Responsive image
博碩士論文 etd-0222116-180134 詳細資訊
Title page for etd-0222116-180134
論文名稱
Title
高溫環境下WO3/TiO2與V2O5/TiO2對氣態元素汞之氧化效率 提升及其反應機制探討
Enhancement of Oxidation Efficiency of Elemental Mercury by WO3/TiO2 and V2O5/TiO2 at High Temperatures Governed by Different Mechanisms
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
166
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-01-19
繳交日期
Date of Submission
2016-03-22
關鍵字
Keywords
反應動力學模式、反應熱力學參數、高溫環境光催化氧化、汞污染物、溶膠凝膠法、改質TiO2光觸媒
mercury pollutants, photocatalytic oxidation, modified TiO2, sol-gel method, dynamic model, thermodynamic model
統計
Statistics
本論文已被瀏覽 5702 次,被下載 35
The thesis/dissertation has been browsed 5702 times, has been downloaded 35 times.
中文摘要
汞為全球性污染物,對人體健康造成巨大危害。針對全球汞(空氣圈、水圈、岩石圈)的監測數據顯示,人為源為大氣汞的主要污染來源,而燃煤電廠排放之汞占全球汞排放量很大的比重。2013年10月9日國際公約「水俁公約」正式生效,針對人為最大的汞排放源-燃煤火力發電廠,將嚴格控制含汞污染物的排放。近年來,二氧化鈦(TiO2)是應用最為廣泛的光觸媒,良好的光催化活性使得TiO2也成為一種新型的元素汞(Hg0)去除方法,但若將TiO2應用於實廠環境去除Hg0,則仍有很多亟需克服的困難。其中最主要的問題之一即「高溫環境」對TiO2光催化反應的抑制,致使光觸媒在高溫環境下對Hg0之吸附效率降低。
職是之故,本研究旨在探討提高光觸媒TiO2於高溫環境下光催化氧化氣態元素汞之效能,並且探討高溫環境下元素汞於光觸媒表面轉化為氧化態汞之效能。本研究範圍涵蓋四個部份,第一部份探討商業TiO2在高溫環境下對Hg0的光催化氧化影響,例如:煅燒溫度、不同光照波長、光照強度及煙氣含氧量等因素對Hg0的光催化氧化效率的影響。第二部分首先探討三氧化鎢改質二氧化鈦(WO3/TiO2)製備與表面特徵分析,如:物理特性的BET比表面積、晶型結構、表面形貌等;化學特性的紫外光可見光吸收光譜、電子能譜、激發螢光光譜、拉曼光譜等;其次探討在不同反應條件下(如:反應溫度、元素汞濃度、其他反應氣體成份等)光催化氧化元素汞之效率,並建立光催化反應熱力學模式,用以探討光觸媒氧化氣態元素汞之效能。第三部份則探討WO3/TiO2在高溫環境下,受HCl、O2、SO2、NO等氣體成份的作用下,將元素汞轉化為氧化態汞之效能。第四部分則研究五氧化二釩改質二氧化鈦(V2O5/TiO2)氧化Hg0之效能,探討不同V2O5摻雜量、反應溫度、起始濃度等對Hg0去除效率之影響,建立反應動力學模式,並探討其對Hg0之反應機制。
研究結果顯示,在100 -160oC TiO2(Degussa-P25)對Hg0的光催化氧化反應效率隨反應溫度升高而下降,尤其在140oC時,Hg0的氧化效率開始顯著下降。利用400oC和500oC煅燒之Degussa-P25可提高其對Hg0之光催化氧化效率。通過比較254 nm、365 nm和可見光對Hg0的光催化氧化影響,在高溫環境下254 nm對Hg0的光催化氧化效率最高。在140oC和160oC下,若提高光源強度由15 W到20 W,有助於提升其對Hg0的飽和吸附容量。本研究利用溶膠凝膠法(sol-gel)自行製備WO3/TiO2,摻雜的鎢(W)在TiO2表面以WO3方式存在,且TiO2表面的WO3含量會隨製備過程添加量的增加而升高。WO3的添加可增大TiO2的能隙大小,使得WO3/TiO2之紫外光可見光吸收光譜與螢光光譜之出峰波長藍移;此外,WO3/TiO2發射的螢光強度低於TiO2,說明光生電子和電洞的分離時間有所延長,兩者對於提高WO3/TiO2的光催化氧化活性皆有促進作用。在120oC-160oC可顯著提升其對Hg0之氧化效率,但是不同WO3摻雜量的WO3/TiO2對Hg0之光催化氧化效率不同,其中以3%WO3/TiO2為最高,例如:在160oC下3%WO3/TiO2對Hg0之氧化效率可由20% (TiO2)提升至68% (3%WO3/TiO2)。本研究之光催化氧化反應符合Langmuir-Hinshelwood熱力動力模式,利用其計算出各觸媒與Hg0之間的反應平衡常數KHg0,並推算出各觸媒光催化反應的△G在160oC介於-47與-54 KJ/mol,且△G隨反應溫度的升高而逐漸降低。在HCl的作用下,Hg0在TiO2或WO3/TiO2表面反應後生成兩種表面產物,一種被吸附於TiO2表面,另一種則反應為氧化態汞而進入反應氣體之中。在無近紫外光照射下,O2和HCl可提高WO3/TiO2對Hg0的總去除率。HCl濃度的增加與引入近紫外光照皆可降低對Hg0的氧化率但提高對Hg0的吸附率。在HCl與O2存在下,無論有、無近紫外光照射,NO的加入不會對Hg0總去除率產生影響,但會提高其對Hg0的吸附率。在無近紫外光照射下,SO2的加入會顯著抑制對Hg0的去除效率,但SO2的抑制作用會因近紫外光照的引入而被削弱,從而促進WO3/TiO2對Hg0的總去除效率的提高。此外,將V2O5/TiO2應用於高溫環境下對Hg0氧化結果得知,V2O5/TiO2的熱催化氧化作用較光催化氧化作用為佳。通過比較不同V2O5添加量對TiO2光催化氧化的影響得出,V2O5和TiO2的協同作用促進TiO2或V2O5對Hg0之氧化效率,且對Hg0有效的活性吸附位址為V=O。通過比較三種反應動力模式(Fick’s擴散模式、一階質量傳遞模式與二階反應動力模式)對實驗結果進行數據擬合,一階反應動力模式較能符合實驗數據,亦即Hg0催化反應受到氣相Hg0濃度與觸媒V2O5/TiO2表面濃度差之影響。
Abstract
Mercury is a volatile and persistent heavy metal which causes serious damages to human health. The monitoring data of the atmospheric, hydrosphere, lithospheric mercury revealed that the anthropogenic activities are the main sources of mercury. Among these sources, coal-fired power plants contributed the most part of the mercury emission. The most widest mercury international convention - Minamoto Convention has already announced to regulate mercury emissions from coal-fired power plants since October 9, 2013. Due to its excellent photocatalytic performance, applying TiO2 to Hg0 removal in pilot scale has been investigated in recent years. However, it is difficult to elevate it in full scales due to a lot of problems being solved. One difficult problem is that the high temperatures inhibit the photocatalytic reactivity of TiO2 and thus reduce the Hg0 adsorption on the surface of TiO2.
