Responsive image
博碩士論文 etd-0220112-021651 詳細資訊
Title page for etd-0220112-021651
論文名稱
Title
使用三維工藝之微波與毫米波晶片封裝設計
Design of Microwave and Millimeter Wave Integrated Circuit Packages Using 3D Technology
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
91
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-01-06
繳交日期
Date of Submission
2012-02-20
關鍵字
Keywords
毫米波封裝、貫穿孔、四方扁平無引腳封裝、鎊線
milli-meter wave packaging, ribbon bond, wire bond, QFN, via
統計
Statistics
本論文已被瀏覽 5679 次,被下載 2073
The thesis/dissertation has been browsed 5679 times, has been downloaded 2073 times.
中文摘要
本論文分為3個部分:
第一部分(第二章)為高頻模擬的激發方式的探討。我們在印刷電路板上實作一CPWG結構,與砷化鎵晶片上的微帶線結構,分別對其結構使用Wave port與G-S-G lumped port作為激發,實際量測的結果並與模擬做驗證比較。從比較結果得知Wave port在高頻的模擬不僅能以最少的時間並且可獲得較準確的實際結果,例如第二章的CPWG印刷電路板,量測的插入損失從10 MHz至67 GHz都與使用Wave port相近,如圖2.14所示,但G-S-G lumped port就只能預測到40 GHz,故基於此驗證結果,在之後的毫米波QFN設計上,都是採用Wave port作為設計時的激發源。
第二部分(第三章)為使用於毫米波頻帶的QFN設計。此處設計包含IC pad、鎊線、QFN lead與印刷電路板。藉由模擬我們得到此使用Ribbon bond及擬改善QFN之不連續處的反射損失從DC到60GHz,都在-20dB以下,而插入損失從DC到60GHz,都小於0.4dB。並且運用其設計原理去改善傳統商用QFN結構。最後介紹萃取其不連續處的方法並且以量測與模擬作驗證。因為是商用QFN的因素,反射損失到達-20 dB從DC到20 GHz以下,插入損失從DC到22 GHz以下小於0.5 dB。
第三部分(第四章)使用陶瓷基板晶片,介紹其貫穿孔阻抗之萃取與探討die attach對單根或多根貫穿孔電感之影響。其中包括如何降低封裝內部地回流路徑上的電感、使用金屬銅與銀膠的比較和多根貫穿孔的使用。
最後是結論與未來工作
Abstract
There are three parts in this thesis:

In the first part (Chapter 2), we discuss the port excitation (Wave port vs Lumped port) suitable for sub-millimeter wave operations. We realized on printed circuit board a grounded coplanar waveguide (CPWG) and on gallium arsenic (GaAs) a microstrip line. We performed simulation on these structures using high frequency structure simulator (HFSS), and compared the results with measured ones. From the comparison, we found close match for CPWG insertion loss from 10 MHz to 67 GHz using the Wave port. However, for G-S-G lumped port, only matched up to 40 GHz. The wave port not only was more accurate, but also consumed less time in simulation. Consequently, we employed wave port as our simulation excitation for our sub-millimeter wave QFN design.

In the second part (Chapter 3), we focused on design of low cost QFN for sub-millimeter wave applications. We fabricated test structures, which include IC pads and transmission lines, wire bonds, QFN leads, and G-S-G structures on printed circuit board. In HFSS simulation, our specially designed ribbon bonds and QFN configuration show return loss less than -20dB and insertion loss less than -0.4 dB up to 60 GHz. Using the same design principles, we strived to improve the performance of a commercially available QFN, which normally operates at 3 to 6 GHz. The extraction method to obtain the high frequency characteristics was introduced first, and the characteristics of a commercially available QFN (with our wire bond configuration) were then obtained. The insertion loss was less than -20 dB and insertion loss less than -0.5 dB up to 20 GHz. In Chapter 5, we discuss the performance discrepancies between the simulated ribbon bond results and that for fabricated wire bonds.

In the third part (Chapter 4), we introduced a method to extract the characteristics of a single backside via and investigated the effects of die attachment on the performance of a single and multiple backside via(s). Using silver epoxy and Cu blank layer as die attach methods, we found it was important to provide a broad path (Cu blank layer), as opposed to a restrict path (like silver epoxy) to reduce the inductance of the backside vias.

The conclusion and future work are provided in Chapter 5.
