Responsive image
博碩士論文 etd-0220112-010449 詳細資訊
Title page for etd-0220112-010449
論文名稱
Title
24 GHz 使用A類串疊組態之功率放大器設計與模擬
The Design and Simulation of a 24 GHz Class-A Cascode Configured Power Amplifier
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
99
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-01-06
繳交日期
Date of Submission
2012-02-20
關鍵字
Keywords
功率結合、功率放大器、互補式金屬氧化物半導體、串疊組態、A類
power combination, Class A, CMOS, Cascode configuration, Power Amplifier
統計
Statistics
本論文已被瀏覽 5702 次,被下載 6569
The thesis/dissertation has been browsed 5702 times, has been downloaded 6569 times.
中文摘要
中文提要:
本論文為主要分為三部分。第一部分針對互補式金屬氧化物半導體的主動與被動元件原理與特性作說明,對常見的電晶體如雙極性電晶體、金屬氧化物半導體電晶體、異質介面電晶體和假型高速電子移動電晶體作簡介,模擬常見的電阻、電容與電感作結構原理與說明,了解CMOS的主動元件與被動元件的結構與特性有助於微波電路的設計,第二部分說明功率放大器的設計原理與特性,第三部分為設計與模擬兩級串疊式組態A類功率放大器與三級串疊式組態具功率結合之A類功率放大器。
Abstract
Abstract

Recently, the proliferating needs of high data rate communication systems are increasing the demand for higher frequency bands with broader bandwidth. The K-band (18~26.5 GHz), which include point to point communications (18~23 GHz), ISM band (24 GHz), and automotive radar applications (24 GHz and 22~29 GHz) is one of the most important frequency bands in modern wireless communication systems.
This thesis mainly includes three parts. The first part of the thesis is the introduction to the principles and characteristics for active and passive components of CMOS process and the description of common transistors , such as BJT, CMOSFET, HBT and pHEMT. The principles of resistors, capacitors and inductors in simulations is shown. It is useful for the microwave circuit design to understand the structure and characteristics of active components and passive components in CMOS process. The second part describes the design principles and characteristics of power amplifier. The third part is the design and simulation of the 2 stages cascode configuration Class A power amplifier and the 3 stages cascode configuration Class A power amplifier with power combination.
There are two important scaling trends that are making CMOS increasingly attractive for RF applications. One is the well known dramatic shrinkage of device size, so that transistors in the advanced process generation of CMOS have peak fT values in excess of 55 GHz.The other is the reverse scaling of interconnect. The thicker metal layer and more layers of wiring are enabling the realization of high-quality passive components which are critical for RF circuits. CMOS is the most attractive technology for its low cost, high yield and high level of integration.
However, It is challenging to design a power amplifier with high output power. In the sub-micron CMOS technology, the challenges of CMOS power amplifier design include the low breakdown voltage, low transconductance (gm), and high substrate loss as compared with SiGe HBTs GaAs HBTs and InP-GaAs HBTs technologies. We made efforts in implementing a power amplifier at K-band. The design and simulation of two power amplifier is present. One is the 2 stages power amplifier, the other is the 3 stages power amplifier with power combination. In order to realize the inductive element and capacitive element in sub-milimeter wave or millimeter wave circuit design, the short stub microstrip line and open stub mircrostrip line are used in matching networks between all stages. The cascade configuration is effective structure to minimize Miller effect in high frequency. The peak gain of 2 stages power amplifier is 17 dB at 24 GHz and the saturation output power is 20 dBm. The OP1dB is over 16 dBm. The peak gain of 3 stages power amplifier with power combination is 20 dB at 24 GHz and the saturation output power is 20.5 dBm. The OP1dB is over 15 dBm.The power amplifier with the cascode configuration and power combination techniques is designed and simulated in TSMC 0.18 um CMOS process, which provides deep n-well, and MiM capacitors.
