Responsive image
博碩士論文 etd-0219101-094458 詳細資訊
Title page for etd-0219101-094458
論文名稱
Title
錳離子對耐輻射奇異球菌葡萄糖代謝路徑走向的影響
Effect of manganese on the metabolism of glucose in Deinococcus radiodurans
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
54
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2000-07-05
繳交日期
Date of Submission
2001-02-19
關鍵字
Keywords
耐輻射奇異球菌
Deinococcus radiodurans
統計
Statistics
本論文已被瀏覽 5714 次,被下載 2864
The thesis/dissertation has been browsed 5714 times, has been downloaded 2864 times.
中文摘要
中文摘要
耐輻射奇異球菌 (Deinococcus radiodurans) 對離子輻射及紫外線具有高度的耐受性 , 且對錳離子有很強的攝取性。於生長靜止期初期時加入二價錳離子會誘導細胞的再次分裂 , 產生二次生長的情形 (Mn-CD效應)。雖然此菌對糖類的利用效率不佳 , 然而確實可以代謝葡萄糖和果糖。我們發現耐輻射奇異球菌對於糖類的分解具有糖解路徑 (glycolysis) 及pentose phosphate pathway (PPP) 代謝路徑 , 且會受到錳離子的影響而改變其代謝路徑的走向和比例。在糖解路徑中我們以aldolase酵素活性做指標 , 而在PPP路徑中則以transketolase酵素活性作為指標, 結果顯示錳離子有促進glycolysis分解葡萄糖的效應 , 但是在不同的培養基中其酵素活性結果不一定相似。而PPP在各種培養基中生長時, 亦會有不一樣的活性表現。

Abstract
ABSTRACT


Deinococcus radiodurans is extremely resistant to ionizing and UV irradiation. The addition of manganese(Ⅱ) into stationary-phase culture can trigger a new cycle of cell division ( Mn-CD effect ). Although D.radiodurans can hardly utilize sugar , but it does can incorporate glucose and fructose into the cell mass. We found that D. radiodurans can metabolize sugar by glycolysis ( EMP ) and pantose phosphate pathway ( PPP ). The activity of both pathways would be altered by the addition of manganese(Ⅱ). The marker enzymes of the PPP ( transketolase ) and EMP pathway ( aldolase ) were also analyzed. Results show that manganese(Ⅱ) can induce the hydrolysis of glucose by activating the EMP pathway. However , the induction effect various with different cultural conditions. In analyzing the PPP pathway , the activities of transketolase were also various with different cultural conditions.
目次 Table of Contents
目錄

中文摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

英文摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

壹、 前言. . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

貳、 材料與方法. . . . . . . . . . . . . . . . . . . . . . . . 17

參、 結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

肆、 討論. . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

伍、 參考資料. . . . . . . . . . . . . . . . . . . . . . . . . .32

陸、 圖表. . . . . . . . . . . . . . . . . . . . . . . . . . . . 39



參考文獻 References
伍、參考資料

陳麗瑛, 1995. 二價金屬離子對抗輻射奇異球菌醣類代謝的影響。國立中山大學碩士論文。

黃威球, 1998. 耐輻射奇異球菌的醣類代謝。國立中山大學碩士論文。

Anderson, A. W., H. C. Nordan, R. F. Cain, G. Parrish, and D. Duggan. 1956. Studies on a radio-resistant Micrococcus. I. Isolation, morphlolgy, culture characteristics, and resistance to γ-radiation. Food Techol. 10 : 575-577.

Arrage, A. A., T. J. Phelps, R. E. Benoit and D. C. White. 1993. Survival of subsurface microorganisms exposed to UV radiation and hydrogen peroxide. Appl. Environ. Microbiol. 59 : 3545-3550.

Battista, J. R. 1997. Against all odds: the survival strategies of Deinococcus radiodurans. Annu. Rev. Microbiol. 51 : 203-24.