目次 Table of Contents
誌謝 ii
摘要 iii
Abstract iv
圖表目錄 viii
第一章 緒論 1
1.1 研究背景與動機 1
1.2 四方扁平封裝(Quad-flat no-leads)介紹 3
1.2.1 結構介紹 3
1.2.2 連接型式 5
1.3 研究技術 6
1.4 論文章節規劃 9
第二章 3D電磁模擬軟體於設定上準確性的探討 10
2.1前言 10
2.1.1 軟體簡介 10
2.1.2 邊界條件 12
2.1.3 激發型式 12
2.2 探討不同激發方式於CPWG型式下的量測與模擬結果的比較 16
2.3 探討不同激發方式於傳輸線型式下的量測與模擬結果的比較 22
2.3.1 量測與模擬比較 24
2.4 章節與討論 26
第三章 毫米波頻帶之QFN封裝不連續特性之萃取 27
3.1 前言與目的 27
3.2 使用Ribbon bond打線型式與改良傳統QFN封裝結構 27
3.2.1 模擬環境 28
3.2.2 模擬結果 30
3.3 商用QFN的訊號不連續處特性改善 34
3.3.1 改變PCB上的金屬走線 34
3.3.2 封裝鎊線使用G-S-G型式 36
3.3.3 訊號使用多根 wire bond的改善 39
3.4 不同材質的鎊線與不同介電係數的epoxy於毫米波頻帶封裝效應的探討 41
3.5 封裝的訊號不連續處特性之萃取與整體訊號路徑的去嵌化 44
3.5.1 Through-Line-Line (TLL)去嵌化技術 45
3.5.2 晶片上微帶線的去嵌化 48
3.6 封裝訊號不連續處模擬與量測的萃取結果分析 50
3.7 章節與討論 53
第四章 晶片接地電感的探討 54
4.1 陶瓷基板簡介 54
4.1.1 量測方法介紹 55
4.1.2 量測結果分析 58
4.1.3 驗證 62
4.2 探討不同材料下回流路徑的影響 63
4.2.1 量測結果比較 65
4.3 比較單一鎊線與單一貫穿孔的阻抗 69
4.4 章節與討論 72
第五章 結論與未來工作 73
參考文獻 75

參考文獻 References
[1] W. Liang, R. Qian, and S. Xiaowei, "A high performance plastic air-cavity QFN solution for future potential microwave package large scale application," IEEE Electrical Design of Advanced Packaging & Systems Symposium, pp. 1-4, 2009.
[2] A. Bessemoulin, M. Parisot, P. Quentin, C. Saboureau, M. van Heijningen, and J. Priday, "A 1-watt ku-band power amplifier MMIC using cost-effective organic SMD package," Proc. 34th European Microwave Conference, pp. 349-352, 2004.
[3] A. Bessemoulin, M. Parisot, and M. Camiade, "1-Watt Ku-band power amplifier MMICs using low-cost quad-flat plastic package," IEEE MTT-S International Microwave Symposium Digest, vol. 2, pp. 473-476, 2004.
[4] A. Bessemoulin, Y. H. Suh, D. Richardson, S. J. Mahon, and J. T. Harvey, "A Compact 500-mW Ku-band Power Amplifier MMIC in 3x3-mm2 Quad Flat (QFN) Packages," Proc. 1st European Microwave Integrated Circuits Conference, pp. 229-232, 2006.
[5] M. J. Chen and S. A. Tabatabaei, "Broadband, quad flat no-lead (QFN) package developed using standard overmold leadframe technology," IEEE MTT-S International Microwave Symposium Digest (MTT), pp. 457-460, 2010.
[6] M. J. Chen and S. A. Tabatabaei, "Broadband, Thin-Film, Liquid Crystal Polymer Air-Cavity Quad Flat No-Lead (QFN) Package," IEEE Compound Semiconductor Integrated Circuit Symposium, pp. 1-4, 2009.
[7] A. Bessemoulin, "A broadband 20- to 40 GHz linear driver amplifier MMIC in surface mount QFN 3x3-mm package," European Microwave Integrated Circuits Conference (EuMIC), pp. 310-312, 2010.
[8] A. Bessemoulin, S. J. Mahon, J. T. Harvey, and D. Richardson, "GaAs PHEMT Power Amplifier MMIC with Integrated ESD Protection for Full SMD 38-GHz Radio Chipset," IEEE Compound Semiconductor Integrated Circuit Symposium, pp. 1-4, 2007.
