Responsive image
博碩士論文 etd-0220113-093909 詳細資訊
Title page for etd-0220113-093909
論文名稱
Title
台灣寺廟拜香及金紙焚燒排放含汞污染物之室內外環境日夜變化及排放係數量測
Diurnal Variation and Emission Factor of Mercury Pollutants Emitted from Incensing and Joss Paper Burning in Indoor and Outdoor Environments of a Taiwanese Temple
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
124
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-01-31
繳交日期
Date of Submission
2013-02-20
關鍵字
Keywords
排放係數、粒徑分佈、燃燒室、室內外環境、含汞污染物、台灣寺廟、拜香及金紙焚燒
emission factor, size distribution of particulate mercury, combustion chamber, indoor and outdoor environments, Taiwanese temple, mercury pollutants, incensing and joss paper burning
統計
Statistics
本論文已被瀏覽 5795 次,被下載 499
The thesis/dissertation has been browsed 5795 times, has been downloaded 499 times.
中文摘要
摘 要
亞洲為全球宗教祭祀活動最為頻繁之區域,祭祀活動過程中燃燒大量拜香及金紙,導致大量有害空氣污染物排放至大氣。然而,台灣地區過去研究多半著重於寺廟祭祀活動焚燒拜香與金紙燃燒所排放之氣狀與粒狀法規污染物之量測、重金屬與多環芳香烴(PAHs)成份分析及室內空氣品質之探討,對於環境中含汞污染物之量測則付之闕如。
目前行政院環保署環境檢驗所公告之大氣汞(total atmospheric mercury;TAM)檢測標準方法(NIEA A304.10C),其檢測對象為大氣中總氣態汞(total gaseous mercury;TGM)及顆粒態汞(particulate mercury;Hgp),然而針對反應性氣態汞(reactive gaseous mercury;RGM)之檢測,則至今尚未公告標準方法。有鑑於此,本研究參考過去文獻中的擴散管吸附法,研發RGM採樣及分析方法,並將此方法與現有已公告之總氣態汞(TGM)及顆粒態汞(Hgp)檢測標準方法結合成完整的大氣汞(TAM)採樣系統,應用於寺廟室內外環境非尖峰日及尖峰日大氣汞濃度之量測,藉以瞭解寺廟祭祀行為對於室內外環境中含汞污染物濃度之影響。此外,本研究選擇市售沉香、檀香、傳統金紙及環保金紙,在自製燃燒室中進行焚燒實驗,藉以量測焚燒拜香及金紙所排放廢氣中含汞污染物濃度及含汞懸浮微粒(Hgp)粒徑分佈,並推估不同型態大氣汞之排放係數,再利用統計資料估算2011年台灣地區焚燒拜香及金紙所排放含汞污染物之總排放量。
本研究參考過去文獻研發RGM採樣及分析方法,經過RGM擴散管之空白測試、穿透率實驗及環境量測平行比對實驗之驗證顯示,RGM擴散管空白濃度介於過去文獻研究空白值3-4 pg/m3之間,且擴散管穿透率實驗及環境中平行比對實驗之濃度差異百分比,皆未超過5%之品質管制範圍,此結果說明本研究研發之RGM採樣及分析方法具有良好的可靠性。
本研究於寺廟非尖峰日及尖峰日室內外環境祭祀行為(焚燒拜香及金紙)所排放含汞污染物型態及濃度進行實場量測得知,非尖峰日室內及室外環境中TAM濃度分別為11.33 ng/m3及6.41 ng/m3;而尖峰日室內及室外環境中TAM濃度則分別為20.98 ng/m3及17.93 ng/m3。整體而言,寺廟祭祀行為焚燒拜香及金紙對於環境中TAM濃度有顯著影響,且會隨著祭祀行為強度增強而導致空氣中TAM濃度呈明顯上升趨勢。
就燃燒室焚燒拜香及金紙量測結果而言,焚燒沉香、檀香、傳統金紙及環保金紙所排放廢氣中TGM濃度分別為460.93、662.42、11623.10及4065.12 ng/m3;而Hgp濃度則分別為95.91、135.07、52.20及18.03 ng/m3。整體而言,焚燒金紙所排放廢氣中TGM濃度約為拜香之13.97倍,但Hgp濃度則為焚燒拜香較高於金紙約3.29倍。此外,焚燒拜香及金紙所排放廢氣中Hgp粒徑分佈皆以細微粒為主,焚燒拜香之Hgp呈現多峰分佈;而焚燒金紙則呈現雙峰分佈。本研究量測焚燒沉香、檀香、傳統金紙及環保金紙所排放廢氣中TGM排放係數分別為8.63、12.16、11.28及4.02 ng/g;而Hgp排放係數則分別為1.15、1.66、1.88及0.65 ng/g。此外,2011年台灣地區沉香及檀香之使用量總和為649,444 ton/yr,而金紙使用量為364,488 ton/yr;利用本研究所量測焚燒傳統金紙TAM排放係數加以計算,推估2011年焚燒沉香及檀香所排放TAM總排放量約為7.56 kg/yr;而焚燒金紙所排放TAM總排放量約為3.87 kg/yr。
Abstract
ABSTRACT
Asia has the highest worship activities in the world, which burns huge amount of incenses and joss paper and emits hazardous air pollutants to the atmosphere. However, previous researches in Taiwan focused mostly on measuring the criteria air pollutants and heavy metals emitted from burning incense and joss paper during the temple worship activities, analyzing the speciation and concentration of polycyclic aromatic hydrocarbons (PAHs), and discussing on their influences on indoor air quality, yet neglected the survey of mercury pollutants in the temple.