This study aims to investigate the enhancement of photo-reactivity of TiO2 for Hg0 removal at high temperatures and the transformation efficiency of element mercury to oxidized mercury at high temperatures by oxidation process occurred on its surface. The research can be divided into four parts: (1) The effects of operating parameters on the removal efficiency of element mercury by commercial TiO2 at high temperatures, such as calcination temperatures for preparation of TiO2 crystal, wave length of irradiation, the irradiation intensity and oxygen concentration in the flue gas, and etc. (2) The investigation of WO3/TiO2 prepared by sol-gel method on the Hg0 removal at high temperatures. The surface characteristics of WO3/TiO2 were analyzed by BET specific surface analyzer, XRD, SEM, TEM, HRTEM, UV-visible spectrum, XPS, Raman spectrum, photoluminescence spectrum, and etc. The influences of reaction temperatures, influent Hg0 concentrations, gases components, and etc on Hg0 removal were investigated and the Langmuir-Hinshelwood thermodynamic model were further established. (3) The effects of influent concentrations of HCl, O2, NO and SO2 on the transformation efficiency from Hg0 to HgCl2 catalyzed by TiO2 and WO3/TiO2. (4) The investigation on V2O5/TiO2 prepared by sol-gel method for the Hg0 removal at high temperatures. The influences of V2O5 doping amount, reaction temperatures, influent Hg0 concentrations on Hg0 removal were investigated and the dynamic model was also established to investigate the mechanisms on Hg0 removal.
Experimental results indicated that increasing reaction temperatures from 100°C to 160oC would decrease the photo-oxidation efficiency of Hg0 by TiO2, particularly at 140oC, the removal efficiencies of Hg0 dropped significantly. The calcination temperatures of 400oC and 500oC brought higher photo-oxidation efficiencies than those at 300oC and 600oC. Irradiation of 254 nm could effectively raise the photo-oxidation efficiency of Hg0 at 140°C and 160oC. The increase of irradiation strength from 15 W to 20 W was verified to significantly enhance the photo-oxidation efficiency of Hg0 at 140oC and 160oC. However, the effect of 5% O2 present in the flue gas on the photo-oxidation capacity of Hg0 at 140°C and 160oC was limited. The photo-oxidation of Hg0 at 120-160oC was enhanced by WO3/TiO2 using sol-gel method. From the XPS spectra of W4f7/2 electrons in various WO3/TiO2 the tungsten atom existed as WO3 distributing on the surface of TiO2. The differences of PL and UV-visible spectra between WO3/TiO2 and TiO2 illustrated the main peak of WO3/TiO2 shifted toward the short wavelength, illustrating that the band gap between the excited molecular level and the basic molecular level was enlarged. Moreover, the intensity of WO3/TiO2 dropped sharply as compared to TiO2(sol-gel) because the addition of WO3 precursor led to the prolonged separation time of the photo-induced electron and hole, which was considered to be beneficial to improve the photocatalytic reactivity of WO3/TiO2. The removal efficiencies of Hg0 were different from various WO3 doped TiO2. Among these, the highest removal efficiency of Hg0 was reached by 3%WO3/TiO2. The removal efficiency was promoted from 20% by TiO2(sol-gel) to 68% by 3%WO3/TiO2. The L-H model simulating the Hg0 removal by TiO2 and WO3/TiO2 could be used to determine the equilibrium constants KHg0 of various WO3/TiO2. The change of Gibb’s free energy △G between Hg0 and WO3/TiO2 at 160oC ranged from -47 to -57 KJ/mol and decreased as the temperatures increased.
With HCl and incident near-UV irradiation at 160oC, one part of Hg0 was believed to be adsorbed on the surface of TiO2 and WO3/TiO2s as adsorption, while the other was desorbed from the surface as HgCl2 entering the flue gas as an oxidant. The enhancements of adsorption efficiency and the oxidation efficiency were achieved by the addition of O2 and HCl. The increase of HCl concentration and the near-UV irradiation promoted the adsorption efficiency of Hg0 while decreased the oxidation efficiency of Hg0. The total removal efficiency of Hg0 was not affected by adding NO into the HCl and O2 atmosphere, while for the adsorption and oxidation efficiency, the former was enhanced and the later was reduced by NO. An inhibition of the removal efficiency of Hg0 was caused by the addition of SO2 into HCl and O2 atmosphere without the irradiation of near-UV light, while under near-UV irradiation, the removal efficiency of Hg0 was enhanced as the inhibition of SO2 was diminished.
