿透細胞膜的酪氨酸激脢接受器(tyrosine kinase receptor),在甲狀腺乳突癌中,RET基因的N端序列分別與許多不同基因的DNA接合(附錄二),造成酪氨酸激脢(tyrosine kinase)不正常的活化,這種情況,所形成的基因重組稱為RET/PTC (Santoro et al,1992),與甲狀腺乳突癌的形成有著高度的關聯性(Santoro et al,1995)。

TRK致癌基因:
TRK基因的C端可轉譯成對酪氨酸具有專一性的蛋白激脢受體,神經滋養因子(Neurotrophic factor, NTF)會與TRK蛋白激脢受體結合(TRKA、TRKB、TRKC)而產生作用(Barbacid et al,1991;Klein et al,1991),並透過下游的MAPK訊息傳遞途徑,影響神經細胞的生長與分化(Segal and Greenberg,1996),在PTCs中,常可見到TRKA(又稱 NTRK1)基因重組型,其酪氨酸激脢的功能區(tyrosine kinase domain)會與其它基因N端序列相連接,而形成活化型的NTRK1致癌基因。


RAS致癌基因:
RAS proto-oncogenes(H-RAS、K- RAS和N- RAS)主要是屬於細胞膜的GTP結合蛋白(GTP-binging proteins),活化的RAS蛋白會與RAF結合,將訊息傳遞至下游,活化MAPK途徑並調控細胞的生長與分化,在RAS proteins的每一個GTP -binging domain或是GTPase的domain都是較常發生突變的區域。在甲狀腺腫瘤中, RAS點突變常發生在濾泡性甲狀腺腫瘤中突變率約30~50%(Liu et al, 2004)。但是,在甲狀腺乳突癌的突變率則只有0~10%(Manenti et al, 1994;Lazzereachi et al, 1994;Sugg et al, 1999;Learoyd et al, 2000;Nikiforva et al, 2002)。

BRAF 致癌基因:
BRAF是一種serine/threonine kinase,最早是在皮膚的黑色素癌中發現,BRAF的突變大多發生在鹼基1799位置上,其thymidine被adenine所取代(T1799A;2004年以前被認為是T1796A),在exon15的第600個氨基酸位置,因突變而導致valine變成glutamate(V600E;2004年以前被認為是V599E),常發生在甲狀腺乳突癌檢體中(Cohen et al, 2003; Puxeddu et al, 2004;Namba et al, 2003;Nikiforva et al, 2003; Soares et al, 2003;Xu et al, 2003;Kimura et al, 2003)。

BRAF屬於RAF基因(ARAF、BRAF和CRAF)的三種亞型之一(Papin et al, 1998),RAF kinase在MAPK訊息傳遞途徑中所扮演的角色,是一個訊息整合因子,當細胞的表面與成長因子結合,會造成受器的磷酸化,進而活化下游的Grb-Sos蛋白活性,使得RAS-GDP變成RAS-GTP的型式, RAS-GTP會結合到RAF的N端,此時的RAF就會將訊息傳遞給下游的MEK,並造成MEK的磷酸化,磷酸化的MEK就會活化MAP kinase,活化的MAP kinase,則可以導致核內轉錄因子及許多不同蛋白的磷酸化,進而調控下游基因的活化(Sun et al, 1994),(詳見附錄三),由此可知,在MAPK的訊息傳遞途徑中,RAF主要是連接生長因子受器與活化核內轉錄因子,進而調控細胞的增殖與分化,因此,此路徑各分子的異常,都和細胞的轉型與癌化有著很大的相關性(Daum et al, 1994)。















三、未分化性甲狀腺癌(Anaplastic thyroid carcinoma , ATC):

未分化性甲狀腺癌主要由甲狀腺濾泡上皮細胞轉形而來,依組織學的特徵,可歸為兩種類型:Sarcomatoid和 Squamoid(Nishiyama. et. al, 1972)。在病患的組織切片,時常可以看到未分化甲狀腺癌周圍,常合併著許多分化良好的甲狀腺腫瘤,包括乳突狀甲狀腺腫瘤(papillary thyroid carcinomas;PTC)、濾泡性甲狀腺癌(Follicular thyroid cancer;FTC)及結節狀甲狀腺腫(nodular goiters),形成兩種腫瘤一起共存的現象(Begum et. al., 2004; Carcangiu et. al., 1985;Nel et. al., 1985;Tan et. al., 1978;Venkatesh et. al., 1995),並且在未分化和分化良好的甲狀腺腫瘤中,BRAF的突變表現都是一致的(Nikiforova et al, 2003),這結果意味著未分化甲狀腺癌,可能是由分化良好的甲狀腺癌退形而分化(dedifferentiation)而來(Namba et. al, 2003;Nikiforova et. al, 2003)。