Recently, Environmental Analysis Laboratory of Taiwan EPA promulgated a standard method of total atmospheric mercury (TAM) - NIEA A304.10C, including total gaseous mercury (TGM) and particulate mercury (Hgp), but the standard method of reactive gaseous mercury (RGM) has not yet been officially established so far. Accordingly, this study tended to develop the RGM sampling and analysis methods based on the reference of KCl-coated annular denuder reported by previous literature, and this method was further coupled with the existing announced standard method of TGM and Hgp to establish an entire sampling system of TAM. This system was then applied to measure indoor and outdoor mercury concentration in a Taiwanese temple in peak and non-peak worship days in order to understand the influence of mercury pollutants to the indoor and outdoor mercury concentration. In addition, agarwood and sandalwood incense as well as traditional and Eco joss paper were chosen for conducting the burning experiments in a self-constructed combustion chamber to measure the concentration of mercury pollutants exhausted from the burning of incense and joss paper, to detect the size distribution of Hgp, and to determine the emission factors of different mercury, and to further estimate the total amount of mercury pollutants emitted from the burning of incense and joss paper in Taiwan in 2011.
This study developed a RGM sampling method by referring to previous ltterature. Through the RGM denuder blank test, the breakthrough test, and the parallel comparison test of field measurements, it was proved that the blank values of RGM denuder blank test were in the rang of 3-4 pg/m3, concurring with previous literature. Besides, the relative percentage difference (RPP) for denuder breakthrough test and parallel comparison test were both within 5% of the quality control criteria. The results showed that the RGM sampling and analytical method was in a good reliability.
Through an on-site measurement on the types and concentration of mercury pollutants exhausted from worship activities (burning incense and joss paper) in indoor and outdoor environments of a Taiwanese temple in the non-peak and peak worship days, this study found that, in non-peak worship days, the average TAM concentration was 11.33 and 6.41 ng/m3 in indoor and outdoor environments, respectively while in the peak worship days, the average TAM concentration was 20.98 and 17.93 ng/m3 in indoor and outdoor environments. Overall, the temple worship activities had significant influences on ambient TAM concentration, and the stronger intensity of worship activities caused the higher concentration of TAM in the air.
According to the measurement of mercury pollutants of incense and joss paper burning in the combustion chamber, the TGM concentrations in the exhaust gas were 460.93 ng/m3 for agarwood incense burning, 662.42 ng/m3 for sandalwood incense burning, 11623.10 ng/m3 for traditional joss paper burning, and 4065.12 ng/m3 for Eco joss paper burning; while the Hgp concentrations were 95.91 ng/m3 for agarwood incense burning, 135.07 ng/m3 for sandalwood incense burning, 52.20 ng/m3 for traditional joss paper burning, and 18.03 ng/m3 for Eco joss paper burning. Overall, the TGM concentration in the exhaust gas of burning joss paper was about 13.97 times of that burning incense, but the Hgp concentration in the exhaust gas of burning joss paper was about 3.29 times of that burning incense.
Furthermore, the size distribution of Hgp emitted from burning incense and joss paper was mainly fine particles. Hgp was multi-modal distribution of incensing, but bi-modal distribution of joss paper burning. In this study, the emission factors of TGM were 8.63 ng/g for agarwood incense burning, 12.16 ng/g for sandalwood incense burning, 11.28 ng/g for traditional joss paper burning, and 4.02 ng/g for Eco joss paper burning; while the emission factors of Hgp were 1.15 ng/g for agarwood incense burning, 1.66 ng/g for sandalwood incense burning, 1.88 ng/g for traditional joss paper burning, and 0.65 ng/g for Eco joss paper burning. In Taiwan, the total amount of consumed incense (agarwood and sandalwood) and joss paper in 2011 were 649,444 and 364,488 ton/yr, respectively. In addition, using the emission factor of traditional joss paper burning, the total amount of TAM emission of burning incense (agarwood and sandalwood) and joss paper in 2011 were estimated to be 7.56 and 3.87 kg/yr, respectively.
