Responsive image
博碩士論文 etd-0223115-120640 詳細資訊
Title page for etd-0223115-120640
論文名稱
Title
用於可穿戴壓電式足部平衡及應力量測系統之電路及方法
Circuits and methods towards a wearable piezoelectric foot balance and strain measurement system
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
72
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-05-27
繳交日期
Date of Submission
2016-06-03
關鍵字
Keywords
數位自我校正、快閃記憶體、足部壓力、壓電材料、可穿戴式電路
Wearable circuits, Piezoelectric, Foot pressure, Floating gate memory, Digital self-calibration
統計
Statistics
本論文已被瀏覽 5703 次,被下載 27
The thesis/dissertation has been browsed 5703 times, has been downloaded 27 times.
中文摘要
此篇論文關注在用來紀錄足部壓力平衡之設置於鞋子上的可穿戴式應力監控的設計、實現、與測試。三個壓電感應器被用來轉換應力至電量資訊,其資訊被捕捉並顯示。三通道壓力資訊被顯示及儲存於透過LabVEW上開發的使用者介面,提供了個別的感測器數據和一個可以快速觀察負載平衡的3D 平面。即時量測系統包含了數位自我校正並能對感應器等效電容的差異做出補償。除此之外,也討論到用來儲存步伐能量結果之客製浮動閘極記憶體之進一步檢驗。浮動閘極記憶體用作類比電壓記錄器來提供有關累積壓力資料的資訊,其資訊則是透過擺放於後方的壓電感應器感測所得到。此原型系統已成功的被測試並有著21 mW的功率消耗(包含微控制器),提供了至90 kHz的量測頻寬(更低的頻寬已足夠用於實際紀錄且控制器的功耗可以進一步減少),8位元的解析度,大約花費了新台幣三百元用於購買電子元件。進一步的量測結果,確認了浮動閘極記憶體成功的捕捉了重複的應力施與在感應器上的能量潮流。
Abstract
This thesis is concerned with the design, implementation and testing of a shoe-mounted wearable strain monitor for the recording of foot pressure balance. Three piezo-electric transducers are used to convert strain to electric quantities which are acquired and displayed. The three channel pressure information is displayed and saved on the user interface of software developed in LabVIEW giving the individual sensor readings and a 3D plane for the quick observation of load balance. The real-time measurement system includes digital self-calibration and allows compensating for differences in sensor capacitances. Furthermore, the use of custom-designed floating gate memory (FGM) for storing step energy results for later examination is discussed. The FGM serves as an analog voltage recorder to provide information about the accumulated pressure data sensed from a piezoelectric sensor placed at the back of heel. The prototype system is successfully tested and consumes 21 mW power (including a microcontroller) and provides up to 90 kHz measurement bandwidth (much lower bandwidth is sufficient for practical recording and the controller power may then be reduced), 8 bit resolution and costs about 300 NTD for the commercial components in the setup. Further measured results confirm that the FGM successfully captures the energy trend when repetitive strain is applied to the sensor.
目次 Table of Contents
審定書 i
摘要 ii
Abstract iii
Contents v
List of Figures viii
List of Tables xii
Chapter 1 1
1.1 Motivation 1
1.2 Target Specification 3
1.3 Contributions of This Thesis 4
Chapter 2 5
2.1 Flexible Force Sensors 5
2.1.1 Resistive Sensor 5
2.1.2 Piezoelectric Sensor 7
2.2 System Hardware Structure 10
2.3 Sensor Placement 12
2.4 Three Channel Shoe Mounted System 14
2.5 Front-end Circuit 15
2.6 Calibration System 20
2.7 Display 24
2.8 Floating Gate Memory 26
Chapter 3 31
3.1 Testing Environment 31
3.2 Front-end Circuit Measurement 32
3.2.1 Charge Amplifier Measurement 33
3.2.2 Initial Calibration Targets 35
3.3 User Interface 38
3.3.1 The 3D Plane 39
3.3.2 Calibration Test Using MPLAB IDE Debug Interface 41
3.3.3 Foot Step Measurement 43
3.4 Floating Gate Memory Measurement Setup 45
3.4.1 Measurement of Floating Gate Memory with Piezoelectric Sensor Input 49
3.5 Discussion 52
Chapter 4 54
4.1 Conclusions 54
4.2 Future work 54
References 56
參考文獻 References
[1] Population Division of the Department of Economic and Social Affairs of the United Nations Secretariat, World Population Prospects: The 2006 Revision and World Urbanization Prospects: The 2005 Revision. Available: http://wisdom.unu.edu/en/ageing-societies/
[2] Pablo Picazo-Sanchez, Juan E. Tapiador, Pedro Peris-Lopez and Guillermo Suarez-Tangil, “Secure Publish-Subscribe Protocols for Heterogeneous Medical Wireless Body Area Networks,” Sensors 2014, 14, 22619-22642.