目次 Table of Contents
目錄 I
圖表目錄 III
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 論文架構 4
第二章 5
2.1 簡介 5
2.2 互補式金屬氧化物電晶體的結構與物理特性 9
2.2.1 電晶體的雜訊來源 9
2.2.2 低摻雜汲級結構(Lower Doped Drain Structure) 9
2.2.3電晶體模型 10
2.2.4 保護環和深層N型井( Guard ring and Deep N-Well ) 14
2.3電阻 16
2.3.1 N型井電阻(N-well resistance) 17
2.3.2 擴散電阻(Diffusion resistance) 17
2.3.3 多晶矽電阻(poly resistance) 18
2.3.4 高多晶矽電阻(High poly resistance) 19
2.4 電容 20
2.4.1金屬氧化物半導體變容器(MOS varactor) 20
2.4.2多晶矽電容(PiP capacitor) 20
2.4.3金屬絕緣層金屬電容(MiM capacitor) 21
2.5電感 24
2.6結語 33
第三章 功率放大器的設計原理與特性 34
3.1簡介 34
3.2 非線性的特性 35
3.2 鄰近通道功率比例(ACPR Adjacent Channel Power Ratio) 40
3.3 誤差向量幅度(EVM Error Vector Magnitude) 41
3.4 負載線法(Load-line method)與負載位移法(Load-pull method) 42
3.5 傳輸線理論 49
3.6 穩定度 53
3.7 功率轉換和匹配網路設計 56
第四章 串疊組態功率放大器 58
4.1 串疊組態 (Cascode configuration) 59
4.2 兩級串疊組態功率放大器 61
4.3 三級串疊組態具功率結合之功率放大器 67
4.4 結語 75
第五章 結論與未來工作 77
參考文獻 82
參考文獻 References
參考文獻
[1] Sze, S. M. “Physics of Semiconductor Devices,” 2nd ed., John Wiley & Sons, New York, 1979.
[2] Sze, S. M. “Semiconductor Devices, Physics and Technology”, 2nd ed New York : Wiley, 2002
[3] Hong Xiao, “introduction to semiconductor manufacturing technology,” Prentice Hall,2002.
[4]Herbert Kroemer, “Heterostructure Bipolar Transistors and Integrated Circuits,” Proceedings of the IEEE, Vol. 70, No. 1, January 1982.
[5] Frank Schwierz and Juin J. Liou,”Modern Microwave Transistors Theory, Design, and Performance”; John Wiley & Sons, Inc., 2003.
[6] Willium Liu,”Fundamentals of III-V Devices – HBTs, MESFETs, and HFETs/HEMTs”`, John Wiley & Sons, Inc., 1999.
[7] Okumura, Y., Kunikiyo, T., Ogoh, I., et al., "Gradedjunction gate/nf overlapped LDD MOSFET structures for high hot-carrier reliability”, reliability", IEEE Trans. Electron Devices,vol. 38, pp. 2647-2656, Dec. 1991.
[8] Schulz, T., Rosner, W., Risch, L., et al., "Short- channel vertical sidewall MOSFETs", IEEE Trans. Electron Devices, vol. 38, pp. 2647-2656, Dec. 2001.
[9] C. H. Doan, S. Emami, A. M. Niknejad, and R. W. Brodersen, Millimeter-wave CMOS design,” IEEE J. Solid-State Circuits, vol. 40, no.1, pp. 144–154, Jan. 2005.
[10] H. Shigematsu, T. Hirose, F. Brewer, and M. Rodwell, “Millimeterwave CMOS circuit design,” IEEE Tran. Microw. Theory Tech., vol.53, no. 2, pp. 472–477, Feb. 2005.
[11] Cheon Soo Kim, at al. “Gate Layout and Bonding Pad Structure of a RF n-MOSFET for Low Noise Performance,” in IEEE ELECTRON DEVICE LETTERS, vol. 21, no. 12, DEC. 2000
[12] Alan Hasting, “The Art of Analog Layout,” Prentice Hall, 2001.
[13]Johnson Liu, “Mixed-Signal IC Layout,” Workshop on Fully Layout Technology, Mar. 23, 2002.
[14]Hong-Yi Huang, “Mixed-Signal IC Layout,”Lecture of Science Park Administration.
[15] Jiong-Guang Su, Heng-Ming Hsu, Shyh-Chyi Wong, Member, IEEE, Chun-Yen Chang, Fellow, IEEE,Tiao-Yuan Huang, Fellow, IEEE, and Jack Yuan-Chen Sun, Fellow, IEEE;”Improving the RF Performance of 0.18 um CMOS With Deep n-Well Implantation”, IEEE Electron Device Letters, Vol. 22, No. 10, pp. 481 – 483. Oct 2001.
