Responsive image
博碩士論文 etd-0222113-113433 詳細資訊
Title page for etd-0222113-113433
論文名稱
Title
紅樹林於鹹水型人工濕地對污染物去除效率之研究
The Effects of Mangroves on Pollutant Removal Efficiencies in Salty Water Types of Constructed Wetlands
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
129
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-02-07
繳交日期
Date of Submission
2013-02-22
關鍵字
Keywords
鹹水型人工濕地、去除效率、紅樹林、種植密度
Planting Density, Mangrove, Removal Efficiencies, Salty Water Types of Constructed Wetland
統計
Statistics
本論文已被瀏覽 5732 次,被下載 1315
The thesis/dissertation has been browsed 5732 times, has been downloaded 1315 times.
中文摘要
大鵬灣國家風景區以處理周邊生活污水和養殖廢水為宗旨,評估並設計六個鹹水型人工濕地,以種植各種濕地植物及不同的水質處理單元,盼能透過濕地的自淨功能達到削減污染物,淨化水質的功效。根據近幾年於大鵬灣鹹水型人工濕地進行水質監測,發現紅樹林有越來越茂盛之趨勢,但無法得知紅樹林茂盛與水質之間的關係。因此,本研究探討欖李、海茄苳、紅海欖三種紅樹植物於鹹水型人工濕地廢水處理的應用,並以實驗室規模的研究設計人工濕地模槽來嘗試種植紅樹林(包含未種植組、紅樹林兩株、紅樹林六株),探討對於水質處理的情況。研究顯示,紅樹林於批次實驗的系統中,種植欖李會使鹽度下降,種植海茄苳及紅海欖會使鹽度上升,且種植密度有助於鹽度升降。種植三種紅樹植物的模槽於第一天氨氮快速下降,至五天後,系統對於總氮及總磷去除效率分別為81.74±1.86%與85.8±4.54%。若以紅樹物種來說明,總氮去除效率為種植欖李與紅海欖系統較優,海茄苳次之。總磷去除效率則是種植紅海欖系統較優,海茄苳次之,欖李最後。以紅樹密度的角度而言,欖李在高密度種植的情況下,可以產生較好的去除效果,而海茄苳及紅海欖在高密度的種植情況下,對於總氮及總磷去除效果則較差,結果顯示紅樹種植的密度對於含氮營養鹽的去除效果影響並不大。上述於實驗室研究的成果與大鵬灣人工濕地現場紅樹林高地密度區的水質成果比較,可證實現場污染物與營養鹽去除率的提升與紅樹林植物相趨於完整有關。最後以實驗結果、現地資料、紅樹植物生長狀況三者討論,建議選擇以種子繁殖的欖李與海茄苳為濕地適合栽種之紅樹植物,且經過案例及現地研究的探討,可說明紅樹林種植的最適合密度需考量各濕地情形,進行評斷與疏伐。
Abstract
In order to deal with wastewaters from the salty water aquacultural ponds and community households in the adjacent areas, the Dapeng Bay National Scenic Area Administration constructed six salty water types of constructed wetland system, in which a variety of wetland plant species were selected to be planted in different water treatment units to achieve reduction of pollutants through self-purification function of wetland systems. According to the surveying results in Dapeng Bay Salty Water Types of Constructed wetlands, we found that mangroves grew fast. However, we still did not know the relationship between the mangroves growing thrives and water quality.
In this study, we explored three mangrove species of Lumnitzera racemosa , Avicennia marina and Rhizophora stylosa in these salty water types constructed wetland wastewater treatment systems. In this study, the laboratory scale constructed wetland model tank was designed to plant mangrove, including unplanted, mangrove*2 and mangrove*6, as a way to explore the situation of wastewater treatment. The experimental results showed that when the mangrove species were planted in still water system, the species of Lumnitzera racemosa was found able to increase the salinity, while the species of Avicennia marina and Rhizophora stylosa were found able to decrease the salinity. We also found that planting density could help to lift the salinity. In additions, ammonia nitrogen concentration in three mangrove species systems were found declined rapidly in the first day until five days later of residence time. Meanwhile, the total nitrogen and total phosphorus removal efficiencies were measured equal to 81.74 ± 1.86% and 85.8 ± 4.54% respectively. Based on total nitrogen removal efficiencies, the mangrove species of Lumnitzera racemosa and Rhizophora stylosa were illustrated the better performance, and the species of Avicennia marina followed. For total phosphorus removal efficiencies, the systems with the species of Rhizophora stylosa was achieved well, and the system with species of Avicennia marina followed, and the system with the species of Lumnitzera racemosa was last. To illustrate the mangrove density the species of Lumnitzera racemosa in the case of high-density planting, we found that exhibited better removal effect than the species of Avicennia marina based on the relationship derived by regressions and Rhizophora stylosa in the case of high-density planting, showed poor removal of total nitrogen and total phosphorus, which was concluded that the mangrove planting density did not affect the removal of nitrogenous nutrients.