The thermo-catalytic removal efficiencies of Hg0 by V2O5/TiO2 were higher than their photocatalytic removal efficiencies. From the investigation of various removal efficiencies of Hg0 by different V2O5/TiO2 and V2O5, the enhancements were attributed to the synergic effect of structure combination of V2O5 and TiO2. The activated sites for Hg0 adsorption were identified as V=O bond of V2O5. These dynamic models were used to fit the adsorption traces including Fick’s diffusion model, pseudo-first order kinetic model and pseudo-second order kinetic model, respectively. The first order kinetic model was fitted best among these three models which illustrated that the driving force resulted from the concentration derivation of Hg0 in the gaseous phase and on the surface of TiO2.
目次 Table of Contents
Contents
中文摘要 I
Abstract III
Contents VI
Table Contents VIII
Figure Contents IX
Chapter 1 Introduction 1
1-1 Motivation of the Research 1
1-2 Research Innovation 3
1-3 Research Scopes 4
1-4 Flow Chart of the Research 5
Chapter 2 Literature Review 7
2-1 Physiochemical Characteristic and Toxicity of Mercury and Its Derivatives 7
2-2 Sources, Transportation, and Distribution of Atmospheric Mercury 8
2-3 Mercury Containing Pollutants in the Flue Gas of Coal Fired Power Plants 12
2-3-1 Homogeneous reaction 14
2-3-2 Heterogeneous reaction 16
2-4 Mercury Control Technologies for Coal-Fired Power Plants 17
2-4-1 Injections of activated carbons 17
2-4-2 Selective catalysis reaction (SCR) 19
2-5 Photocatalysis of Hg0 by TiO2 22
2-5-1 Introduction of TiO2 22
2-5-2 Mechanism on the photocatalysis of TiO2 23
2-5-3 Photo-oxidation of Hg0 by TiO2 27
2-5-4 Research progress on the photocatalysis of Hg0 30
Chapter 3 Experimental Methods 36
3-1 Experimental Design and Implementation Flow 36
3-2 Experimental Materials and Preparation of Photocatalysts 36
3-2-1 Experimental materials 36
3-2-2 Preparation of photocatalysts 37
3-3 Experimental Measurement and Setup 39
3-3-1 Measurement of surface characteristics 39
3-3-2 Photocatalytic oxidation system 40
3-3-3 Experimental methods and operating parameters 43
3-4 Stability and Selection of Flow Rate for the Setup 46
3-4-1 Evaluation of reaction retention time 47
3-4-2 Mass of photocatalysts coating on the glass beads 47
3-4-3 Blank tests 47
Chapter 4 Results and Discussion 49
4-1 Photo-oxidation of Hg0 by Degussa P25 49
4-1-1 Surface characterization of Degussa P25 49
4-1-2 Effects of calcination temperatures for Degussa P25 52
4-1-3 Effects of wave number of irradiation 55
4-1-4 Enhancement of Hg0 photo-oxidation by oxygen 55
4-1-5 Conclusions 56
4-2 Enhancement of Photo-oxidation Efficiency of Hg0 by WO3/TiO2 61
4-2-1 Characterization of photocatalysts TiO2(sol-gel) and WO3/TiO2 61
4-2-2 Photo-oxidation efficiency of Hg0 for various photocatalysts 71
4-2-2-1 Effects of reaction temperature on photo-oxidation efficiency of Hg0 71
4-2-2-4 Effect of a single gas component on Hg0 photo-oxidation efficiency 80
4-2-3 Conclusions 82
4-3 Transformation from Hg0 to HgCl2 84
4-3-1 Detection methods for on-line monitor of HgCl2 84
4-3-2 Blank Test of Photo-oxidation of Hg0 to HgCl2 85
4-3-3 Photo-oxidation of Hg0 to HgCl2 by TiO2 87
4-3-4 The Photo-oxidation of Hg0 to HgCl2 by WO3/TiO2 89
4-3-5 Conclusions. 98
4-4 Oxidation of Hg0 by V2O5/TiO2 98
4-4-1 Characterization of V2O5/TiO2 98
4-4-2 Thermo-oxidation of Hg0 by V2O5/TiO2 105
4-4-3 Conclusions 116
Chapter 5 Conclusions and Suggestions 120
5-1 Conclusions 120
5-2 Suggestions 122
References 123
Appendix A 131
Appendix B 134
參考文獻 References
Adamson, A.W., Physical Chemistry of Surfaces, 6th Ed., John Wiley & Sons: New York, pp. 603-605, 1997.
Anpo, M., Shima, T., Kodama, S., and Kubokawa, Y., “Photocatalytic hydrogenation of propyne with water on small-particle titania: size quantization effects and reaction intermediates”, J. Phys. Chem., Vol. 91, pp. 4305-4310, 1987.
Beatrice-Andreea, D., Liliana, L., and Heinz, K., “Oxidation catalysts for elemental mercury in flue gases- a review”, Catal., Vol. 2, pp. 139-170, 2012.
Borgstrom, M., Blart, E., Boschloo, G., Mukhtar, E., Hagfeldt, A., Hammarstrom, L., and Odobel, F., “Sensitized hole injection of phosphorus porphyrin into NiO: toward new photovoltaic devices”, J. Phys. Chem. B, Vol. 109, pp. 22928-22934, 2005.
Castro, I.A.D., Jr, W.A., and Ribeiro, C., “WO3/TiO2 heterostructures tailored by the oriented attachment mechanism: insights from their photocatalytic properties”, Cryst. Eng. Commun., Vol. 16, pp. 1514-1524, 2014.
Chen, W.C., Lin, H.Y., Yuan, C.S., and Hung, C.H., “Kinetic modeling on the adsorption of mercury chloride vapor on spherical activated carbon by thermogravimetric analysis”, J. Air Waste Manag. Assoc., Vol. 59, pp. 227-235, 2009.