[16] Wen-Kuan Yeh, Shuo-Mao Chen, and Yean-Kuen Fang “Substrate Noise-Coupling Characterization and Efficient Suppression in CMOS Technology” IEEE Transation on Electron Device, Vol. 51, No. 5, pp.817-819, May 2004.
[17] Jongchan Kang, Daekkyu Yu, Youngoo Yang, Member, IEEE, and Bumman Kim, Senior Member, IEEE, “Highly Liner 0.18 um CMOS Power Amplifier With Deep n-Well Structure,” IEEE JSSC, Vol. 41, No. 5, May 2006.
[18] Technology documents of TSMC RF 0.18um process.
[19] Yu Cao, Groves, R.A., Xuejue Huang, Zamdmer, N.D., Plouchart, J.-O., Wachnik, R.A., Tsu-Jae King and Chenming Hu,” Frequency-independent equivalent-circuit model for on-chip spiral inductors,” IEEE Journal of Solid-State Circuits, Vol.38, pp.419 – 426, Mar 2003.
[20] Niranjan Talwalkar, C. Patrick Yue, and S. Simon Wong “Compact Modeling of High Frequency Phenomena for On-Chip Spiral Inductors (Invited Paper),” Center for Integrated Systems, Stanford University, CA, USA
[21] C. Patrick Yue and S. Simon Wong,“Physical Modeling of Spiral Inductors on Silicon,” IEEE Transactions on Electron Devices vol.47, no.3, Mar 2000.
[22] A.M. Niknejad and R.G. Meyer, “Analysis of eddy-current losses over conductive substrates with applications to monolithic inductors and transformers,” IEEE Transactions on Microwave Theory and Techniques, Vol. 49, No. 1 , pp.166-176, Jan 2001.
[23] Behzad Razvavi, “Design of Analog CMOS Integrated Circuit,” McDraw-Hill, 2001.
[24] Olive H. Murphy, Student Member, IEEE, Kevin G. McCarthy, Member, IEEE, Christophe J. P. Delabie,Aidan C. Murphy, Member, IEEE, and Patrick J. Murphy, Member, IEEE,” Design of Multiple-Metal Stacked Inductors Incorporating an Extended Physical Model” IEEE Transaction on Microwave Theory and Techniques, Vol. 53, No. 6, pp. 2063-2072, June 2005.
[25] Mina Danesh, John R. Long, R. A. Hadaway, and D. L. Harame,“A Q-Factor Enhancement Technique for MMIC Inductors,”IEEE MTT-S Int. Microwave Symp.1998, pp.169∼172.
[26] Y. Massoud and J. White, “Simulation and modeling of effect of substrate conductivity on coupling inductance,” IEDM 95, pp. 491-494, Dec 1995.
[27] C. Patrick Yue and S. Simon Wong, “On-Chip Spiral Inductors with Patterned Ground Shields for Si-Based RF IC’s,” IEEE Journal of Solid-State Circuits,vol.33,no.5, May 1998.
[28] Seong-Mo Yim, Tong Chen, and Kenneth K. O, “The Effects of a Ground Shield on the Characteristics and Performance of Spiral Inductors,” IEEE Journal of Solid-State Circuits, vol.37, no.2, Feb 2002.
[29]H. Yoshida, H. Suzuki, Y. Kinoshita, H. Fujii, T. Yamazaki, “An RF BiCMOS Process using High fSR Spiral Inductor with Premetal Deep Trenches and A DualRecessed Bipolar Collector Sink,” Electron Devices Meeting, 1998.IEDM '98 Technical Digest, International, 6-9 Dec. 1998 pp.213 ∼ 216.
[30] Chun-Lin Ko,Chien-Nan Kuo and Ying-Zong Juang,” On-Chip Transmission Line Modeling and Applications to Millimeter-Wave Circuit Design in 0.13um CMOS Technology,” International Symposium on VLSI Design, Automation and Test, 2007. pp.1 – 4, April 2007
[31] Brinkhoff, J., Kok Koh, Kai Kang and Fujiang Lin,” Scalable Transmission Line and Inductor Models for CMOS Millimeter-Wave Design,” IEEE Transactions on Microwave Theory and Techniques,Vol56. pp.2954 – 2962 Dec. 2008
[32] Guillermo Gonzalez, “ Microwave Transistor Amplifiers : Analysis and Design,” 2nd ed, Prentice Hall, 1997.
[33] Kai Chang, “RF and Microwave Wireless Systems,” John Wiley & Sons, Inc. 2000.