目次 Table of Contents
目 錄
頁次
謝誌………………………………………………………………….. I
中文摘要…………………………………………………………….. Ⅲ
英文摘要…………………………………………………………….. V

目錄………………………………………………………………….. VIII

表目錄……………………………………………………………….. XI

圖目錄……………………………………………………………….. XIII

第一章 前言……………………………………………………….. 1-1
1-1 研究緣起…………………………………………………… 1-1
1-2 研究目的…………………………………………………… 1-2
1-3 研究範圍與架構…………………………………………… 1-3
第二章 文獻回顧………………………………………………….. 2-1
2-1汞的特性……….……………….…………………………… 2-1
2-1-1 汞的基本特性…………………………………………. 2-1
2-1-2 汞的物化性質…………………………………………. 2-1
2-1-3 大氣汞的分類及組成特徵……………………………. 2-2
2-2 汞的健康風險……………………………………………… 2-3
2-2-1 汞的危害標準………………………………………… 2-3
2-2-2 汞的毒性與危害性……………………………………. 2-4
2-2-3 汞的吸入暴露風險參考指標…………………………. 2-5
2-3 汞的來源、轉化及循環…………………………………….. 2-9
2-3-1 汞的來源………………………………………………. 2-9
2-3-2 汞的循環及轉化………………………………………. 2-11
2-4 大氣汞量測方法…………………………………………… 2-14
2-4-1大氣汞量測技術演進………………………………….. 2-14
2-4-2不同型態大氣汞採樣及分析方法…………………….. 2-15
2-5 寺廟祭祀活動對於空氣品質的影響……………………… 2-18
2-6 拜香及金紙的種類………………………………………… 2-22
2-6-1 拜香的種類……………………………..………..……. 2-22
2-6-2 金紙的種類……………………………………………. 2-24
2-6-3 拜香及金紙焚燒排放的空氣污染物………………... 2-25
2-7 空氣污染物排放量推估…………………………………… 2-27
第三章 研究方法…………………………………………………. 3-1
3-1 大氣汞採樣規劃…………………………………………… 3-1
3-1-1 採樣地點規劃…………………………………………. 3-1
3-1-2 採樣時間規劃…………………………………………. 3-1
3-2 大氣汞量測方法及步驟…………………………………… 3-3
3-2-1TGM量測步驟………………………...……………….. 3-3
3-2-2 Hgp量測步驟………..…………………………………. 3-6
3-2-3 RGM量測步驟..………..……………………………… 3-7
3-3 大氣汞分析方法及步驟…………………………………… 3-10
3-3-1 TGM分析方法及步驟………………………………… 3-10
3-3-2 Hgp分析方法及步驟……..……………………………. 3-12
3-3-3 RGM分析方法及步驟………………………………… 3-15
3-4 大氣汞採樣及分析之品保與品管(QA/QC)………………. 3-16
3-5 冷蒸氣原子螢光光譜儀(CVAFS)………………………… 3-18
3-6氣態元素汞連續監測儀(Continuous GEM Monitoring Instrument) ………………………………………………...
3-19
3-7 微孔均勻沈降衝擊器……………………………………… 3-23
3-8 大氣汞排放係數量測……………………………………… 3-23
第四章 結果與討論……………………………………………….. 4-1
4-1 RGM採樣分析方法驗證與測試…………………………… 4-1
4-1-1 RGM擴散管空白測試...………………………………. 4-1
4-1-2 RGM擴散管環境量測穿透率實驗………...…………. 4-3
4-1-3 RGM擴散管環境量測平行比對實驗…...……………. 4-3
4-2 寺廟大氣汞濃度流佈及組成分析探討…………………… 4-3
4-2-1寺廟大氣汞非尖峰日晝夜濃度分佈………………….. 4-6
4-2-2寺廟大氣汞尖峰日晝夜濃度分佈…………………….. 4-6
4-2-3 寺廟非尖峰日及尖峰日大氣汞組成探討……………. 4-8
4-2-4 室內環境氣態汞小時濃度變化趨勢…………………. 4-10
4-3 焚燒拜香及金紙之顆粒態汞粒徑分佈…………………… 4-13
4-3-1 焚燒拜香之顆粒態汞粒徑分佈………………………. 4-13
4-3-2 焚燒金紙之顆粒態汞粒徑分佈………………………. 4-17
4-4 焚燒拜香及金紙之氣態汞及顆粒態汞排放係數量測…… 4-20
4-4-1 焚燒拜香之含汞污染物排放係數量測………………. 4-20
4-4-2 焚燒金紙之含汞污染物排放係數量測………………. 4-22
4-5 焚燒拜香及金紙含汞污染物年排放量推估……………… 4-24
4-6 寺廟大氣汞濃度之相關性分析及相關大氣汞研究比較… 4-27
4-6-1 寺廟室外環境大氣汞濃度、氣象參數及空氣污染物之相關性……………………………………………….