Cho, J.H., Eom, Y.J., and Jeon, S.H., “A pilot-scale TiO2 photocatalytic system for removing gas-phase elemental mercury at Hg emitting facilities”, J. Ind. Eng. Chem., Vol. 19, pp. 144-149, 2013.
Cho, J.H., Eom, Y.J., and Lee, T.G., “Gas-phase elemental mercury removal in a simulated combustion flue gas using TiO2 with fluorscent light”, J. Air. Waste. Manage. Assoc., Vol. 62, pp. 1208-1213, 2012.
Clarkson, T.W., “The toxicology of mercury”, Crit. Rev. Clin. Lab. Sci., Vol. 34, pp. 369-403, 1997.
Colbeau-Justin, C., and Kunst, M., “Structural influence on charge-carrier lifetimes in TiO2 powders studied by microwave absorption”, J. Mater. Sci., Vol. 38, pp. 2429-2437, 2003.
Crocker, R.C., Benson, A.S., and Laumb, D.J., “SCR catalyst blinding due to sodium and calcium sulphate formation”, Prepr. Pap. Am. Chem. Soc. Div. Fuel Chem., Vol. 49, pp. 169-172, 2004.
Deskins, N.A., Rousseau, R., and Dupuis, M., “Localized electronics states from surface hydroxyls and polarons in TiO2(110)”, J. Phys. Chem. C., Vol. 113, pp. 14583-14586, 2009.
Engweiler, J., Harf, J., and Baiker, A., “WOx/TiO2 catalysts prepared by grafting of tungsten alkoxides: morphological properties and catalytic behavior in the selective reduction of NO by NH3”, J. Catal., Vol. 159, pp. 259-269, 1996.
Fujihara, K., Izumi, S., Ohno, T., and Matsumura, M., “Time-resolved photoluminescence of particulate TiO2 photocatalysts suspended in aqueous solutions”, J. Photochem. Photobio. A. Chem., Vol. 132, pp. 99-104, 2000.
Fujishima, A., and Honda, K., “Electorchemical photolysis of water at a semiconductor electrode”, Nature, Vol. 238, pp. 37-38, 1970.
Gao, Y.L., Chen, Q.Y., Tong, H.X., Hu, H.P., Qian, D., Yang, Y.H., and Zhou, J.L., “Preparation of TiO2 photocatalyst loaded with V2O5 for O2 evolution”, J. Cent. South Univ. Technol., Vol. 16, pp. 919-925, 2009.
Ghorishi, B., and Gullett, B.K., “Sorption of mercury species by activated carbons and calcium-based sorbents:effect of temperature, mercury concentration, and acid gases”, Waste Manage. Res., Vol. 16, pp. 582-593, 1998.
Giakoumelou, I., Fountzoula, C., Kordulis, C., and Boghosian, S., “Molecular structure and catalytic actitivity of V2O5/TiO2 catalysts for the SCR of NO by NH3: in situ raman spectra in the presence of O2, NH3, NO, H2, H2O, and SO2”, J. Catal., Vol. 239, pp. 1-12, 2006.
Granite, E.J., and Pennline, H.W., “Photochemical removal of mercury from flue gas”, Ind. Eng. Chem. Res., Vol. 41, pp. 5470-5476, 2002.
Grbic, B., Radic, N., Stojadinovic, S., Vasilic, R., Dohcevic-Mitrovic, Z., Saponjic, Z., and Stefanov, P., “TiO2/WO3 photocatalytic composite coating prepared by spray pyrolysis”, Surf. Coating Technol., Vol. 258, pp. 763-771, 2014.
Habel, D., Stelzer, J.B., Feike, E., Schroder, C., Hosch, A., Hess, C., Knop-Gericke, A., Caro, J., and Schubert, H., “Phase development in the catalytic system V2O5/TiO2 under oxidizing conditions”, J. Euro. Cer. Soc., Vol. 26, pp. 3287-3294, 2006.
Hall, B., Schager, P., and Lindqvist, O., “Chemical reactions of mercury on combustion flue gases”, Water, Air, Soil, Pollut., Vol. 56, pp. 3-14, 1991.
He, J., Reddy, G.K., and Thiel, S.W., “Ceria-modified manganese oxide titania materials for removal of elemental and oxidized mercury from flue gas”, J. Phys. Chem. C, Vol. 115, pp. 24300-24309, 2011.
He, J., Reddy, G.K., Thie, l.S.W., Smirniotis, P.G., and Pinto, N.G., “Simultaneous removal of elemental mercury and NO from flue gas using CeO2 modified MnOx/TiO2 materials”, Energy Fuels, Vol. 27, pp. 4832-4839, 2013.
He, Y.P., Wu, Z.Y., Fu, L.M., Li, C.R., Miao, Y.M., Cao, L., Fan, H.M., and Zou, B.S., “Photochromism and size effect of WO3 and WO3-TiO2 aqueous sol”, Chem. Mater., Vol. 15, pp. 4309-4045, 2003.
Henderson, M.A., “A surface science perspective on TiO2 photocatalysis”, Surf. Sci. Rep., Vol. 66, pp. 185-297, 2011.
Henderson, M.A., Epling, W.S., Peden, C.H.F., and Perkins, C.L., “Insights into photoexcited electron scavenging process on TiO2 obtained from studies of the reaction of O2 with OH groups adsorbed at electronics defects on TiO2(110)”, J. Phys. Chem. B, Vol. 107, pp. 534-545, 2003.
Hengerer, R., Kavan, L., Krtil, P., and Gratzel, M., “Orientation dependence of charge transfer process on TiO2(anatase) single crystals”, J. Electrochem. Soc., Vol. 147, pp. 1467-1472, 2000.