Comparing the experimental results by planting different species of mangroves for monitoring water quality through both studies by laboratory and the outside salty water types constructed wetland systems in the Dapeng Bay, we found that the removal efficiencies of contaminants and nutrients could be enhanced by planting mangroves. According to the experimental results, in situ data, growth conditions of mangrove species to be explored and selected, we recommended Lumnitzera racemosa and Avicennia marina, learned by the relationships derived by regressions propagated by seed. After both the case and present studies we found that the most suitable density of planting mangroves must be consider by different wetland situations, through judgment and thinning.
目次 Table of Contents
誌謝 ............................................................................................................................... I
摘要 ............................................................................................................................. II
Abstract ...................................................................................................................... III
目錄 ............................................................................................................................. V
圖目錄 ....................................................................................................................... VII
表目錄 ........................................................................................................................ IX
第一章 前言 ................................................................................................................ 1
1.1 研究緣起........................................................................................................ 1
1.2 研究目標........................................................................................................ 3
第二章 文獻回顧 ........................................................................................................ 5
2.1濕地背景介紹 ................................................................................................. 5
2.1.1 濕地定義 ............................................................................................. 5
2.1.2 濕地分類與型態 ................................................................................. 6
2.1.3 濕地的結構與組成.............................................................................. 8
2.1.4 濕地功能與價值 ................................................................................. 9
2.2 人工濕地介紹 .............................................................................................. 11
2.2.1 人工濕地概念 ................................................................................... 11
2.2.2 人工濕地類型 ................................................................................... 14
2.3 人工濕地去除污染物機制介紹 ................................................................... 18
2.3.1 人工濕地去除機制概論 .................................................................... 18
2.3.2 氮的去除機制 ................................................................................... 21
2.3.3 磷的去除機制 ................................................................................... 25
2.3.4 pH值變化 .......................................................................................... 26
2.4 紅樹林背景介紹 .......................................................................................... 27
2.4.1 紅樹林由來及分布現況 .................................................................... 27
2.4.2 紅樹林植物基本介紹 ........................................................................ 28
2.4.3 紅樹林功能 ....................................................................................... 31
2.4.4 紅樹林去除污染物之相關研究 ........................................................ 32
2.5 研究區域背景介紹 ...................................................................................... 35
第三章 材料與方法 ................................................................................................... 39
3.1 研究流程介紹 .............................................................................................. 39
3.1.1 研究流程概述 ................................................................................... 39
3.1.2 研究流程架構圖 ............................................................................... 40
3.2 大鵬灣右岸濕地A區人工濕地調查及監測 ............................................... 41
3.2.1 紅樹物種及密度調查 ........................................................................ 41
3.2.2 大鵬灣右岸濕地A區水質監測分析 ................................................ 42
3.3 批次實驗介紹 .............................................................................................. 42
3.3.1 模槽設計 ........................................................................................... 42
3.3.2 實驗方法與設計 ............................................................................... 43