4-27
4-6-2 寺廟祭祀活動與工業污染源周界大氣汞濃度比較…. 4-29
4-6-3寺廟祭祀活動與高雄市敏感點大氣汞濃度比較……. 4-29
4-6-4 焚燒拜香及金紙汞排放量與工業污染源比較………. 4-31
第五章 結論與建議………………………………………………… 5-1
5-1 結論……………………………………………………….. 5-1
5-2 建議……………………………………………………….. 5-3
參考文獻……………………………………………………………. R-1
附錄A 分析方法之品保品管…………………………………….. A-1







表目錄
頁次
表 2-1 汞及其化合物之基本物理性質……..…………………….. 2-2
表 2-2 汞長期吸入暴露風險參考濃度彙整表..………………….. 2-6
表 2-3 高屏3座寺廟室內外各粒徑懸浮微粒之監測濃度………. 2-23
表 2-4 台灣製拜香及大陸製拜香特性比較表…………………… 2-25
表 2-5 三種不同材質金紙之基本特性…………………………… 2-26
表 3-1 寺廟大氣汞採樣時間規劃表……………………………… 3-3
表 3-2 總氣態汞檢量線製備濃度及差異百分比………………… 3-21
表 3-3 顆粒態汞檢量線製備濃度及差異百分比………………… 3-21
表 4 1 不同RGM採樣方法之優缺點比較表…………………….. 4-2
表 4 2 反應性氣態汞吸附擴散管空白測試結果彙整表………… 4-2
表 4 3 反應性氣態汞擴散管穿透率測試結果彙整表…………… 4-4
表 4 4 反應性氣態汞擴散管平行比對濃度及差異百分比彙整表…………………………………………………………...
4-5
表 4 5 寺廟室內外環境非尖峰日大氣汞濃度彙整表…………… 4-7
表 4 6 寺廟室內外環境尖峰日大氣汞濃度彙整表……………… 4-7
表 4 7 兩種不同條件之大氣汞組成比例彙整表………………… 4-9
表 4 8 沉香焚燒廢氣中Hgp粒徑濃度彙整表……………………. 4-15
表 4 9 檀香焚燒廢氣中Hgp粒徑濃度彙整表………………….… 4-16
表 4 10 傳統金紙焚燒廢氣中Hgp粒徑濃度彙整表……………... 4-18
表 4 11 環保金紙焚燒廢氣中Hgp粒徑濃度彙整表……………... 4-19
表 4 12 焚燒拜香及金紙排放氣態汞(TGM)與顆粒態汞(Hgp)濃度及排放係數彙整表……………………………………..
4-21
表 4-13 台灣地區2005-2011年金紙製造、進口統計數量……….. 4-26
表 4 14 寺廟祭祀活動室外環境大氣汞濃度、氣象參數及其他空氣污染物相關係數彙整表………………………………..
4-28
表 4 15 高雄市工業污染源周界大氣汞濃度彙整表…………….. 4-30
表 4 16 高雄市六處敏感點大氣汞平均濃度彙整表.....…………. 4-31
表 4 17 高雄市產業汞排放量彙整表………………………...…... 4-32
表 A-1 總氣態汞檢量線製備……………………….…………….. A-2
表 A-2 總氣態汞分析QA/QC查核表…………………………….. A-2
表 A-3 顆粒態汞檢量線製備...……………………….…………... A-3
表 A-4 顆粒態汞分析QA/QC查核表…………………………….. A-3











圖目錄
頁次
圖 1-1 1990-2005年全球六大洲含汞污染物排放量趨勢………... 1-2
圖 1-2 寺廟祭祀活動排放含汞污染物之研究架構及流程……… 1-4
圖 2-1 煤料燃燒過程中汞之反應路徑及產物………….………... 2-10
圖 2-2 自然排放源及人為污染源之汞循環過程……..………..… 2-10
圖 2-3 環境中不同類型汞及其化合物相互轉化及循環機制圖... 2-13
圖 2-4 鹽水蜂炮施放期間空氣污染物濃度逐時變化…………… 2-21
圖 3-1 高雄市梓官區中崙城隍廟位置圖………………………… 3-2
圖 3-2 寺廟室內外環境採樣點分佈圖…………………………… 3-2
圖 3-3 大氣汞(含TGM及Hgp)同步採樣裝置示意圖……………. 3-4
圖 3-4 TGM採樣裝置使用之金汞齊管柱組裝示意圖……..…… 3-4
圖 3-5 RGM擴散管實體圖……..…………………………………. 3-8
圖 3-6 總氣態汞檢量線線性迴歸………………………………… 3-20
圖 3-7 顆粒態汞檢量線線性迴歸………………………………… 3-20
圖 3-8 冷蒸氣原子螢光光譜儀實體圖….………………………... 3-22
圖 3-9 Tekran 2537B總氣態汞連續監測儀實體圖………………. 3-22
圖 3-10 MOUDI階層分徑採樣示意圖…………………………… 3-24
圖 3-11 燃燒室實驗裝置示意圖……………..…………………… 3-25
圖 4 1 反應性氣態汞擴散管穿透率測試結果比較圖…………… 4-4
圖 4 2 反應性氣態汞擴散管平行比對結果比較圖……………… 4-5
圖 4 3 寺廟祭祀活動室內外環境非尖峰日與尖峰日三種含汞污染物型態濃度比較圖………………………………………
4-9
圖 4 4 大氣環境含汞污染物組成分佈圖…………………..…….. 4-11
圖 4 5 寺廟非尖峰日及尖峰日室內外環境不同型態大氣汞組成比例…………………………………………………………
4-11
圖 4 6 寺廟非尖峰日及尖峰日室內環境氣態汞濃度逐時變化趨勢圖………………………………………….……………...
4-12
圖 4 7 寺廟非尖峰日及尖峰日室內環境氣態汞濃度逐時變化趨勢比較圖…………………………………………………....