Higashimoto, S., Sakiyama, M., and Azuma, M., “Photoeletrochemical properties of hybrid WO3/TiO2 electrode effect of structures of WO3 on charge separation behavior”, Thin Solid Films, Vol. 503, pp. 201-206, 2006.
Ho, W.H., Zhou, J.S., and Qi, P., “Effect of H2S/HCl on the removal of elelmental mercury in syngas over CeO2/TiO2”, Chem. Eng. J., Vol. 241, pp. 131-137, 2014.
Ho, Y.S., and McKAY, G., “A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents”, Trans. IchemE., Vol. 76, pp. 332-340, 1998.
Hower, J.C., Senior, C.L., Suberg, E.M., Wilcox, J.L., and Olson, E.S., “Mercury capture by native fly ash carbons in coal-fired power plants”, Prog. Energy Combust. Sci., Vol. 36, pp. 510-529, 2010.
Hsi, H.C., Lee, H.H., and Hwang, J.F., “Mercury speciation and distribution in a 660-megawatt utility boiler in Taiwan firing bituminous coals”, J. Air Waste Manag. Assoc., Vol. 60, pp. 514-522, 2010.
Hsi, H.C., Rood, M.J., Rostam-Abadi, M., Chen, S., and Chang, R., “Effects of sulfur impregnation temperature on the properties and mercury adsorption capacities of activated carbon fibers”, Environ. Sci. Technol., Vol. 35, pp. 2785-2791, 2001.
Hsi, H.C., and Tsai, C.Y., “Synthesis of TiO2-x Visible-light photocatalyst using N2/Ar/He thermal plasma for low-concentration elemental mercury removal”, Chem. Eng. J., Vol. 191, pp. 378-385, 2012.
Hu, C., Zhou, J., Luo, Z., and Cen, K., “Oxidation adsorption of elemental mercury by activated carbon in simulated coal-fired flue gase”, Energy Fuel, Vol. 25, pp. 154-158, 2010.
Hurt, R.H., and Cibbons, J.R., “Residual carbon from pulverized coal fired boilers: 1, Size distribution and combustion reactivity”, Fuel, Vol. 74, pp. 471-480, 1995.
Ie, I.R., Shen, H.Z., Yuan, C.S., Hung, C.H., Chen, W.H., and Jen, Y.H., “Single and dual adsorption of vapor-phase Hg0 and/or HgCl2 by innovative composite activated carbons impregnated with both S0 and Na2S”, Aerosol Air Qual. Res., Vol. 14, pp. 376-385, 2014.
Imanari, M., and Watanabe, Y., “Reduction of NOx in combustion flue gases on tungsten based catalysts”, Stud. Surf. Sci. Catal., Vol. 7, pp. 841-851, 1981.
Jeong, J.Y., and Jurng, J.S., “Removal of gaseous elemetnal mercury by dielectric barrier discharge”, Chemosphere, Vol. 68, pp. 2007-2010, 2007.
Ji, L., Sreekanth, P.M., Smirniotis, P.G., Thiel, S.W., and Pinto, N.G., “Manganese oxided/Titania materials for removal of NOx and elemental mercury from flue gas”, Energy Fuels, Vol. 22, pp. 2299-2306, 2008.
John, F.P., Yu, G.L., and Chan, C.K., “The effect of calcination on the microstructural characteristics and photoreactivity of Degussa P-25 TiO2”, J. Mater. Sci., Vol. 34, pp. 1523-1531, 1999.
Kamata, H., Ueno, S.I., and Naito, T., “Mercury oxidation by hydrochloric acid over a VOx/TiO2 catalyst”, Catal. Commun., Vol. 9, pp. 2441-2444, 2008.
Kamata, H., Ueno, S.I., Naito, T., and Yukimura, A., “Mercury oxidation over the V2O5(WO3)/TiO2 commercial SCR catalysts”, Ind. Eng. Res., Vol. 47, pp. 8136-8141, 2008.
Ke, S.C., Wang, T.C., Wong, M.S., and Gopal, N.O., “Low temperature kinetics and energetics of the electron and hole traps in irradiated TiO2 nanoparticles as revealed by EPR spectroscopy”, J. Phys. Chem. B., Vol. 110, pp. 11628-11634, 2006.
Kerisit, S., Deskins, N.A., Rosso, K.M., and Dupuis, M., “A shell model for atomistic simulation of charge transfer in titania”, J. Phys. Chem. C., Vol. 112, pp. 7678-7688, 2008.
Kim, C.S., Rytuba, J.J., and Brown, G.E., “EXAFS study of mercury(Ⅱ) sorption to Fe- and Al-(hydr)oxides: Ⅱ. Effects of chloride and sulfate”, J. Colloid Interface Sci., Vol. 270, pp. 9-20, 2004.
Kim, C.S., Rytuba, J.J., and Brown, G.E., “EXAFS study of mercury(Ⅱ) sorption to Fe- and Al-(hydr)oxides: Ⅰ. Effects of pH”, J. Colloid Interface. Sci., Vol. 271, pp. 1-15, 2004.
Kong, M., Liu, Q., Zhu, B.H., Yang, J., Li, L., Zhou, Q., and Ren, S., “Synergy of KCl and Hgel on selective catalytic reduction of NO with NH3 over V2O5-WO3/TiO2 catalysts”, Chem. Eng. J., Vol. 264, pp. 815-823, 2015.
Korpiel, J.A., and Vidic, R.D, “Effect of sulfur impregnation method on activated carbon uptake of gas-phase mercury”, Environ. Sci. Technol., Vol. 31, pp. 2319-2325, 1997.
Kwon, S., Borquet, R.D., and Vidic, R.D., “Impact of surface heterogeneity on mercury uptake by carbonaceous sorbents under UHV and atmospheric pressure”, Environ. Sci. Technol., Vol. 36, pp. 4162-4169, 2002.