四、多發性甲狀腺乳突癌(Multiple papillary thyroid carcinomas)

當實施外科手術切除甲狀腺腫瘤時,肉眼所觀看的,只有主要的腫瘤(main tumor),事實上,當切下的甲狀腺腫瘤,經過病理組織切片製作繁瑣的程序後,以光學顯微鏡下觀察組織切片時,在主要腫瘤組織(main tumor)周圍大多會發現一個或是多個直徑小於1 cm的微小癌(microcarcinomas),目前認為:多發性甲狀腺乳突癌的腫瘤形成,主要是乳突癌經由甲狀腺內的淋巴管轉移而衍生出許多的微小腫瘤,文獻記載這些腫瘤之間的BRAF的突變會是一致的(Soare et al, 2004)。 在人類甲狀腺乳突狀癌thyroid papillary carcinoma (PTC)中,BRAF會有很高的突變率,那經由甲狀腺淋巴管轉移而衍生的微小腫瘤中,BRAF基因突變情形為何?這些多發性PTCs的來源為止?正是我們想探討的,本實驗藉由分析這些微小腫瘤中,BRAF exon 15的突變情形,來探討甲狀腺乳突狀癌和多發性甲狀腺乳突癌彼此間的相關性。







檢體來源:

本實驗檢體主要為石蠟包埋的甲狀腺癌組織,由高雄長庚醫院新陳代謝科主任劉瑞川醫師及解剖病理科主任黃昭誠醫師所提供,經由陳怡如病理醫師診斷無誤,我們選擇15例未分化甲狀腺癌(ATC)的檢體、6例未分化甲狀腺癌合併甲狀腺乳突癌(ATC&PTC)及3例未分化甲狀腺癌合併濾性甲狀腺癌(ATC&FC);並選擇10例的多發性甲狀腺乳突癌,其中有5例分別散落在甲狀腺左右葉的癌組織結節,有5例在單側葉合併多個腫瘤癌組織結節,本研究中分離這些微小腫瘤結節檢體DNA並偵測BRAFV600E exon 15的突變情形。

材料與方法:
一、蘇木紫-伊紅染色 (H-E Stain):
材料
1) Mayer’s 蘇木紫溶液(Mayer’s hematoxylin solution)
2) 伊紅溶液(Eosin solution)
3) 100% 酒精
4) 95% 酒精
5) 90% 酒精
6) 80% 酒精
7) 70% 酒精
8) 二甲苯溶液(xylene)
9) 非水溶性封片膠

步驟
將石蠟包埋的甲狀腺組織,利用滑動式切片機,切取約3~5μm厚度,用紙板沾取切下之組織切片置於冷水,靠水的浮力,將組織切片漂浮在水面,利用戴玻片撈起後,再平置於50 ℃的熱水上,將石蠟組織切片攤平在戴玻片上,將多餘的水分甩乾後,將檢體切片置於56℃的烘箱中,作用30分鐘,使組織切片緊緊黏附在玻片上,不至於脫落。

將石蠟檢體切片浸泡在二甲苯溶劑中作用12分鐘,將組織切片上多餘的石蠟溶掉,再進行復水的步驟,檢體依序在100%、95%、90%、80%、70%酒精溶液中,分別各浸泡各1分鐘,經流水清洗5分鐘後,將多餘的水分甩乾,置於蘇木紫(hematoxylin)溶液中,作用5分30秒,進行細胞核染色作用,再經由流水清洗5分鐘後,置於伊紅(Eosin) 溶液中,作用1分30秒,進行細胞質染色,並再直接依序置於70%、80%、90%、95%、100%酒精溶液中,作用各1分鐘,進行脫水步驟,再置於二甲苯溶劑中,取出後利用非水溶性之封片膠,將蓋玻片封存於組織的玻片上,即完成HE染色的組織切片標本,利用光學顯微鏡的觀察切片上甲狀腺腫瘤組織的部位並記錄其腫瘤大小。