[9] S. Young-Ho, D. Richardson, A. Dadello, S. Mahon, and J. T. Harvey, "A low-cost high performance GaAs MMIC package using air-cavity ceramic quad flat non-leaded package up to 40 GHz," European Microwave Conference, p. 4 pp, 2005.
[10] K. Fujii and H. Morkner, "Two novel broadband MMIC amplifiers in SMT package for 1 to 40 GHz low cost applications," European Microwave Conference, p. 4 pp, 2005.
[11] H. Kanno, H. Ogura, and K. Takahashi, "Surface mountable liquid crystal polymer package with vertical via transition compensating wire inductance up to V-band," IEEE MTT-S International Microwave Symposium Digest, vol.2, pp. 1159-1162, 2003.
[12] P. F. Alleaume, C. Toussain, T. Huet, and M. Camiade, "Millimeter-wave SMT low cost plastic packages for automotive RADAR at 77GHz and high data rate E-band radios," IEEE MTT-S International Microwave Symposium Digest, pp. 789-792, 2009.
[13] E. A. Sanjuan and S. S. Cahill, "QFN-based Millimeter Wave Packaging to 80GHz," IEEE MTT-S International Microwave Workshop Series on Signal Integrity and High-Speed Interconnects, pp. 9-12, 2009.
[14] D. Nicholson, "Low return loss DC to 60 GHz SMT package with performance verification by precision 50 Ohm load," European Microwave Conference, p. 4 pp, 2005.
[15] Amkor, "PBGA datasheet," http://www.amkor.com, 2002.
[16] Amkor, "MLF(QFN) datasheet " http://www.amkor.com, 2006.
[17] T. Jeng-Han, C. Hong-Yeh, W. Pei-Si, L. Yi-Lin, H. Tian-Wei, and W. Huei, "Design and analysis of a 44-GHz MMIC low-loss built-in linearizer for high-linearity medium power amplifiers," IEEE Trans. Microwave Theory Tech., vol. 54, pp. 2487-2496, 2006.
[18] T. Jeng-Han and H. Tian-Wei, "A 38-46 GHz MMIC Doherty Power Amplifier Using Post-Distortion Linearization," IEEE Microwave and Wireless Components Letters, vol. 17, pp. 388-390, 2007.
[19] W. R. Deal, R. Tsai, M. D. Lange, J. B. Boos, B. R. Bennett, and A. Gutierrez, "A W-band InAs/AlSb low-noise/low-power amplifier," IEEE Microwave and Wireless Components Letters, vol. 15, pp. 208-210, 2005.
[20] K. C. Hwang, Chao, P. C.,Creamer, C. Nichols, K. B., S. Wang, D. Tu, W. Kong, D. Dugas, and G. Patton, "Very high gain millimeter-wave InAlAs/InGaAs/GaAs metamorphic HEMT's," IEEE Electron Device Letters, vol. 20, pp. 551-553, 1999.
[21] X. Zheng, A. Beece, Z. Dingyou, C. Qianwen, K. Rose, and L. Jian-Qiang, "Characterization and modeling of solder balls and through-strata-vias (TSVs) in 3D architecture," IEEE 19th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS), pp. 37-40, 2010.
[22] Y. P. R. Lamy, K. B. Jinesh, F. Roozeboom, D. J. Gravesteijn, and W. F. A. Besling, "RF Characterization and Analytical Modelling of Through Silicon Vias and Coplanar Waveguides for 3D Integration," IEEE Trans. Advanced Packaging, vol. 33, pp. 1072-1079, 2010.
[23] M. Wojnowski, G. Sommer, A. Klumpp, and W. Weber, "Electrical Characterization of 3D Interconnection Structures up to Millimeter Wave Frequencies," Proc. 10th Electronics Packaging Technology Conference, pp. 1393-1402, 2008.
[24] L. L. W. Leung and K. J. Chen, "Microwave Characterization and Modeling of High Aspect Ratio Through-Wafer Interconnect Vias in Silicon Substrates," IEEE Trans. Micro. Theory and Tech., vol. 53, pp. 2472-2480, 2005.
[25] P. Jun So, K. Joohee, C. Jonghyun, K. Kiyeong, S. Taigon, A. Seungyoung, L. Junho, L. Hyungdong, P. Kunwoo, and K. Joungho, "PDN Impedance Modeling and Analysis of 3D TSV IC by Using Proposed P/G TSV Array Model Based on Separated P/G TSV and Chip-PDN Models," IEEE Trans. Components, Packaging and Manufacturing Technology, vol. 1, pp. 208-219, 2011.