[3] Erik K. Antonsson and Robert W. Mann, “The Frequency Content of Gait,” J. Biomech, vol. 18, no. 1, pp.39-47, 1985.
[4] Interlink Electronics, FSR® Integration Guide. [Online]. Available: https://www.pololu.com/file/0J749/FSR400-Series-Integration-Guide-13.pdf
[5] Tekscan, Load Cell vs. Force Sensor.[Online]. Available: https://www.tekscan.com/resources/ebook/load-cell-vs-force-sensor
[6] Measurement Specialties. LDT with Crimps Vibration Sensor/Switch. [Online]. Available: http://www.meas-spec.com/downloads/LDT_Series.pdf
[7] Measurement Specialties, Inc., Piezo Film Sensors Technical Manual, [Online]. Available: www.meas-spec.com
[8] Adam M. Howell, Toshiki Kobayashi, Heather A. Hayes, K. B. Foreman, and Stacy J. M. Bamberg, “Kinetic Gait Analysis Using a Low-Cost Insole,” IEEE Transactions on Biomedical Engineering, vol. 60, no. 12, December 2013.
[9] Guy Kulwanoski, and Jeff Schnellinger, “Acceleration/ Vibration the Principles of Piezoelectric Accelerometers,” February 2004 [Online]. Available: http://www.sensorsmag.com/sensors/acceleration-vibration/the-principles-piezoelectric-accelerometers-1022
[10] Steven J. Rapp, A Comprehensive Simulation Model for Floating Gate Transistors. [Online]. Available: http://wvuscholar.wvu.edu:8881/R/?func=dbin-jump-full&object_id=24227
[11] P. Pavan, L. Larcher, and A. Marmiroli, “Floating Gate Devices: Operation and Compact Modeling,” Kluwer Academic Publishers New York, Boston, Dordrecht, London, Moscow.
[12] Thomas W. Kernozek, Charles N. Vannatta, Naghmeh Gheidi, Sydnie Kraus, and Naoko Aminaka, “Plantar loading changes with alterations in foot strike patterns during a single session in habitual rear foot strike female runners,” Physical Therapy in Sport, vol. 18, pp.32-37, March 2016.
[13] Olaf Machul, Dirk Hammerschmidt, Werner Brockherde, Bedrich J. Hosticka, Ernst Obermeier, and Paul Krause, “A Smart Pressure Transducer with On-Chip Readout, Calibration and Nonlinear Temperature Compensation Based on Spline-Functions,” in Proc. IEEE Int. Solid-State Circuits Conf., San Francisco, CA, Feb. 1997, pp. 198-199, 456.
[14] Simona Crea, Marco Donati, Stefano M. M. De Rossi, Calogero M. Oddo, and Nicola Vitiello, “A Wireless Flexible Sensorized Insole for Gait Analysis,” Sensors 2014, 14, 1073-1093.
[15] Rui-Hsiu Yu, A Piezoelectric Energy Harvester and MOS Floating Gate Memory towards Wearable Strain Metering, (Master dissertation), 2015. Retrieved from http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search-c/view_etd?URN=etd-0913115-134153
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code