二、石臘包埋組織切片之脫臘(deparaffination)
材料
1) 二甲苯(xylene)
2) 100% 酒精
3) ddH2O

步驟
利用光學顯微鏡觀察HE染色的切片標本,標記組織腫瘤部位後,對照組織蠟塊,切取約30μm的厚度的石蠟包埋組織,將腫瘤組織旁邊的正常組織刮除後,收集腫瘤組織部分,利用二甲苯可溶解石蠟的特性,將組織檢體置於二甲苯溶劑中約10分鐘後,以12000 rpm 離心沉降,去除二甲苯上清液後,以100%酒精清洗檢體兩次,每次皆以12000 rpm離心,收集沉澱之檢體,最後加入滅菌水清洗一遍,此時只剩脫蠟乾淨的甲狀腺組織,即可進行後續DNA萃取步驟。

三、檢體組織中基因組DNA之萃取
材料
1) lysis buffer (10%SDS;0.5M EDTA;1M Tris-HCl pH 8.0;H2O TE buffer)
2) 20 mg/ml proteinase K
3) Phenol , pH 8.0
4) Chloroform
5) 100% 酒精
6) 8 mM NaOH

步驟
將脫蠟乾淨的甲狀腺組織,加入450 μl lysis buffer及50 μl proteinase K混合,置於56℃烘箱中,作法約8~12小時,待組織溶解後,於室溫下加入500 μl phenol (pH 8.0),混合均勻後,以12000 rpm離心10分鐘,收集上清液,再重複一次phenol萃取後,收集上清液,再加入500 μl chloroform,混合均勻後,以12000 rpm離心10分鐘,收集上清液,並再以chloroform萃取一次,最後將上清液與950 μl 100%酒精及50 μl 8 mM NaOH溶液混合均勻後,存放於-20℃下,作用約30分鐘使DNA沉澱,置室溫中使自然風乾後,以30 μl無菌水,將沉澱的DNA溶解備。

四、聚合脢連鎖反應(polymerase chain reaction, PCR)
材料
1) 10X reaction buffer:100 mM Tris-HCl pH 8.8;15 mM MgCl2;500 mM KCl;1% Triton X-100
2) 10 mM dNTP mix
3) 10 mΜ Forward primer
4) 10 mΜ Reverse primer
5) DyNAzyme TM II DNA polymerase(FINNZYMES)

步驟
取2 μl萃取好的genomic DNA當模板,依序加入3 μl 10X reaction buffer、22.5 μl ddH2O、1 μl dNTP (10mM)及BRAF基因特性引子(引子序列請參見附表四)及DyNAzyme TM II DNA polymerase各取0.5 μl,進行聚合酵素連鎖反應(polymerase chain reaction),條件為95℃ 1分鐘,55℃ 1分鐘,72℃ 1分鐘,35個循環,增幅(amplify)所要檢視序列的DNA片段。

五、瓊膠電泳 (agarose gel electrophoresis)
材料
1) 1.5 % agarose gel in 1 X TAE buffer
2) 1 X TAE buffer
3) 5 X gel loading buffer
4) DNA ladder

步驟
取5 μl PCR產物加入5 X gel loading buffer,混合均勻後,以1.5% agarose gel進行電泳分析後,agarose gel經ethidium bromid染色後,置於紫外燈下觀察並拍照記錄。

六、 PCR產物之純化
材料
1) Viogene PCR-M TM clean up system
2) PX buffer,WF buffer (使用前需加入100%酒精),WS buffer
3) 過濾膜離心管柱(PCR-M TM column)

步驟
進行DNA定序之前,必須將PCR產物純化,取500 μl PX buffer (Viogene PCR-M TM clean up system)與30 μl PCR產物混合均勻,注入過濾膜離心管柱中,以12000 rpm離心1分鐘,丟棄管內溶液,再注入500 μl WF buffer,以12000 rpm離心1分鐘,丟棄管內溶液,再注入500 μl WS buffer,以12000 rpm離心1分鐘,丟棄管內溶液,再以12000 rpm離心3分鐘,將殘餘的緩衝液完全去除後,加入30 μl ddH2O,置於室溫下10分鐘,將PCR產物溶出,定量後,送交中山大學生物多樣性中心,進行DNA自動定序。