4-13
圖 4 8沉香焚燒廢氣中顆粒態汞(Hgp)粒徑分佈圖…...………… 4-15
圖 4 9檀香焚燒廢氣中顆粒態汞(Hgp)粒徑分佈圖…...………… 4-16
圖 4 10傳統金紙焚燒廢氣中顆粒態汞(Hgp)粒徑分佈圖………... 4-18
圖 4 11環保金紙焚燒廢氣中顆粒態汞(Hgp)粒徑分佈圖………. 4-19
圖 4 12沉香焚燒廢氣中氣態汞(TGM)濃度逐時變化趨勢圖…... 4-21
圖 4 13檀香焚燒廢氣中氣態汞(TGM)濃度逐時變化趨勢圖…... 4-23
圖 4 14傳統金紙焚燒廢氣中氣態汞(TGM)濃度逐時變化趨勢圖…………………………………………………………..
4-23
圖 4 15環保金紙焚燒廢氣中氣態汞(TGM)濃度逐時變化趨勢圖…………………………………………………………..
4-25
圖 4 16 寺廟室外環境與高雄市工業污染源周界大氣汞濃度比較圖………………………………………………………..
4-30
圖4-17寺廟室外環境與高雄市敏感點大氣汞濃度比較圖………………………………………………………….
4-32
圖 4 18 高雄市汞排放量分佈趨勢圖……………………….……. 4-33
圖 A-1 總氣態汞檢量線線性迴歸圖……………………………... A-2
圖 A-2 顆粒態汞檢量線線性迴歸圖……………………………... A-3
參考文獻 References
參考文獻
ATSDR, “Toxicological profile for mercury,” U.S. department of health and human services, 1999.
Baeyens, W., Leermakers, M., Papina, T., Saprykin, A., Brion, N., Noyen, J., Gieter, De. M., Elskens, M., and Goeyens, L., “Bioconcentration and Biomagnification of Mercury and Methylmercury in North Sea and Scheldt Estuary Fish,” Arch. Environ. Contam., 45, 498-508, 2003.
Bloom, N. and Fitzgerald, W.F. “Determination of volatile mercury species at the pictogram level by low-temperature gas chromatography with cold-vapor atomic fluorescence detection,” Anal. Chem., 208, 151-161, 1988.
Brown, T.D., Smith, D.N., Hargis, R.A. Jr., and O’Dowd, W.J., “Mercury measurement and its control: what we know, have learned, and need to further investigate,” J. Air Waste Manage. Assoc., 49, 628-640, 1999.
Chan, C.Y. and Sadana, R.S. “Automated determination of mercury at ultra level in waters by gold amalgam preconcentration and cold vapour atomic fluorescence spectrometry,” Anal. Chem., 282, 109-115, 1993.
Cheng, H.F. and Hu, Y.N. “Mercury in municipal solid waste in China and its control: a review,” Environ Sci Technol., 46, 593-605, 2012.
Clarkson, T.W. “The toxicology of mercury,” Crit. Rev. Clin. Lab. Sci., 34, 369-403, 1997.
Crinnion, W.J. “Environmental medicine, part three: long-term effects of cotoxicol,” Eviron. Saf., 21, 348-364, 2000.
Díez, S., Montuori, P., Pagano, A., Sarnacchiaro, P., Bayona, J.M., and Triassi, M., ”Hair mercury levels in an urban population from southern Italy: fish consumption as a determinant of exposure,” Environ. Int., 34, 162-167, 2008 .
Ebdon, L. and Wilkinson, J.R. “Determination of sub-nanogram amounts of mercury by cold-vapour atomic fluorescence spectrometry with an improved gas-sheathed atom cell,” Anal. Chem., 128, 45-55, 1981.
Ebinghaus, R., Jennings, S., Schroeder, W.H., Berg, T., Donaghy, T., Guentzel, J., Kenny, C., Kock, H.H., Kvietkus, K., Landing, W., Muhleck, T., Munthe, J., Prestbo, E.M., Schneeberger, D., Slemr, F., Sommar, J., Urba, A., Wallschlager, D., and Xiao, Z. “International field intercomparison measurements of atmospheric merucry species at Macehead, Ireland,” Atmos. Environ., 33, 3063-3073, 1999.
Fang, G.C., Chang, C.N., Wu, Y.S., Yang, C.J., Chang, S.C., and Yang, I.L., “Suspended particulate variations and mass size distributions of incense burning at Tzu Yun Yen temple in Taiwan, Taichung,” Sci. Total Environ., 299, 79–87, 2002.
Fawer, R.F., de Ribaupierre, Y., Guillemin, M.P., Berode, M., and Lob, M. “Measurement of hand tremor induced by industrial exposure to metallic mercury,” Br. J. Ind. Med., 40(2), 204-8, 1983.
Feng, X.B., Sommar, J.G., Gardfeldt K., “Improved detection of gaseous divalent mercury in ambient air using KCl coated denuders,” J. Anal. Chem., 366, 423-428, 2000.
Feng, X.B., Sommar, J., Lindqvist, O., and Hong, Y.T., “Occurrence, emissions and deposition of mercury during coal combustion in the province Guizhou, China,” Water Air Soil Poll., 139, 311-324, 2002.