Baumeister, W., M. Barth, R. Hegerl, R. Guckenberger, M. Hahn and W. O. Saxton. 1986. Three-dimensional structure of the regular surface layer ( HPI layer) of Deinococcus radiodurans carotenoids. Arch. Biochem. Biophys. 275 : 244-251.

Brooks, B. W. and R. G. E. Murray. 1981. Nomenclature for “Micrococcus radiodurans” and other radiation resistant cocci: Deinococcaceae fam. Nov. and Deinococcus gen. Nov., including five species. Int. J. Syst. Bacteriol. 30 : 627-646.

Brooks, B. W. and R. G. E. Murray, J. L. Johnson, E. Stackebrandt, C. R. Woese and G. E. Fox. 1980. Red-pigmented micrococci: a basis for taxonomy. Int. J. Syst. Bacteriol. 30 : 627-646.

Carbonneau, M. A., A. M. Melin, A. Perromat, and M. Clerc. 1989. The action of free radicals on Deinococcus radiodurans carotenoids. Arch. Biochem. Biophys. 275 : 244-251.

Chan, W. F. and D. K. O’Toole. 1999. Isolation of Deinococcus species from commercial oyster extract. Appl. Environ. Microbiol. 65 : 846-848.

Chou, F. I. And S. T. Tan. 1990. Manganese(Ⅱ) induces cell division and increases in superoxide dismutase and catalase activities in an aging deinococcal culture. J. Bacteriol. 172 :2029-2035.

Chou, F. I. And S. T. Tan. 1991. Salt-mediated multicell formation in Deinococcus radiodurans. J. Bacteriol. 173 : 3184-3190.

Counsell, T. J. and R. G. E. Murray. 1986. Polar lipid profiles of the genus Deinococcus radiodurans. Int. J. Bacteriol. 36 : 202-206.

Daly M. J., L. Ouyang, P. Fuchs, and K. W. Minton. 1994a. In vivo damage and recA-dependent repair of plasmid and chromosomal DNA in the radiation-resistant bacterium Deinococcus radiodurans. J. Bacteriol. 176 : 3508-3517.

Davis, N. S., G. J. Silverman, and E. B. Masurovsky. 1963. Radiation resistant, pigmented coccus islated from haddock tissue. J. Bacteriol. 86 : 278-294.

De Montigny, C., and J. Sygusch. 1996. Functional characterization of an extreme thermophilic classⅡfructose-1,6-bisphosphate aldolase. Eur. J. Biochem. 241 : 243-248.

Dobrogosz, W. J. 1981. Enzymatic activity. In Gerhardt, Murray, Costilow, Nester, Wood, Krieg, and Phillips, Eds., Manual of Methods of General Bacteriology.

Evans, D. M., and B. E. B. Moseley. 1985. Identification and initial characterization of a pyrimidine dimer UV endonuclease ( UV endonucleaseβ) from Deinococcus radiodurans ; a DNA-repair enzyme that requires manganese ions. Mutat. Res. 145 : 119-128.

Eynde, H. V., Y. V. Peer, H. Vandenabeele, M. V. Bogaert and R. D. Wachter. 1990. 5S rRNA sequences of myxobacteria and radioresistant bacteria and implications for eubacterial evolution. Int. J. Syst. Bacteriol. 40 : 399-404.

Ferreira, A. C., M. F. Nobre, F. A. Rainey, M. T. Silva, R. Wait, J. Burghardt, A. P. Chung, and M. S. da Costa. 1997. Deinococcus geothermalis sp. Nov. and Deinococcus murrayi sp. Nov., two extremely radiation-resistant and slightly thermophilic species from hot springs. Int. J. Syst. Bacteriol. 47 : 939-947.

Gutman, P. D., P. Fuchs, L. Ouyang and K. W. Minton, 1993. Identification, sequencing, and targeted mutagenesis of a DNA polymerase gene required for the extreme radioresistance of Deinococcus radiodurans. J. Bacteriol. 175 : 3581-3590.