實驗結果:
我們從石蠟包埋的甲狀腺腫瘤檢體中,分析BRAF exon 15在未分化甲狀腺癌和多發性乳突癌檢體中的突變的情形,發現BRAF突變都發生在鹼基1799位置,thymidine(T)被adenine(A)取代,第600個氨基酸,valine轉變glutamate(附錄四)。

在15例的未分化甲狀腺檢體中,我們發現有3例發生BRAFV600E突變(20%),其9例合併分化良好的腫瘤中,6例的甲狀腺乳突癌,有2個發生BRAF突變(33%),但是,在3例合併濾泡癌中並沒有發現BRAF突變,並且在合併甲狀腺乳突癌的檢體中,BRAFV600E突變並沒有同時表現在兩個腫瘤(詳如附表二)。

在多發性甲狀腺乳突癌部分,共分析了10個病例,其中有5例的突變表現是相同的,有5例BRAF突變的表現則不相同(詳如附表三)。











討論:
未分化甲狀腺癌:
在未分化甲狀腺癌和他們共存的甲狀腺腫瘤中,很少有文獻報導BRAFV600E的突變情形,另外,在多發性甲狀腺乳突癌中,也沒有文獻報導關於BRAFV600E的突變狀況。因此,本實驗進一步分析BRAF基因在未分化甲狀腺癌和多發性乳突狀甲狀腺癌檢體中的突變情形,依據文獻所報導,BRAFV600E突變情形在ATC & PTC或是ATC & FC都是一致的,這樣的結果意味著未分化甲狀腺癌(ATC)是經由分化良好的甲狀腺癌退形分化轉形而來(namba et. al.,2003;nikiforova et. al.,2003;Shahnaz et. al.,2004),然而,我們的實驗結果與這個假說不符(詳見附表七)。在15例的ATC中,我們得知有3例BRAFV600E突變檢體(20%);6例的ATC & PTC有2例發生突變(33%);3例的ATC & FTC並沒有任何突變的發現(0%),但是,每個BRAFV600E的突變,都是單獨出現在ATC或是PTC,並未見到在ATC及PTC突變情況相同的現象(如附表二中4、8、9、10和14號檢體)。這個重要發現,BRAFV600E的突變在未分化甲狀腺癌與周邊合併發生的濾泡癌或是乳突癌組織中,並非BRAFV600E都是相同的表現,這樣的結果,顯示著並不是所有的未分化甲狀腺癌都是由分化良好的甲狀腺腫瘤退形分化轉形而來,也是可能由單一腫瘤獨立轉形而成的。

多發性甲狀腺乳突癌:
目前文獻只知RET重組會出現在甲狀腺乳突癌的早期,與multiple PTCs相關,一般學者所認為,在甲狀腺乳突癌周圍衍生的微小癌的形成,可能是經由甲狀腺內淋巴管所轉移。但是,Sonia等人曾以RET重組來解釋微小癌的形成機制,他們的實驗發現RET重組的表現,事實上並沒有一致的表現,這也顯示著多發性PTCs微小癌並非從主要的腫瘤經由淋巴腺轉移衍生,極有可能是獨立所衍生的突變,與基因的背景或是環境的感受性有關(Sonia et al,1998),因此,我們在105個甲狀腺乳突癌的臨床檢體中,發現BRAF的突變率為47%(49/105),如此高的突變率,讓我們想進一步了解,在甲狀腺乳突癌周圍衍生的微小癌組織中BRAFV600E的突變情況是如何?多發性甲狀腺乳突癌檢體中,微小癌組織間之相關性?在微小癌的形成,雖然沒有BRAFV600E相關文獻可以提供參考,我們只能依據Sonia等人導引的結論,利用BRAFV600E的表現加以探討多發性PTCs的微小癌,由本實驗分析10例的多發性乳突癌的小腫瘤,發現有5例是相同的並且有5例是不同的(附表三),因此,這樣的結果也顯示了,多發性PTCs微小癌並非都是從主要的腫瘤經由淋巴腺轉移衍生,也有可能是獨立所衍生的突變,這樣的結果與Sonia等人引述的論點都是相符的(Sonia et al,1998)。
參考文獻 References
Carcangiu ML, Steeper T, Zampi G, Rosai J. Anaplastic thyroid carcinoma(1985): a study of 70 cases. Am J Clin Pathol, 83:135-158

Chen, Z. (1996). Simple modifications to increase specificity of the 5' RACE procedure. Trends Genet 12:87-88.