Ferrara, R., Seritti, A., Barghiani, C., and Petrosino, A., “Improved instrument for mercury determination by atomic fluorescence spectrometry with a high-frequency electrodeless discharge lamp,” Anal. Chem., 117, 391-395, 1980.
Fitzgerald, W.F. and Gill, G.A. “Sub-nanogram determination of mercury by two-stage gold amalgamation and gas phase detection applied to atmospheric analysis,” Anal. Chem., 15, 1714, 1979.
Gabriel, M., Williamson, D., Brooks, S., and Lindberg, S., “Atmospheric speciation of mercury in two contrasting southeastern U.S. air sheds, ” Atmos. Environ., 39, 4947-4958, 2005.
Galbreath, K.C. and Zygarlicke, C.J. “Mercury speciation in coal combustion and gasification flue gases,” Environ. Sci. and Technol., 30, 2141-2146, 1996.
Hatch, W.R. and Ott, W.L. “Determination of sub-microgram quantities of mercury by atomic absorption spectrophotometry,” Anal. Chem., 40, 2085-7, 1968.
Hylander, L.D. and Meili, M. “500 years of mercury production: global annual inventory by region until 2000 and associated emissions,” Sci. Total Environ., 304, 13-27, 2003.
Iverfeldt, A. and Lindqvist, O. “Atmospheric oxidation of elemental mercury by ozone in the aqueous phase,” Atmos. Environ., 20, 1567-1573, 1986.
Jen, Y.H., Yuan, C.S., Lin, Y.C., Lee, C.G., Tsai, C.M., Tsai, H.H., and Ie, I.R. “Partition and tempospatial variation of gaseous and particulate mercury at a unique mercury-contaminated remediation site,” J. Air Waste Manage. Assoc., 61, 1115-1123, 2011.
Jen, Y.H., Yuan, C.S., Lin, Y.C., Lee, C.G., Tsai, C.M., Tsai, H.H., and Ie, I.R. “Tempospatial variation and partition of atmospheric mercury during Wet/Dry seasons at sensitivity sites of a heavily polluted industrial city,” Aerosol Air Qual. Res., 13, 13-23, 2012.
John, B.S. and Gary, R.K. “Clinical environmental health and toxic exposures,” Mercury, 867-879, 2001.
Kuo, T.H., Chang, C.F., Urba, A., and Keivtkus, K. “Atmospheric gaseous mercury in Northern Taiwan,” Sci. Total Environ., 368, 10-18, 2006.
Karatza, D., Lancia, A., Musmarra, D., Pepe, F., and Volpicelli, G., “Kinetics of adsorption of mercuric chloride vapors on sulfur impregnated activated carbon,” Combust. Sci. Technol., 112, 163-174, 1996.
Kilgroe, J.D. “Control of dioxin, furan, and mercury emissions from municipal waste combustors,” J. Hazard. Mater., 47, 163-194, 1996.
Kim, J.P. and Fitzgerald, W.F. “Sea-air partitioning of mercury in the equatorial Pacific Ocean,” Science, 231(4742), 1131-1133, 1986.
Kudo, A., Fujikawa, Y., Miyahara, S., Zheng, J., Takigami, H., Sugahara, M., and Muramatsu, T. “Lessons from minamata mercury pollution, Japan-after a continuous 22 years of observation,” Wat. Sci. Technol., 38, 187-193, 1998.
Laiguo, Chen., Ming, Liu., Ruifang, Fan., Shexia, Ma., Zhencheng, Xu., Mingzhong, Ren., and Qiusheng, He. “Mercury speciation and emission from municipal solid waste incinerators in the Pearl River Delta, South China,” Total Environment., 447, 396-402, 2013.
Landis, M.S., Stevens, R.K., and Schaedlich, F. “Development and characterization of an annular denuder methodology for the measurement of divalent inorganic reactive gaseous mercury in ambient air,” Environ. Sci. Technol., 36(13), 3000–3009, 2002.
Laurier, F.J.G., Mason, R.P., Whalin, L., and Kato, S. “Reactive gaseous mercury formation in the North Pacific Ocean's marine boundary layer: A potential role of halogen chemistry,” J. Geophys. Res., 108(D17), 4529-4541, 2003.
Liang, Y.X., Sun, R.K, Sun, Y., Chen, Z.Q., and Li, L.H. “Psychological effects of low exposure to mercury vapor: Application of a computer-administered neurobehavioral evaluation system.,” Environ. Res., 60(2), 320-327, 1993.
Lin, C.J. and Pehkonen, S.O. “Aqueous free radical chemistry of mercury in the presence of iron oxides and ambient aerosol,” Atmos. Environ., 31, 4125-4137, 1997.
Lin, C.J. and Pehkonen, S.O. “Oxidation of elemental mercury by aqueous chlorine (HOCl/OCl−): Implications for tropospheric mercury chemistry,” J. Geophys. Res., 103, 28093-28102, 1998.
Lin, C.J. and Pehkonen, S.O. “The chemistry of atmospheric mercury: a review,” Atmos. Environ., 33, 2067-2079, 1999.