Gutman, P. D., H. Yao and K. W. Minton. 1991. Partial complementation of the UV sensitivity of Deinococcus radiodurans excision repair mutants by the cloned denV gene of bacteriophage T4. Mutat. Res, DNA Repair. 254 : 207-215.

Hanssan. 2000

Harada, K., T. Sugahara, T. Ohnishi, Y. Ozaki, Y. Obiya, S. Miki, T. Miki, M. Imamura, Y. Kobavashi, H. Watanabe, M. Akashi, Y. Furusawa, N. Mizuma, H. Yamanaka, E. Ohashi, C. Yamaoka, M. Fukui, T. Nakano, S. Takahashi, T. Amano, K. Sekikawa, K. Yanagawa, and S. Nagaoka. 1998. Inhibition in a microgravity environment of the recovery of Escherichia coli cells damaged by heavy ion beams during the NASDA ISS phaseⅠprogram of NASA Shuttle/Mir mission no. 6. Int J. Mol. Med. 5 : 517-822.

Ito, H., H. Watanabe, M. Takehisa, and H. Iizuka. 1983. Isolation and identification of radiation-resistant cocci belonging to the genus Deinococcus from sewage sludges and animal feeds. Agric. Biol. Chem. 47 : 1239-1247.

Kobatake, M., S. Tanabe, and S. Hasegawa, 1973. Nouveau Micrococcus radioresistant a pigment rouge, islate defeces de Lama glama, et son utilization comme indicateur microbiologique de la radio-sterilisation. C. R. Seances Soc. Biol. Paris. 167 : 1506-1510.

Kobes, R. D., R. T. Simpson, B. L. Vallee, and W. J. Rutter. 1969. A functional role of metal ions in a classⅡaldolase. Biochemistry. 8 : 585-588.

Lange, C. C., L. P. Wackett, K. W. Minton, and M. J. Daly, 1998. Engineering a recombinant Deinococcus radiodurans for organopollutant degradation in radioactive mixed waste environments. Nat. Biotechnol. 16 : 929-933.

Larsen, H. 1973. The halobacteria’s confusion to biology. Antonie von Leewenhoke J. Microbiol. Serol. 39 : 383-396.

Lebherz, H. G., and W. J. Rutter. 1973. A classⅠ(Shiff base) fructose diphosphate aldolase of prokaryotic origin. J boil. Chem. 248 : 1650-1659.

Leibowitz, P. J., L. S. Schwartzberg, and A. K. Bruce. 1976. The in vivo association of manganese with the chromosome of Micrococcus radiodurans. Photochem. Photobiol. 23 : 45-50.

Lewis, N. F. 1973. Radio resistant Micrococcus radiophilus so. nov. islated for irradiated Bombay duck. Curr. Sci. 42 : 45-50.

Lin, C. L., C. S. Lin and S. T. Tan. 1995. Mutations showing soecificity for normal growth or Mn(Ⅱ)-dependent post-exponential-phase cell division in Deinococcus radiodurans. Microbiol. 141 : 1707-1714.
Masters, C. I., R. G. Murray, B. E. Moseley, and K. W. Minton. 1991. DNA polymorphisms in new isolates of “Deinococcus radiodurans”. J. Gen. Microbiol. 137 : 1459-1469.

Mattimore, V. and J. R. Battista. 1996. Radioresistance of Deinococcus radiodurans: functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation. J. Bacteriol. 178 : 633-637.

McMurry, J. 1996. Organic Chemistry 4 ed. International Thomson Publishing Company.

Minton, K. W. 1994. DNA repair in the extremely radioresistant bacterium Deinococcus radiodurans. Mol. Microbiol. 13 : 9-15.

Muller, D. J., W. Baumeister and A. Engel. 1996. Conformational change of the hexagonally packed intermediate layer of Deinococcus radiodurans monitored by atomic force microscopy. J. Bacteriol. 178 : 3025-3030.