Lacava, A.V., Koss, V.A., and Wickens, D., “Non-Fickian adsorption rate behavior of some carbon molecular sieves”, Gas Sep. Purif., Vol. 3, pp. 180-186, 1989.
Lee, T.G., and Hyun, J.E., “Structural effect of the in situ generated titania on its ability to oxidize and capture the gas-phase elemental mercury”, Chemosphere, Vol. 62, pp. 26-33, 2006.
Lee, T.G., Biswas, P., and Hedrick, E., “Overall kinetics of heterogeneous elemental mercury reactions on TiO2 sorbent particles with UV irradiation”, Ind. Eng. Chem. Res., Vol. 43, pp. 1411-1417, 2004.
Lee, W.J., and Bae, G.W., “Removal of elemental mercury (Hg(0)) by nanosized V2O5/TiO2 catalysts”, Environ. Sci. Technol., Vol. 43, pp. 1522-1527, 2009.
Leytner, S., and Hupp, J.T., “Evaluation of the energetics of electron trap states at the nanocrystalline titanium dioxide aqueous solution interface via time-resolved photoacoustic spectroscopy”, Chem. Phys. Lett., Vol. 330, pp. 231-237, 2000.
Li, H.L., Li, Y., Wu, C.Y., and Zhang, J.Y., “Oxidation and capture of elemental mercury over SiO2-TiO2-V2O5 catalysts in simulated low-rank coal combustion flue gas”, Chem. Eng. J. Vol. 169, pp. 186-193, 2011.
Li, H.L., Wu, C.Y., Li, L.Q., Li, Y., Zhao, Y.C., and Zhang, J.Y., “Kinetic modeling of mercury oxidation by chlorine over CeO2-TiO2 catalysts”, Fuel, Vol. 113, pp. 726-732, 2013.
Li, H.L., Wu, C.Y., Li, Y., and Zhang, J.Y., “CeO2-TiO2 catalysts for catalytic oxidation of elemental mercury in low rank coal combustion flue gas”, Environ. Sci. Technol., Vol. 45, pp. 7394-7400, 2011.
Li, X.Z., Li, F.B., Yang, C.L., and Ge, W.K., “Photocatalytic activity of WOx-TiO2 under visible light irradiation”, J Photochem &Photobio. A: Chem., Vol. 141, pp. 209-217, 2001.
Li, Y., and Wu, C.Y., “Kinetic study for photocatalytic oxidation of elemental mercury on a SiO2-TiO2 nanocomposite”, Environ. Eng. Sci., Vol. 24, pp. 3-12, 2007.
Li, Y., Patrick, M., and Wu, C.Y., “Removal of elemental mercury from simulated coal-combustion flue gas using a SiO2-TiO2 nanocomposite”, Fuel Process. Technol., Vol. 8, pp. 567-573, 2008.
Li, Y.H., Lee, C.W., and Gullett, B.K., “Importance of activated carbon's oxygen surface functional groups on elemental mercury adsorption”, Fuel, Vol. 82, pp. 451-457, 2003.
Liu, Y., Wang, Y.J., Wang, H.Q., and Wu, Z.B., “Catalytic oxidation of gas-phase mercury over Co/TiO2 catalysts prepared by sol-gel method”, Catal. Commun., Vol. 12, pp. 1291-1294, 2011.
Lorret, O., Francova, D., Waldner, G., and Stelzer, N., “W-doped titania nanoparticles for UV and visible-light photocatalytic reactions”, Appl. Catal. B. Environ., Vol. 91, pp. 39-46, 2009.
Mardon, S.M., and Hower, J.C., “Impact of coal properties on coal combustion by-product quality: examples from a Kentucky power plant”, Int. J. Coal Geol., Vol. 59, pp. 153-169, 2004.
Martha, S., Das, D.P., Biswal, N., and Parida, K.M., “Facile synthesis of visible light responsive V2O5/N,S-TiO2 composite photocatalyst: enhanced hydrogen production and phenol degradation”, J. Mater. Chem., Vol. 22, pp. 10695-10703, 2012.
Morishita, T., Hibara, A., Sawada, T., and Tsuyumoto, S., “Ultrafast charge transfer at TiO2/SCN- (aq) interfaces investigated by femtosecond transient feflecting grating method”, J. Phys. Chem. B, Vol. 103, pp. 5984-5987, 1999.
Nakaltira, A., Kato, W., and Tamai, M., “Synthesis of nanotube from a layered H2Ti4O9.H2O in a hydrothermal treatment using various titania sources”, J. Mater. Sci., Vol. 39, pp. 4239-4245, 2004.
Negreira, S.A., and Wilcox, J., “Role of WO3 in the Hg oxidation across the V2O5-WO3-TiO2 SCR catalyst: A DFT study”, J. Phys. Chem., Vol. 117, pp. 24397-24336, 2013.
Niksa, S., and Fujiwara, N., “A predictive mechanism for mercury oxidation on selective catalytic reduction catalysts under coal-derived flue gas”, J. Air Waste Manag. Assoc., Vol. 55, pp. 1866-1875, 2005.
Obee, N.T., and Hay, O.S., “Effects of moisture and temperature on the photo-oxidation of ethylene on titania”, Environ. Sci. Technol., Vol. 31, pp. 2034-2038, 1997.
Ohtani, B., Ogawa, Y., and Nishimoto, S.I., “Photocatalytic activity of amorphous-anatase mixture of titanium(IV) oxide particles suspended in aqueous solutions”, J. Phys. Chem. B., Vol. 101, pp. 3746-3752, 1997.
Pavlish, J.H., Sondreal, E.A., Mann, M.D., Olson, E.S., Galbreath, K.C., Laudal, D.L., and Benson, S.A., “Status review of mercury control options for coal-fired power plants”, Fuel Process. Technol., Vol. 82, pp. 89-165, 2003.