Lin, T.C., Chang, F.H., Hsieh, J.H., Chao, H.R., and Chao, M.R. “Characteristics of polycyclic aromatic hydrocarbons and total suspended particulate in indoor and outdoor atmosphere of a Taiwanese temple,” J. Hazard. Mater., A95, 1-12, 2002.
Liu, S., Nadim, F., Perkins, C., Carley, R. J., Hoag, G. H., Lin, Y., and Chen, L. “Atmospheric Mercury Monitoring Survey in Beijing, China,” Chemosphere, 48, 97-107, 2002.
Lindberg, S.E., Brooks, S., Lin, C.J., Scott, K., and Meyers, T. “Chambers, L., Landis, M., and Stevens R., Formation of reactive gaseous mercury in the Arctic: Evidence of oxidation of Hg° to gas-phase Hg-II compounds after arctic sunrise,” Water Air Soil Poll., 1, 295-302, 2001.
Lindqvist, H.O. and Rodhe, H. “Atmospheric merucry-a review,” Tellus., 27B, 136-159, 1985.
Lo, J.M. and Wal, C.M. “Mercury loss from water during storage: Mechanisms and prevention,” Anal. Chem., 47, 1869-1870,1975.
Mason, R.P., Fitzgerald, W.F., and Morel, M.M. “The biogeochemical cycling of elemental mercury: anthropogenic influences,” Geochim. Cosmochim. Acta., 58, 3191-3198, 1994.
Mason, R.P. and Sheu, G.R. “Role of the ocean in the global mercury cycle,” Global Biogeochem. Cy., 16, 1093-1107, 2002.
Morita, H., Tanaka H., and Shimomura, S. “Atomic fluorescence spectrometry of mercury: Principles and developments,” Spectrochimica Acta., 50B, 69-84, 1995.
Munthe, J. “The aqueous oxidation of elemental mercury by ozone,” Atmos. Environ., 26, 1461-1468, 1992.
Muscat, V.I. and Vickers T. J. “Determination of nanogram quantities of mercury by the reduction-aeration method and atomic fluorescence spectrophotometry,” Anal. Chimica. Acta., 57, 23-30, 1971.
Nater, E.A. and Grigal, D.F. “Regional trends in mercury distribution across the Great Lakes states, north central USA,” Nature, 358, 139-141, 1992.
Ngim, C.H., Foo, S.C., Boey, K.W., and Jeyaratnam, J. “Chronic neurobehavioural effects of elemental mercury in dentists,” Br. J. Ind. Med., 49(11), 782-90, 1992.
Patrick, L. “Mercury toxicity and antioxidants: Part 1: role of glutathione and alpha-lipoic acid in the treatment of mercury toxicity,” Altern. Med. Rev., 7(6), 456-471, 2002.
Piikivi, L. and Hanninen, H. “Subjective symptoms and psychological performance of chlorine-alkali workers.” Scand. J. Work. Environ. Health, 15(1), 69-74, 1989.
Piikivi, L. and Tolonen, U. “EEG findings in chlor-alkali workers subjected to low long term exposure to mercury vapour,” Br. J. Ind. Med., 46(6), 370-375, 1989.
Pirrone, N., Costa, P., Pacyna, J.M., and Ferrara, R. “Mercury emissions to the atmosphere from natural and anthropogenic sources in the Mediterranean region,” Atmos. Environ., 35, 2997-3006, 2001.
Poluektov, N.S. and Vitkun, R.A. “Determination of mercury by absorption flame photometry,” Zh. Anal. Khim., 18, 33-38, 1963.
Risher, J.F. and Amler S.N. “Mercury exposure: Evaluation and intervention the inappropriate use of chelating agents in the diagnosis and treatment of putative mercury poisoning,” Neurotoxicology, 26(4), 691-699, 2005.
Rong, X., Waite, D., Huang, G.H., Tong, L., and Kybet, B. “Materials selection for a dry atmospheric mercury deposits sampler,” Chemos., 45, 1045-1051, 2001.
Schroeder, W.H., Yarwood, G., and Niki, H. “Transformation processes involving mercury species in the atmosphere - Results from a literature survey,” Water Air Soil Poll., 56, 653-666, 1991.
Schroeder, W.H. and Munthe, J. “Atmospheric mercury - an overview,” Atmos. Environ., 32, 809-822, 1998.
Sheu, G.R. and Mason, R.P. “An examination of methods for the measurements of reactive gaseous mercury in the atmosphere,” Environ. Sci. Technol., 35(6), 1209-1216, 2001.
Slemr, F., Schuster, G., and Seiler, W. “Distribution, speciation and budget of atmospheric mercury,” J. Atmos. Chem., 3, 407-434, 1985.
Temmerman, E., Vandecasteele, C., Vermeir, G., Leyman, R., and Dams, R. “Sensitive determination of gaseous mercury in air by cold vapour atomic fluorescence spectrometry after amalgamation,” Anal. Chim. Acta., 236, 371-376, 1990.
UNEP , ”Gobal mercury assessment,” December, 2003.