[34] D.M Pozar, “Microwave Engineering,” 3rd ed. New York : Willy, 2005.
[35]Peter B. Kenington, “High-Linearity RF Amlifier Design,” Artech House, 2000.
[36] Steve C. cripps. “RF Power Amplifier for wireless Communication,” Boston MA Artech House, 1999
[37] Steve C. cripps. “Advanced Techniques in RF Power Amplifier Design, ” Artech House, 2002.
[38] Behzad Razavi, “RF Microelectronics,”Prentice Hall, 1997.
[39]”Power Amplifier Design and Simulation using ADS” Lecture of National Chip Implementation Center.
[40] Lee, Thomas H,”CMOS RF Integrated Circuits: Past, Present and Future “Microwave Conference, 1999. 29th European Oct. 1999, pp.12 – 19
[41] Ferndahl, M. ; Johansson, T and Zirath, H. ; “20 GHz Power Amplifier Design in 130 nm CMOS” Microwave Integrated Circuit Conference, 2008. EuMIC 2008. European, Oct. 2008, pp. 254 – 257
[42] Ali M. Niknejad, Electrical Engineering and Computer Science Department, University of California,Berkeley, CA,”0-60 GHz in Four Years: 60 GHz RF in Digital CMOS”
[43] Joshin, K. ; Kawano, Y. ; Fujita, M. ; Sato, M. and Hirose,”A 24 GHz 90-nm CMOS-based power amplifier module with output power of 20 dBm” Radio-Frequency Integration Technology, 2009. RFIT 2009. IEEE International Symposium on Jan. 9 2009-Dec. 11 2009 , pp.: 217 – 220
[44]Toshihide Suzuki, Yoichi Kawano, Masaru Sato, Tatsuya Hirose , Kazukiyo Joshin, Fujitsu Laboratories, Atsugi, Japan ”60 and 77GHz Power Amplifiers in Standard 90nm CMOS” 2008 IEEE International Solid-State Circuits Conference
[45] A. Komijani and A. Hajimiri, “A 24 GHz, +14.5 dBm fully-integrated power amplifier in 0.18um CMOS,” in Proc. IEEE 2004 Custom Integrated Circuits Conf., Oct. 2004, PP. 561-564
[46] Yung-Nien Jen, Jheng-Han Tsai, Chung-Te Peng, and Tian Wei Huang, “A 20 to 24 GHz 16.8 dBm fully integrated power amplifier using0.18-μm CMOS process,” IEEE Microwave and Wireless Components Lett, vol. 19, no. 1,pp. 42- 44, Jan. 2009
[47] Jing-Lin Kuo, Zuo-Min Tsai,and Huei Wang “A 19.1-dBm “fully-integrated 24 GHz power amplifier using 0.18-μm CMOS technology,” in Proceeding of the European Microwave Conference. Oct. 2008. pp. 558-561.
[48]Henrique Portela, Viswanathan Subramanian,and Georg Boeck“Fully
integrated high efficiency K-band PA in 0.18-μm CMOS technology,” in Proceeding of the Microwave and Optical Conference. Nov. 2009. pp. 393-396.
[49] Chi-Cheng Hung, Jing-Lin Kuo, Kun-You Lin,and Huei Wang, “A 22.5-dB Gain, 20.1-dBm Output Power K-band Power Amplifier in 0.18-μm CMOS“, Radio Frequency Integrated Circuits Symposium (RFIC), 2010 IEEE.
[50] Kuroda, “Wireless Proximity Communications for 3D System Integration,” RFIT, Dec. 2007, pp.21-25
[51] Shinobu Kato, et al., “Electrical Design and Characterization of Si Interposer for System-in-Package (SiP),” 59th ECTC, May 26-29, 2009, pp. 1648 – 1653 Microwave Symp. Dig., Vol. 2, 1997, pp. 501-504.
[52] Sturdivant, R., C. Ly, J. Benson, and J. Hauhe, “Design and Microwave performance of a high density 3D microwave module,” IEEE MTT-S Int. Symp. Dig., Vol. 2, 1997, pp. 501-504.
[53] Dong Min Jang, et al., “Development and Evaluation of 3-D SiP with Vertically Interconnected Through Silicon Vias (TSV),” 57th ECTC, 2007, pp. 847–852.
[54]”Design of RF CMOS IC“ Lecture of National Chip Implementation Center.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code