Peiro, A.M., Colombo, C., Doyle, G., Nelson, J., Mills, A., and Durrant, J.R., “Photochemical reduction of oxygen adsorbed to nanocrystalline TiO2 films: A transient absorption and oxygen scavenging study of different TiO2 preparations”, J. Phys. Chem. B., Vol. 23, pp. 23255-23263, 2006.
Porter, J.F., Li, Y.G., and Chan, C.K., “The effect of calcination on the microstructural characteristics and photoreactivity of Degussa P-25 TiO2”, J. Mater. Sci., Vol. 34, pp. 1765-1774, 1999.
Presto, A.A., Granite, E.J., and Karash, A., “A kinetic approach to the catalytic oxidation of mercury in flue gas”, Energy Fuel, Vol. 20, pp. 1941-1945, 2006.
Provisions for Attainment and Maintenance of National Ambient Air Quality standards, in 101st Congress, U.S.A.. pp. 2353-3358, 1990.
Querol, Z., Fernandez-Turiel, J., and Lopez-Sole, R.A., “Trace elements in coal and their behavior during combustion in a large power station”, Fuel, Vol. 74, pp. 331-343, 1995.
Rabani, J., Yamashita, K., Ushida, K., Stark, J., and Kira, A., “Fundamental reactions in illuminated titanium dioxide nanocrystallite layers studied by pulsed laser”, J. Phys. Chem. B., Vol. 102, pp. 1689-1695, 1998.
Rajeshwar, R., Chenthamarakshan, C.R., Ming, Y., and Sun, W.J., “Cathodic photoprocesses on titania films and in aqueous suspensions”, J. Electroanal. Chem., Vol. 538, pp. 173-182, 2002.
Reddy, B.M., Ganesh, I., and Reddy, E.P., “Study of dispersion and thermal stability of V2O5/TiO2-SiO2 catalysts by XPS and other techniques”, J. Phys. Chem. B., Vol. 101, pp. 1769-1774, 1997.
Rodella, C.B., Nascente, P.A.P., Mastelaro, V.R., Zucchi, M.R., Franco, W.A., Magon, C.J., Donoso, P., and Florentino, A.O., “Chemical and structural characterization of V2O5/TiO2 catalysts”, J. Vac. Sci. Technol., Vol. 19, pp. 1158-1163, 2001.
Ruthven, D.M., Principles of adsorption and adsorption processes, John Wiley & Sons Inc., New York, pp. 213-214, 1984.
Salmi, M., Tkachenko, N., Vehmanen, V., Lamminmak, R., Karvinen, S., and Lemmetyinen, H., “The effect of calcination on photocatalytic activity of TiO2 particles: femtosecond study”, J. Photochem. Photobio. A. Chem., Vol. 163, pp. 395-401, 2004.
Schuster, E., “The behavior of mercury in the soil with special emphasis on complexation and adsorption processes-A review of the literature”, Water, Air & Soil Pollu., Vol. 56, pp. 667-680, 1991.
Senior, F., Constance, L., Sarofim, A., and Zeng, T.F., “Gas-phase transformation of mercury in coal-fired power plants”, Fuel Process. Technol., Vol. 63, pp. 197-213, 2010.
Skodras, G., Diamantopoulou, I., Pantolenotos, G., and Sakellaropoulos, G.P., “Kinetic studies of elemental mercury adsorption in activated carbon fixed bed reactor”, J. Hazard. Mater., Vol. 158, pp. 1-13, 2008.
Song, M.Y., Park, Y.K., and Jurng, J.S., “Direct coating of V2O5/TiO2 nanoparticles onto glass beads by chemical vapor deposition”, Power Technol., Vol. 231, pp. 135-140, 2012.
Szczepankiewicz, S.H., Moss, J.A., and Hoffmann, M.R., “Slow surface charge trapping kinetics on irradiated TiO2”, J. Phys. Chem. B., Vol. 106, pp. 2922-2927, 2002.
Tang, H., Berger, H., Schmid, P.E., and Levy, F., “Photoluminescence in TiO2 anatase single crystals”, Solid State Commun., Vol. 87, pp. 847-850, 1993.
Tang, H., Prasad, K., Sanjines, R., Schmid, P.E., and Levy, E., “Electrical and optical properties of TiO2 anatase thin films”, J. Appl. Phys., Vol. 75, pp. 2042-2047, 1994.
Tokunaga, T., Kawamoto, T., Tanaka, K., Nakamura, N., Sasaki, K., Kuroda, K., and Yamamoto, T., “Growth and structure analysis of tungsten oxide nanorods using environmental TEM”, Nanoscale Res. Lett., Vol. 7, pp. 85-91, 2012.
Toole-O’Neil, B., Tewalt, S.J., Finkelman, R.B., and Akers, D.J., “Mercury concentration in coal-unraveling the puzzle”, Fuel, Vol. 78, pp. 47-54, 1999.
Tsai, C.Y., Hsi, H.C., and Kuo, T.H., “Preparation of Cu-doped TiO2 photocatalyst with thermal plasma torch for low-concentration mercury removal”, Aerosol Air Qual. Res., Vol. 13, pp. 639-648, 2013.
Tsai, C.Y., Kuo, T.H., and Hsi, H.C., “Fabrication of Al-doped TiO2 visible-light photocatalyst for low concentration mercury removal”, Inter. J. Photoenergy, doi: 10.1155/2012/874509, 2012.
U.S. EPA. A Study of Hazardous Air Pollutant Emissions from Electric Utility Steam Generating Units: Final Report to Congress.
UNEP, Global Mercury Assessment, 2013.
Wan, Q., Duan, L., Li, J., Chen, L., He, K., and Hao, J., “Deactivation performance and mechanism of alkali(earth) metals on V2O5-WO3/TiO2 catalyst for oxidation of gaseous elemental mercury in simulated coal-fired flue gas”, Catal. Today, Vol. 175, pp. 189-195, 2011.