Chiu AC, Oliveria AA, Schultz PN, Ordonez NG, Sherman SI.(1996) Prognostic clinicopathologic features in hurthle cell neoplasia. Thyroid 6:S29

Cohen Y, Xing M, Mambo E, Guo Z, Wu G, Trink B, Beller U, Westra WH, Ladenson PW, Sidransky D (2003)BRAF mutation in papillary thyroid carcinoma. J Natl Cancer Inst 95:625–627

Cohen, Y, Rosenbaum, E, Clark, DP.(2004)Mutational analysis of BRAF in fine needle aspiration biopsies of the thyroid: a potential application for the preoperative assessment of thyroid nodules. Clin Cancer Res; 10:2761.

Daum, G., Eisenmann-Tappe, I., Fries, H. W., Troppmair, J., and Rapp, U. R. (1994). The ins and outs of Raf kinases. Trends Biochem Sci 19:474-480.

Davies, H., Bignell, G. R., Cox, C., Stephens, P., Edkins, S., Clegg, S., Teague, J., Woffendin, H., Garnett, M. J., Bottomley, W., et al. (2002). Mutations of the BRAF gene in human cancer. Nature 417:949-954.

Dong, J., Phelps, R. G., Qiao, R., Yao, S., Benard, O., Ronai, Z., and Aaronson, S. A. (2003). BRAF oncogenic mutations correlate with progression rather than initiation of human melanoma. Cancer Res 63:3883-3885.

Fagin, JA, Matsuo, K, Karmarkar, A,(1992)High prevalence of mutations of the p53 gene in poorly differentiated human thyroid carcinomas. J Clin Invest; 91:179.

Fukushima, T., Suzuki, S., Mashiko, M., Ohtake, T., Endo, Y., Takebayashi, Y., Sekikawa, K., Hagiwara, K., and Takenoshita, S. (2003). BRAF mutations in papillary carcinomas of the thyroid. Oncogene 22:6455-6457.

Fusco A, Grieco M, Santoro M, Berlingieri MT, Pilotti S, Pierotti MA, Della Porta G, Vecchio G(1987). A new oncogene in human thyroid papillary carcinomas and their lymph-nodal metastases. Nature 328:170–172

Greco, A., Mariani, C., Miranda, C., Lupas, A., Pagliardini, S., Pomati, M., and Pierotti, M. A. (1995). The DNA rearrangement that generates the TRK-T3 oncogene involves a novel gene on chromosome 3 whose product has a potential coiled-coil domain. Mol Cell Biol 15:6118-6127.

Greco, A., Pierotti, M. A., Bongarzone, I., Pagliardini, S., Lanzi, C., and Della Porta, G. (1992). TRK-T1 is a novel oncogene formed by the fusion of TPR and TRK genes in human papillary thyroid carcinomas. Oncogene 7:237-242.

Mikula, M., Schreiber, M., Husak, Z., Kucerova, L., Ruth, J., Wieser, R., Zatloukal, K., Beug, H., Wagner, E. F., and Baccarini, M. (2001). Embryonic lethality and fetal liver apoptosis in mice lacking the c-raf-1 gene. EMBO J 20: 1952-1962.
Klein, R., Jing, S. Q., Nanduri, V., O'Rourke, E., and Barbacid, M. (1991). The trk proto-oncogene encodes a receptor for nerve growth factor. Cell 65: 189-197.

Kimura, E. T., Nikiforova, M. N., Zhu, Z., Knauf, J. A., Nikiforov, Y. E., and Fagin, J. A. (2003). High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res 63:1454-1457.

Lee, F. S., and Chao, M. V. (2001). Activation of Trk neurotrophin receptors in the absence of neurotrophins. Proc Natl Acad Sci U S A 98:3555-3560.