Murray, R. G. E. 1992. In the Prokaryotes. Vol. 4, 2nded. New York : Springer-Verlag.

Murray, R. G. E. and B. W. Brooks. 1986. Genus I. Deinococcus, 1035-1041. In P. H. A. Sneath, N. S. Mair, M. E. Sharpe, and J. G. Holt(ed.), Bergey’s manual of systematic bacteriology, vol. 2. Williams&Wilkins, Baltimore, Md.

Nishimura, Y., T. Ino and H. Iisuka. 1988. Acinetobacter radioresistens sp. nov.isolated from cotton and soil. Int. J. Syst. Bacteriol. 38 : 209-211.

Peters J. and W. Baumeister. 1986. Molecular cloning, expression, and characterization of the gene for the surface ( HPI )-layer protein of Deinococcus radiodurans in Escherichia coli. J. Bacteriol. 167 : 1048-1054.

Rainey, F. A., M. F. Nobre, P. Shumann, E. Stackebrandt, and M. S. da Costa. 1997. Phylogenetic diversity of the deinococci as determined by 16S ribosomal DNA sequence comparison. Int. J. Syst. Bacteriol. 47 : 510-514.

Raj, H. D., F. L. Duryee, A. M. Deeney, C. H. Wang, A. W. Anderson, and P. R. Elliker. 1960. Utilization of carbohydrates and amino acids by Micrococcus radiodurans. Can. J. Microbiol. 6 : 289-298.

Ramano, A. H., S. J. Eberhard, S. L. Dingle, and T. D. McDowell. 1970. Distribution of the phosphoenolpyruvate : glucose phosphotransferase system in bacteria. J. Bacteriol. 104 : 808-813.

Romano, A. H., J. D. Trifone, and M. Brustolon. 1979. Distribution of the phosphoenolpyruvate : glucose phophotransferase system in fermentative bacteria. J. Bacteriol. 139 : 93-97.

Szwergold, B. S., K. Ugurbil, and T. R. Brown. 1995. Properties of fructose-1,6-bisphosphate aldolase from Escherichia coli : an NMR analysis. Arch. Biochem. Biophys. 317 : 244-252.

Takayama, S., G. J. Mcgarvey, and C. H. Wong. 1997. Microbial aldolases and transketolase : new biocatalytic approaches to simple and complex sugars. Annu. Rev. Microbiol. 51 : 285-310.

Wierowski, J. V. and A. K. Bruce. 1980. Modification of radiation resistance by manganese in Micrococcus radiodurans. Radiat. Res. 83 : 384-385.

White O, JA Eisen, JF Heidelberg, EK Hickey, JD Peterson, RJ Dodson, DH Haft, ML Gwinn, WC Nelson, DL Richardson, KS Moffat, H Qin, L Jiang, W Pamphile, M Crosby, M Shen, JJ Vamathevan, P Lam, L McDonald, T Utterback, C Zalewski, KS Makarova, L Aravind, MJ Daly, and CM Fraser. 1999. Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1. Science. 19 : 157-157.

Woses, C. R., E. Stackebrandt, T. J. Macke, and G. E. Fox. 1985. A phylogenetic definition of the major eubacterial taxa. System. Appl. Microbiol. 6 : 143-151.

Work, E., and H. Griffiths. 1968. Morphology and chemistry of cell walls of Micrococcus radiodurans. J. Bacteriol. 95 : 641-657.

Zhang, Y. 1997. Manganese dependent glycolysis of the extremely radioresistant bacterium Deinococcus radiodurans. M. S. Thesis. The University of Memphis. U.S.A.

Zhang, Y. M., T. Y. Wong, L. Y. Chen, C. S. Lin, and J. K. Liu. 2000. Induction of a futile Embden-Meyerhof-Parnas Pathway in Deinococcus radiodurans by Mn: possible role of the pentose phosphate pathway in cell survival. Appl. Environ. Microbiol. 66 : 105-112.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code