3.3.3 批次實驗進流水來源及配置 ............................................................ 43
3.3.4 批次實驗模槽環境條件 .................................................................... 45
3.4 儀器設備及分析方法 .................................................................................. 46
3.4.1 水質採樣方法及保存方法 ................................................................ 46
3.4.2 各水質項目分析方法 ........................................................................ 47
3.4.3 資料處理與統計分析 ........................................................................ 48
3.4.4 土壤含水率與總生菌 ........................................................................ 49
第四章 結果與討論 ................................................................................................... 51
4.1 大鵬灣右岸濕地A區紅樹林與水質比較 ................................................... 51
4.1.1 大鵬灣右岸濕地A區紅樹林高低密度基本資料............................. 51
4.1.2 大鵬灣右岸濕地A區紅樹林高低密度生長狀況比較 ..................... 54
4.1.3 大鵬灣右岸濕地A區紅樹林高低密度水質比較............................. 55
4.2 紅樹植物批次實驗 ...................................................................................... 67
4.2.1 紅樹植物馴養生長情形 .................................................................... 67
4.2.2 紅樹植物批次實驗基本資料及現場監測結果 ................................. 68
4.2.3 紅樹植物批次實驗氮、磷營養鹽的變化 ......................................... 74
4.3.4 紅樹植物批次實驗去除效率與總生菌結果 ..................................... 87
4.3 紅樹林疏伐案例與結果討論 ....................................................................... 94
4.3.1 紅樹林疏伐案例 ............................................................................... 94
4.3.2 紅樹林疏伐結果討論 ........................................................................ 97
第五章 結論與建議 ................................................................................................... 99
5.1 結論 ............................................................................................................ 99
5.2 建議 .......................................................................................................... 101
第六章 參考文獻 .................................................................................................... 103
附錄一 各批次實驗之變異數相關分析 .................................................................. 109
附錄二 T檢定分析 ................................................................................................. 113
附錄三 照片部分 ................................................................................................. 115
參考文獻 References
Boonsong, K., Piyatiratitivorakul, S., Patanaponpaiboon, P., 2003. Potential use of mangrove plantation as constructed wetland for municipal wastewater treatment. Water Science Technology 48(5): 257-266.
Chu, H.Y., Chen, N.C., Yeung, M.C., Tam, N.F.Y., Wong, Y.S., 1998. Tide-tank system simulating mangrove wetland for removal of nutrients and heavy metals from wastewater. Water and Science Technology 38 (1):361–368.
Clough, B.F., Boto, K.G., Attiwill, P.M., 1983. Mangroves and sewage: a revaluation. In: Teas, H.J. (Ed.), Biology and Ecology of Mangrove, Tasks for Vegetation Science Series v. 8. Dr. W. Junk Publishers, Lancaster, 151-162.
Cowardin LM, Carter V, Golet FC, LaRor ET., 1979. Classification of Wetlands and Deepwater Habitats of the United States. FWS/OBS-79-31. U.S. Fish and Wildlife Service, Washington, D.C., 103.
Dunbabin, J.S., Bowmer, K.H., 1992. Potential use of constructed wetlands for treatment of industrial wastewaters containing metals. Science of the Total Environment 111:151-168.
Finlayson M, Moser M(eds.), 1991. Wetlands. Facts on File, Oxford, UK.,244.
Gagnon, V., Chazarenc, F., Comeau, Y., Brisson,J., 2007. Influence of macrophytes species on microbial density and activity in constructed wetlands. Water Science and Technology 56:249-254.
Gambrell, R. P., and W. H. Patrick, Jr., 1978. Chemical and microbiological properties of anaerobic soils and sediments, in Plant Life in Anaerobic Environments, D. D. Hook and R. M. M. Crawford,eds., Ann Arobr Sci. Pub. Inc., Ann Arobr, Mich., 375-423.
IWA Specialist Group on Use of Macrophytes in Water Pollution Constrol.,“Constructed wetlands for pollution control, process, performance, design and operation.” IWA publishing, London, UK., 2000。
James W. Nybakken., 2001. Marine Biology An Ecological Approach, Fifth Edition. An imprint of Addison Wesley Longman, inc.
Jing, Y.X., Li, X.J., Yang, D.J., Chen, G.Z., 2007. Purifying effect of mangrove constructed wetlands on domestic sewage. Acta Ecologica Sinica 27:2365-2374.
Kadlec, R. H. and Knight, R. L., 1996. Treatment wetlands, Second Edition, Lewis.
Kathiresan K. and Bingham, B. L., 2001. Biology of mangroves and mangroves ecosystem. Advances in Marine Biology 40: 81-251.
Klomjek, P., Nitisoravut, S., 2005. Constructed treatment wetland: a study of eight plant species under saline conditions. Chemosphere 58:585-593.