Levine, A.(1997)p53, the cellular gatekeeper for growth and division. Cell; 88:323.

Lemoine NR, Mayall ES, Wyllie FS, Williams ED, Goyns M, Stringer B, Wynford-Thomas D(1989). High frequency of ras oncogene activation in all stages of human thyroid tumorigenesis. Oncogene 4:159–164.

Marais, R., Light, Y., Paterson, H. F., Mason, C. S., and Marshall, C. J. (1997). Differential regulation of Raf-1, A-Raf, and B-Raf by oncogenic ras and tyrosine kinases. J Biol Chem 272:4378-4383.

Martin-Zanca, D., Mitra, G., Long, L. K., and Barbacid, M. (1986). Molecular characterization of the human trk oncogene. Cold Spring Harb Symp Quant Biol 51 Pt 2:983-992.
Martin-Zanca, D., Oskam, R., Mitra, G., Copeland, T., and Barbacid, M. (1989). Molecular and biochemical characterization of the human trk proto-oncogene. Mol Cell Biol 9:24-33.

Martin-Zanca, D., Hughes, S. H., and Barbacid, M. (1986). A human oncogene formed by the fusion of truncated tropomyosin and protein tyrosine kinase sequences. Nature 319, 743-748.

Nakamura T, Yana I, Shin E, Karakawa K, Fujita S.(1992) p53 gene mutation associated with anaplastic transformation of human thyroid carcinoma . Jpn J cancer Res , 84:1293-1298

Namba, H., Nakashima, M., Hayashi, T., Hayashida, N., Maeda, S., Rogounovitch, T. I., Ohtsuru, A., Saenko, V. A., Kanematsu, T., and Yamashita, S. (2003). Clinical implication of hot spot BRAF mutation, V599E, in papillary thyroid cancers. J Clin Endocrinol Metab 88:4393-4397.

Nikiforova, M. N., Kimura, E. T., Gandhi, M., Biddinger, P. W., Knauf, J. A., Basolo, F., Zhu, Z., Giannini, R., Salvatore, G., Fusco, A. (2003). BRAF mutations in thyroid tumors are restricted to papillary carcinomas and anaplastic or poorly differentiated carcinomas arising from papillary carcinomas. J Clin Endocrinol Metab 88:5399-5404.

Nikiforova, M. N., Lynch, R. A., Biddinger, P. W., Alexander, E. K., Dorn, G. W., 2nd, Tallini, G., Kroll, T. G., and Nikiforov, Y. E. (2003). RAS point mutations and PAX8-PPAR gamma rearrangement in thyroid tumors: evidence for distinct molecular pathways in thyroid follicular carcinoma. J Clin Endocrinol Metab 88:2318-2326.

Nishiyama RH, Dunn EL, Thompson NW(1972). Anaplastic spindle-cell and giate-cell tumors of the thyroid gland. Cancer, 30:113-27

Patapoutian, A., and Reichardt, L. F. (2001). Trk receptors: mediators of neurotrophin action. Curr Opin Neurobiol 11:272-280.

Papin, C., Denouel-Galy, A., Laugier, D., Calothy, G., and Eychene, A. (1998). Modulation of kinase activity and oncogenic properties by alternative splicing reveals a novel regulatory mechanism for B-Raf. J Biol Chem 273: 24939-24947.

Papin, C., Denouel, A., Calothy, G., and Eychene, A. (1996). Identification of signalling proteins interacting with B-Raf in the yeast two-hybrid system. Oncogene 12:2213-2221.

Pierotti, M. A., Bongarzone, I., Borrello, M. G., Mariani, C., Miranda, C., Sozzi, G., and Greco, A. (1995). Rearrangements of TRK proto-oncogene in papillary thyroid carcinomas. J Endocrinol Invest 18:130-133.

Pritchard, C. A., Samuels, M. L., Bosch, E., and McMahon, M. (1995). Conditionally oncogenic forms of the A-Raf and B-Raf protein kinases display different biological and biochemical properties in NIH 3T3 cells. Mol Cell Biol 15:6430-6442.

Puxeddu, E., Moretti, S., Elisei, R., Romei, C., Pascucci, R., Martinelli, M., Marino, C., Avenia, N., Rossi, E. D., Fadda, G., et al. (2004). BRAF(V599E) mutation is the leading genetic event in adult sporadic papillary thyroid carcinomas. J Clin Endocrinol Metab 89:2414-2420.