[26] P. Jun So, R. Chunghyun, K. Jaemin, S. Yujeong, K. Gawon, and K. Joungho, "Wideband low power distribution network impedance of high chip density package using 3-D stacked through silicon vias," Asia-Pacific Symposium on Electromagnetic Compatibility and 19th International Zurich Symposium on Electromagnetic Compatibility, pp. 351-354, 2008.
[27] R. Chunghyun, P. Jiwoon, P. Jun So, L. Kwangyong, O. Taesung, and K. Joungho, "Suppression of Power/Ground Inductive Impedance and Simultaneous Switching Noise Using Silicon Through-Via in a 3-D Stacked Chip Package," IEEE Microwave and Wireless Components Letters, vol. 17, pp. 855-857, 2007.
[28] Amkor, "Application Notes for Surface Mount Assembly of Amkor's MicroLeadFrame (MLF) Packages," 2008.
[29] S. S. Cahill, E. A. Sanjuan, and L. Levine, "Development of 100+ GHz high-frequency microcoax wirebonds," Proc. of the Int. Symp. on Microelect, ed. San Diego, CA, p. 668, October 2006.
[30] C. Qianwen, Z. Dingyou, W. Zheyao, L. Litian, and J. J. Q. Lu, "Chip-to-wafer (C2W) 3D integration with well-controlled template alignment and wafer-level bonding," Proc. 61st Electronic Components and Technology Conference (ECTC), pp. 1-6, 2011.
[31] C. Huyghebaert, J. Van Olmen, Y. Civale, A. Phommahaxay, A. Jourdain, S. Sood, S. Farrens, and P. Soussan, "Cu to Cu interconnect using 3D-TSV and wafer to wafer thermocompression bonding," International Interconnect Technology Conference (IITC), pp. 1-3, 2010.
[32] P. R. Morrow, C. M. Park, S. Ramanathan, M. J. Kobrinsky, and M. Harmes, "Three-dimensional wafer stacking via Cu-Cu bonding integrated with 65-nm strained-Si/low-k CMOS technology," IEEE Electron Device Letters, vol. 27, pp. 335-337, 2006.
[33] CST, http://www.cst.com.
[34] T. Weiland, M. Timm, and I. Munteanu, "A practical guide to 3-D simulation," IEEE Microwave Magazine, vol. 9, pp. 62-75, 2008.
[35] C. Jiang, "Microwave and Millimeter-Wave Integrated Circuit Systems in Packaging," January 19, 2010.
[36] W. H. Haydl, "On the use of vias in conductor-backed coplanar circuits," IEEE Trans. Micro. Theory Tech., vol. 50, pp. 1571-1577, 2002.
[37] Q. Ivy Wei, P. Reid, R. E. Werner, and D. Doerr, "Automatic wedge bonding with ribbon wire for high frequency applications," Proc. 27th IEEE/SEMI International Electronics Manufacturing Technology Symposium, pp. 97-104, 2002.
[38] K. Soffa, "Bonding Wire Products : The Quality Source for Advanced Interconnects."
[39] A. C. W. Lu, F. Wei, L. L. Wai, L. A. Low, F. X. Ke, K. C. Yip, and Y. P. Lim, "Modeling and characterization of wire bonding for RF applications," Proc. 52nd Electronic Components and Technology Conference, pp. 905-909, 2002.
[40] A. Chandrasekhar, S. Stoukatch, S. Brebels, J. Balachandran, E. Beyne, W. De Raedt, B. Nauwelaers, and A. Poddar, "Characterisation, modelling and design of bond-wire interconnects for chip-package co-design," Proc. 33rd European Microwave Conference, vol. 1, pp. 301-304, 2003.
[41] 三聯科技, 封裝事業一部, "銅線封裝技術."
[42] L. Hongwei, J. Laskar, and M. Hyslop, "A broad band Through-Line-Line de-embedding technique for BGA package measurements," Electrical Performance of Electronic Packaging, pp. 125-128, 2001.
[43] 同欣電子(Tong Hsing), http://www.theil.com.
[44] S. R. Vempati, N. Su, K. Chee Houe, L. Ying Ying, K. Vaidyanathan, J. H. Lau, B. P. Liew, K. Y. Au, S. Tanary, A. Fenner, R. Erich, and J. Milla, "Development of 3-D silicon die stacked package using flip chip technology with micro bump interconnects," Proc. 59th Electronic Components and Technology Conference, pp. 980-987, 2009.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code