Mitsch, W. J. and J. G.. Gosselink., 1993. Wetlands. Second Edition. Van Nostrand Reinhond, A Division of international Thomson Publishing, Inc.
Reddy, K.R., and D. A. Graetz, 1988. Carbon and nitrogen dynamics in wetland soils, in: The Ecology and Management of wetlands, vol. I, D. D. Hook et al., eds., Timber Press, Portland, Ore., 307-318.
Reddy, K.R., Khaleel, R., Overcash, M.R., Westerman, P.W., 1979. A nonpoint source model for land areas receiving animal wastes. L. Mineralization of organic nitrogen. Transaction of the ASAE 22:863-876.
Sansanayuth, P., Phadungchep, S., Ngdngam, N.S., Sukasem, P., Hoshino, H., Ttabucanon, M.S., 1996. Shrimp pond effluent:pollution problems and treatment by constructed wetlands. Water Science and Technology 34(11):93–98.
Show SP, Fredine CG. 1956. Wetlands of the United States: Their Extent, and Their Value for Waterfowl and Other Wildlife. Circular 39, U.S. Fish and Wildlife Service, U.S. Department of Interior, Washington, D.C., 67.
Sikora F. J., Tong Z., Behrends L. L., Steinberg S. L. and Coonrod H. S., 1995. Ammonium removal in constructed wetlands with recirculating subsurface flow:Removal rates and mechanisms. Water Science and Technology 32(3):193-202.
Spalding, M., F. Blasco, and C. Field 1997 World Mangrove Atlas. The International Society for Mangrove Ecosystems. UK.
Tanaka, N., Yutani, K., Aye, T., 2007. Effect of broken dead culms of Phragmites australis on radial oxygen loss in relation to radiation and temperature. Hydrobiologia 583:165-172.
Tchobanoglous, G., 1993. Constructed wetlands and aquatic plant systems: research, design, operational, and monitoring issues. in: G. A. Moshiri. (Ed.) Constructed wetlands for water quality improvement. Lewis Publishers, Boca Raton, 23-34.
Van Oostrom A. J., 1995. Nitrogen removal in constructed wetlands treating nitrified meat processing effluent, Water Science and Technology 32(3):137-147.
Vymazal, J., 2007. Removal of nutrients in various types of constructed wetlands. Science of The total Environment 380:48-65.
Watson, J.T., Reed, S.C., Kadlec, R.H., Knight, R.L., Whitehouse, S.E. 1989. “Performance expectations and loading rates for constructed wetlands.” In: Hammer, D.A. (Ed.), Constructed wetlands for wastewater treatment.municipal, industrial and agricultural. Lewis Publishers, Chelsea, 319-358.
Wong, Y.S., Tam, F.Y., Chen, G.Z., Ma, H., 1997. Response of Aegiceras corniculatum to synthetic sewage under simulated tidal conditions. Hydrobiologia 352 (1-3):89–96.
Wood A.,1995. Constructed wetlands in water pollution control:Fundamentals to their understanding. Water Science and Technology 32(3):21-29.
Wu, Y., Chung, A., Tam, N.F.Y., Pi, N., Wong, M.H., 2008b. Constructed mangrove wetlands as secondary treatment system for municipal wastewater. Ecological Engineering 34:137-146.
Wu, Y., Tam, N.F.Y., Wong, M.H., 2008a. Effects of salinity on treatment of municipal wastewater by constructed mangrove wetlands microcosm. Marine Pollution Bulletin 57:727-734.
Y.- M. Su, Y.-F. Lin, S.-R. Jing, P.-C. Lucy Hou, 2011. Plant growth and the performance of mangrove wetland microcosms for mariculture effluent depuration. Marine Pollution Bulletin 62:1455-1463.
Yang, Q., Tam, N.F.Y., Wong, Y.S., Luan, T.G., Su, W.S., Lan, C.Y., Shin, P.K.S., Cheung, S.G., 2008. Potential use of mangroves as constructed wetland for municipal sewage treatment in Futian, Shenzhen, China. Marine Pollution. Bulletin 57: 735-743.