Rajagopalan H, Bardelli A, Lengauer C, Kinzler KW, Vogelstein B, Velculescu VE(2002)Tumorigenesis: RAF/RAS oncogenes and mismatch-repair status. Nature 418:934.

Rajiv K., Sabrina A, Kamila C., Ilari S., Marjo H.-K., Seppo P. and Kari H. (2003). BRAF Mutation in Metastatic Melanoma. Clinical Cancer Research 9: 3362~3368 .

Santoro, M., Carlomagno, F., Hay, I. D., Herrmann, M. A., Grieco, M., Melillo, R., Pierotti, M. A., Bongarzone, I., Della Porta, G., Berger, N., and et al. (1992). Ret oncogene activation in human thyroid neoplasms is restricted to the papillary cancer subtype. J Clin Invest 89:1517-1522.

Sedliarous I, Saenko V, Lantsov D, Rogounovith T,Namba H, Abrosimov A, Lushnikov E,Kumagai A,Nakashima M,Meirmanov S,Mine M,Hayashi T, Yamashita S.(2004).Int J Oncol. 25:1729-1735.

Segal, R. A., and Greenberg, M. E. (1996). Intracellular signaling pathways activated by neurotrophic factors. Annu Rev Neurosci 19:463-489.

Soares, P., Trovisco, V., Rocha, A. S., Lima, J., Castro, P., Preto, A., Maximo, V., Botelho, T., Seruca, R., and Sobrinho-Simoes, M. (2003). BRAF mutations and RET/PTC rearrangements are alternative events in the etiopathogenesis of PTC. Oncogene 22:4578-4580.

Sonia L. Sugg, Shereen Ezzat, Irving B. Rosen, Jeremy L. Freeman and Sylvia L. Distinct Multiple RET/PTC Gene Rearrangements in Multifocal Papillary Thyroid Neoplasia (1998) The Journal of Clinical Endocrinology & Metabolism 83:4116-4122

Sun, H., and Tonks, N. K. (1994). The coordinated action of protein tyrosine phosphatases and kinases in cell signaling. Trends Biochem Sci 19:480-485

Tallini, G, Santoro, M, Helie, M .(1998)RET/PTC oncogene activation defines a subset of papillary thyroid carcinomas lacking evidence of progression to poorly differentiated or undifferentiated tumor phenotypes. Clin Cancer Res 4:287.

Tan RK, Finley RK, Driscoll D, Bakamjian V, Hicks WL, Jr., Shedd DP. Anaplastic carcinoma of the thyroid(1995): a 24-year experience. Head Neck 17:41-47

Venkatesh YSS, Ordonez NG, Schultz PN, Hickey RC, Goepfert H, Samaan NA. Anplastic carcinoma of the thyroid(1990): a clinicopathologic study of 121 cases. Cancer. 66:321-330

Viglietto, G., Chiappetta, G., Martinez-Tello, F. J., Fukunaga, F. H., Tallini, G., Rigopoulou, D., Visconti, R., Mastro, A., Santoro, M., and Fusco, A. (1995). RET/PTC oncogene activation is an early event in thyroid carcinogenesis. Oncogene 11: 1207-1210.

Xing M, Vasko V, Tallini G, Larin A, Wu G, Udelsman R, Ringel MD, Ladenson PW, Sidransky D (2004a) BRAF T1796A transversion mutation in various thyroid neoplasms. J Clin Endocrinol Metab 89:1365 - 1368.

Xu, X., Quiros, R. M., Gattuso, P., Ain, K. B., and Prinz, R. A. (2003). High prevalence of BRAF gene mutation in papillary thyroid carcinomas and thyroid tumor cell lines. Cancer Res 63:4561-4567.

Zhu Z, Gandhi M, Nikiforova MN, Fischer AH, Nikiforov YE(2003).
Molecular profile and clinical-pathologic features of the follicular variant of papillary thyroid carcinoma: an unusually high prevalence of RAS mutations. Am J Clin Pathol 120:71–77
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內公開,校外永不公開 restricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.224.30.42
論文開放下載的時間是 校外不公開

Your IP address is 18.224.30.42
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code