Wang, H.Q., Zhou, S.Y., and Xiao, L., “Titania-nanotubes-a unique photocatalysit and adsorbent for elemental mercury removal”, Catal. Today, Vol. 175, pp. 202-209, 2011.
Wang, J., Ouyang, X.G., and Wu, L., “Atmospheric mercury emission from coal fired power plants in Northern China”, Fresenius Environ. Bull., Vol. 23, pp. 875-886, 2014.
Wang, S.X, Zhang, L., Wu, Q.R., Wang, F.Y., and Hao, J.M., “A review of atmospheric mercury emissions, pollution and control in China”, Front. Environ. Sci. Eng., Vol. 8, pp. 631-649, 2014.
Wang, S.X., Zhang, L., Zhao, B., Meng, Y., and Hao, J.M., “Mitigation potential of mercury emissions from coal-fired power plants in China”, Energy Fuels, Vol. 26, pp. 4635-4642, 2012.
Wang, X.Q., Lasse, S., Su, R., Wendt, S.F., Hald, P., Mamakel, A., Yang, C.X., Huang, Y.D., Iversen, B.B., and Besenbacher, F., “The influence of crystallite size and crystallinity of anatase nanoparticles on the photo-degradation of phenol”, J. Catal., Vol. 310, pp. 145-156, 2014.
Wei, Y.J., Ryu, C.W., and Kim, K.B., “Improvement in electrochemical performance of V2O5 by Cu doping”, J. Power Sources, Vol. 165, pp. 386-392, 2007.
Wilcox, J., “A kinetic investigation of high-temperature mercury oxidation by chlorine”, J. Phys. Chem. A, Vol. 113, pp. 6633-6639, 2009.
Wilcox, J., “A kinetic investigation of unimolecular reactions involving trace metals at post-combustion flue gas conditions”, Environ. Chem., Vol. 8, pp. 207-212, 2011.
Wu, C.Y., Lee, T.G., and Tyree, G., “Capture of mercury in combustion systems by in situ-generated titania particles wiht UV irradiation”, J. Environ. Eng. Sci., Vol. 15, pp. 137-146, 1998.
Wu, J., Li, C.E., and Zhao, X.Y., “Photocatalytic oxidation of gas-phase Hg0 by CuO/TiO2”, Appl. Catal. B: Environ., Vol. 176, pp. 559-569, 2015.
Wu, W.C., Chuang, C.C., and Lin, J.L., “Bonding geometry and reactivity of methoxy and ethoxy groups adsorbed on powdered TiO2”, J. Phys. Chem. B., Vol. 104, pp. 8719-8724, 2000.
Yan, N.Q., Chen, W.M., Chen, J., Qu, Z., Chen, W.M., Zhang, W.Q., Li, K.H., Liu,P., and Jia, J.P., “Significance of RuO2 modified SCR catalyst for elemental mercury oxidation in coal fired flue gas”, Environ. Sci. Technol., Vol. 45, pp. 5725-5730, 2011.
Yang, H.M., Liu, H., and Wu, H., “Photochemical removal of gaseous elemental mercury in a dielectric barrier discharge plasma reactor”, Plasma Chem. Plasma Process., Vol. 32, pp. 969-977, 2012.
Yu, J.G., Yu, H.G., Cheng, B., Zhao, X.J., Yu, C., and Ho, W.K., “The effect of calcination temperature on the surface microstructure and photocatalytic activity of TiO2 thin films prepared by liquid phase deposition”, J. Phys. Chem. B., Vol. 107, pp. 13871-13879, 2003.
Yu, L.Y., Yin, L.B., Xu, Q.S., and Xiong, Y.H., “Effects of different kinds of coal on the speciation and distribution of mercury in flue gases”, J. Energy Inst., Vol. 88, pp. 136-142, 2015.
Yuan, Y., Zhao, Y.C., Li, H.L., Li, Y., Gao, X., Zheng, C.G., and Zhang, J.Y., “Electrospun metal oxide-TiO2 nanofibers for elemental mercury removal from flue gas”, J. Hazard. Mater., Vol. 227, pp. 427-435, 2012.
Yudovich, Y.E., and Ketris, M.P., “Mercury in coal: a review Part 1. Geochemistry”, Int. J. Coal Geol., Vol. 62, pp. 107-134, 2005.
Zhang, Z., and Gao, L., “Preparation of nanosized titania by hydrolysis of alkoxide titanium in micelles”, Mater. Res. Bull., Vol. 37, pp. 1659-1666, 2002.
Zhao, S.J., Qu, Z., and Yan, N.Q., “Ag-modified AgI-TiO2 as an excellent and durable catalyst for catalytic oxidation of elemental mercury”, RSC Adv., Vol. 5, pp. 15634-15640, 2015.
Zhou, J.S., Hou, W.H., Qi, P., Gao, X., Luo, Z.Y., and Cen, K.F., “CeO2-TiO2 sorbents for the removal of elemental mercury from syngas”, Environ. Sci. Technol., Vol. 47, pp. 10056-10062, 2013.
Zhuang, Y., Laumb, J., Liggett, R., Holmes, M., and Pavlish, J., “Impacts of acid gases on mercury oxidation across SCR catalyst”, Fuel Process. Technol., Vol. 88, pp. 929-934, 2007.
陳怡伶,固定污染源戴奧辛及重金屬排放調查及管制計畫,行政院環境保護署研究報告,2013。
杨珊、张军营、袁媛。纳米TiO2-硅酸铝纤维的制备及光催化脱汞研究, 工程热物理学报, 32:152-156, 2011。
杨珊、张军营、赵永椿。纳米TiO2-活性炭的制备及光催化脱汞初探, 工程热物理学报,31: 339-342,2010。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code