于立平,1997,濕地公源規劃策略之研究-以高雄縣鳥松濕地公園為例,國立中山大學海洋環境及工程學系,碩士論文。
中山大學水資源研究中心, 2007-2012. 人工濕地水質調查及經營管理規劃評估. 交通部觀光局大鵬灣國家風景區管理處委託。
林務局,1995,第三次台灣森林資源及土地利用調查,林務局,台北。
邱文彥,2003,海岸管理:理論與實務,國立編譯館審定,五南圖書出版公司印行 (二刷一版)。
邱文雅,章盛傑譯,William J.Mitsch and James G. Gosselink著,1998,濕地 Wetlands,地景企業股份有限公司。
邱彭華,徐頌軍,謝跟踪,符 英,2010,自然濕地、人工次生濕地與人工濕地比較分析。海南師範大學學報(自然科學版) 23(2): 209-213。
范貴珠,2006,適用於台灣之紅樹林造林技術,台灣林業期刊 32(1): 8-16。
許正一、陳尊賢,1995,濕地土壤的定義、化育作用與分類。科學農業43(11,12): 293-299。
許再文,2000,台灣的紅樹林植物,濕地生物多樣性研討會論文集,行政院農業委員會特有生物研究保育中心。
郭智勇著,徐偉繪圖,1995,台灣紅樹林自然導遊,大樹文化,台北市。
陳怡伶,2006,以複合式水平流人工濕地處理中高埋齡垃圾滲出水之研究,國立中山大學海洋環境及工程學系,碩士論文。
陳明男,2002,四種台灣紅樹林植物對光度與溫度之生理反應,國立中興大學森林學系,碩士論文。
陳偉傑,2005,多變量分析應用於河川人工濕地之水質淨化研究,立德管理學院資源環境學系,碩士論文。
陳麗瑜,2005,都會濕地公園水質淨化功能及規劃策略之研究,國立中山大學海洋環境及工程學系,碩士論文。
黃守忠、施上粟,2007,河口濕地棲地多樣性維護-淡水河口紅樹林之經營管理台灣濕地雜誌65:16-23。
劉棠瑞,1982,台灣之紅樹林,中華林學季刊 15(3):9-16。
劉靜靜,邱文彥,1995,濕地與紅樹林,關愛生活雜誌 12:6-8。
歐文生,2005,生活污水應用人工濕地處理及再利用之研究,國立成功大學建築研究所,博士論文。
蔡凱元,2004,以人工濕地處理垃圾滲出水可行性之研究,國立中山大學海洋環境及工程學系,碩士論文。
鄧書麟,林佳芸,呂福原,許原瑞,曾喜育,2008,台灣與鄰近島嶼紅樹林組成、分布與相關保育措施探討。台灣林業期刊 34(6): 3-11。
盧鴻偉,2008,自然淨化系統永續經營及社區發展相關性之研究-台南縣市設置自然淨化系統之社區為例,嘉南藥理科技大學環境工程與科學系,碩士論文。
薛美莉,1995,消失中的濕地森林-記台灣的紅樹林,台灣省特有生物研究保育中心。
蘇永銘,2012,人工紅樹林濕地淨化海水養殖業廢水之可行性評估,國立成功大學生命科學系,博士論文。
社團法人台灣濕地保護聯盟,2012,濕地的定義,,2012/7/2取得http://www.wetland.org.tw/newweb/wetland/WhatIsWetland.htm
行政院農委會林務局自然資源與生態資料庫,2003,何謂濕地 2012/7/2取得http://erarc.epa.gov.tw/136/201011150105/archive/econgis_/wetland/index.htm
內政部營建署,2012,法規公告濕地法草案,2012/7/3取得http://www.cpami.gov.tw/chinese/index.php?option=com_content&view=article&id=14681&Itemid=57
行政院農委會畜產試驗所恆春分所墾丁牧場,2012,2012/9/3取得http://cancer.tlri.gov.tw/hengchun/farmer/tech/Exc3.htm
嘉南藥理大學-生態工程技術研發中心,2012,人工濕地系統介紹,2012/9/17取得http://ecocenter.chna.edu.tw/ecodb/aquaticdb/constructed%20wetlands.htm
Biological Bulletin Compendia,2012,人工海水配置方法,2012/12/25取得http://hermes.mbl.edu/BiologicalBulletin/COMPENDIUM/Comp-App1.html
百度百科,2011,總需氧量,2013/1/14取得 http://baike.baidu.com/view/712891.htm
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code