UNEP, ”Study on mercury-emitting sources, including emissions trends and cost and effectiveness of alternative control measures,” September, 2010.
Ure, A.M. “The determination of mercury by non-flame atomic absorption and fluorescence spectrometry,” Anal. Chim. Acta., 76(1), 1-26, 1975.
Wang, B., Lee, S.C., Ho, K.F., and Kang, Y.M. “Characteristics of emissions of air pollutants from burning of incense in temples, Hong Kong,” Sci. Total Environ., 377, 52-60, 2007.
Yang, H.D., Rose, N.L., and Battarbee, R.W. “Mercury and lead budgets for lochnagar, a scottish mountain lake and its catchment,” Environ. Sci. Technol., 36(7), 1383-1388, 2002.
Yoshida, Z. and Motojima, K. “Rapid determination of mercury in air with gold-coated quartz wool as collector,” Anal. Chem., 106, 405-410, 1979.
Yu, L.P. and Yan, X.P. “Factors affecting the stability of inorganic and methylmercury during sample storage,” Trends in Anal. Chem., 22, 245-253, 2003.
Yuan, C.S., Lin, H.Y., Wu, C.H., and Liu M.H. “Preparing of sulfurized powdered activated carbon from waste tires using an innovative compositive impregnation process,” J. Air Waste Manage. Assoc., 54, 862-870, 2004.
Zhang, H. and Lindberg, S.E. “Processes influencing the emission of mercury from soils: a conceptual model,” J. Geophys. Res., 104, 21889-21896, 1999.
林嘉明,“拜香原料然煙中多環芳香烴化合物之探討”,國科會研究計畫報告,1996。
林勳佑,“資源再利用粉狀活性碳吸附氣相氯化汞之研究”,國立中山大學環境工程研究所博士論文,2005。
高玫鍾、龍世俊,“不同通風狀態室內燒香產生PM10 濃度變化之研究”,中華公共衛生雜誌,19(3),214-220,2000。
董士誠,“祭拜金銀紙錢燃燒煙塵廢氣調查與改善之研究”,國立臺灣大學環境工程研究所碩士論文,2002。
吳易儒,“民俗活動對於空氣品質之影響”,國立成功大學環境工程學系碩士論文,2004。
李佳樺,“東亞大氣汞之長程輸送研究:雲水中汞之定量分析與指紋之建立”,國立中央大學化學研究所碩士論文,2004。
孫天敏,“民眾頭髮中總汞濃度、攝取魚貝量及風險認知之研究”,臺北醫學大學公共衛生研究所碩士論文,2004。
羅玉雲,“以靜電集塵裝置及濾袋室集塵裝置處理紙錢焚燒排氣之研究”,國立中山大學環境工程研究所碩士論文,2005。
林建志,“台灣平地與高山大氣汞之監測與比較”,國立中央大學化學研究所碩士論文,2006。
楊奇儒,“低污染拜香研發:拜香主要成分對拜香燃煙特徵之影響”,國立成功大學環境工程學系博士論文,2006。
周文傑,“燃燒金紙與拜香所產生氣態污染物及飛灰中金屬成份之分布”,國立成功大學環境工程學系碩士論文,2007。
張順欽,“元宵蜂炮對空氣品質衝擊之研究”,中華民國環境工程學會空氣污染控制技術研討會,2007。
毛鏡琪,“廟宇拜香之環境空氣污染及室內空氣品質研究”,國立陽明大學環境與職業衛生研究所碩士論文,2008。
張芸蓁,“台北地區大氣汞濃度時序變化研究”,明志科技大學環境與安全衛生工程系暨環境與資源工程研究所碩士論文,2008。
任翼秀、袁中新、林淵淙、李崇垓,“科學園區周界大氣汞濃度量測及氣固相分佈”,台灣氣膠學會年會暨第十六屆國際氣膠科技研討會,台中,2009。
何瑞彰、蘇敬傑、謝旻宏、莊政翰,“高屏地區寺廟室內外懸浮微粒特性探討”,大仁學報,第三十四期,2009。
袁中新,“99年度高雄市汞污染源周界及敏感點大氣汞污染監測計畫書”,高雄市環境保護局計畫報告,2010。
陳威錦,“應用熱重分析技術探討加硫改質活性碳吸附氣相氯化汞之吸附效能與吸(脫)附動力模式”,國立中山大學環境工程研究所博士論文,2010。
陳叙誠,“仿人體細胞液萃取市售金紙燃燒排放微粒之重金屬及生物毒性探討”,國立成功大學環境工程學系碩士論文,2010。
任翼秀、袁中新,“採樣參數對金汞齊捕捉氣態元素汞效率之影響”,第25屆環境分析化學研討會,中壢,2011年5月。
陳貞孜,“燃燒金紙、拜香產生空氣污染物之評估”,嘉南藥理科技大學環境工程與科學系碩士論文,2012。
消費者保護委員會網頁:http://www.cpc.gov.tw/index.asp,2012。
財政部統計處網頁:http://www.mof.gov.tw/mp.asp?mp=1,2012。
台灣造紙工業同業公會“台灣造紙工業統計”,2012。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code