Responsive image
博碩士論文 etd-0224112-154839 詳細資訊
Title page for etd-0224112-154839
論文名稱
Title
同步電混凝/電過濾程序輔助奈米Fe3O4/S2O82-氧化去除水溶液中之環境荷爾蒙及藥物
Removal of Environmental Hormones and Pharmaceuticals from Aqueous Solution via Nano-Fe3O4/S2O82- Oxidation Assisted by the Simultaneous Electrocoagulation/Electrofiltration Process
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
216
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-02-13
繳交日期
Date of Submission
2012-02-24
關鍵字
Keywords
電過濾、電混凝、過硫酸鈉、奈米Fe3O4、藥物、環境荷爾蒙、管狀複合膜
Tubular composite membrane, Electrocoagulation, Nano-Fe3O4, Pharmaceuticals, Environmental hormones, Sodium persulfate, Electrofiltration
統計
Statistics
本論文已被瀏覽 5684 次,被下載 392
The thesis/dissertation has been browsed 5684 times, has been downloaded 392 times.
中文摘要
在全球對水資源的需求及使用量增加下,水回收再利用已因應成為潮流,因此,人類對於回收水水質的要求也相對地提高,但根據報導,不少環境荷爾蒙與藥物及個人保健用品等新興污染物卻在不同的水體被檢測出,雖然其濃度僅介於ng/L至μg/L濃度等級之間,但環境荷爾蒙與藥物及個人保健用品對於環境及人體健康可能造成之危害問題已逐漸受到重視。此外,許多奈米材料之廣泛應用已經使得奈米級污染物亦出現在不同之水體環境中,因此,如何有效地分離或回收這些使用過之奈米材料,以降低其於環境中之潛在危害性,將是一個相當重要的議題。
本研究旨在先評估利用奈米Fe3O4/S2O82-程序氧化關切之環境荷爾蒙(鄰苯二甲酸二(2-乙基己基)酯(DEHP)與全氟辛烷磺酸(PFOS))及藥物(紅黴素(ERY)與磺胺甲噁唑(SMX))效能,待得出最佳試驗條件後,接著,再評估利用管狀TiO2/Al2O3無機複合膜結合同步電混凝/電過濾(EC/EF)程序進一步去除前述氧化處理後殘餘之環境荷爾蒙、藥物及使用過後的奈米Fe3O4之效能。
首先,本研究利用化學共沉澱法自行製備奈米Fe3O4(並經X-光繞射分析等加以確認),接著,添加對具環境友善性的可溶性澱粉進行分散性試驗,結果顯示於製備過程中添加3 wt%的可溶性澱粉可有效分散奈米Fe3O4,並達到良好的懸浮效果。
接著,依照不同劑量比,將利用製備完成奈米Fe3O4懸浮液與過硫酸鈉溶液配製成1:2.5、1:5及1:10的奈米Fe3O4/S2O82-懸浮液,再於燒杯中進行氧化去除模擬水樣中之DEHP、PFOS、ERY及SMX的批次試驗。於高濃度(DEHP為38 mg/L,PFOS、ERY及SMX則為10 mg/L)關切的污染物組別,選定最佳劑量比1:10,上述關切的污染物其去除效率皆可達98%以上。之後,再將最佳劑量比1:10代入低濃度(4種標的污染物各為10 μg/L)關切的污染物組別,結果顯示除ERY之外,其餘3種關切的污染物其去除效率皆有下降的趨勢,去除效率為78-91%;而於關切的污染物混合組別發現環境荷爾蒙之殘餘濃度較高,其中,DEHP之去除效率降至70%左右,顯示藥物較環境荷爾蒙容易去除。
本研究亦針對利用奈米Fe3O4/S2O82-程序降解水中之高濃度DEHP、PFOS、ERY及SMX之中間產物加以檢測,發現其主要降解產物皆與文獻相符合,除DEHP之外,多以後端降解產物為主,顯示奈米Fe3O4/S2O82-程序降解環境荷爾蒙及藥物的效率快速。
本研究進一步評估利用同步電混凝/電過濾程序輔助奈米Fe3O4/S2O82-程序去除水中之低濃度DEHP、PFOS、ERY、SMX及奈米Fe3O4之效能。在利用鋁電極、電場強度60 V/cm、過濾壓差98 kPa及掃流速度3.33 cm/s的條件下,可提昇DEHP、PFOS及SMX之去除效率達95%、99%及99%;至於水樣中之混合關切污染物在利用鋁電極、電場強度60 V/cm、過濾壓差98 kPa條件及掃流速度3.33 cm/s下,各種關切的污染物其去除效率介於85-99%之間。本研究另發現,所採用之同步電混凝/電過濾處理模組可有效將奈米Fe3O4/S2O82-程序中之奈米Fe3O4完全阻攔下來,使處理水沒有奈米級污染物之虞。處理後的濾液品質良好,僅需透過簡單之pH值調整,即可回收再利用於冷卻水塔。
Abstract
Water recycling has become a global trend because of water scarcity and increased demand of water supply. Therefore, attentions to the improvement of reclaimed water quality have been paid. In the past decade various environmental hormones and PPCPs (pharmaceuticals and personal care products) have been detected in different aquatic environments. Even though their concentrations are in the range of ng/L to μg/L, these emerging contaminants might cause harm to human health and the environment. Nanoscale contaminants are another type of emerging contaminants cannot be neglected because many nanomaterials have been used in household goods of our daily lives. Thus, how to effectively separate and/or recover those nanomaterials from aqueous solution to reduce their potential hazards is an important issue
The first objective of this study was to assess the efficiency of nano-Fe3O4/S2O82- oxidation against selected environmental hormones (i.e., di(2-ethylhexyl)phthalate (DEHP) and perfluorooctane sulphonates (PFOS)) and pharmaceuticals (i.e., erythromycin (ERY) and sulfamethoxazole (SMX)) in aqueous solution. The optimal operating conditions obtained from the above-indicated oxidation process were then transferred to a simultaneous electrocoagulation and electrofiltration (EC/EF) treatment module into which a tubular TiO2/Al2O3 composite membrane was incorporated. The purpose of this practice was to evaluate whether the EC/EF process could further enhance the removal of target contaminants.
In this work nanoscale magnetite (nano-Fe3O4) used for activation of S2O82- oxidation was prepared by chemical coprecipitation. Then, X-ray powder diffractometry was used to confirm the crystal structure of the prepared particles as magnetite. The employment of 3 wt% soluble starch was found to be sufficient to stabilize nano-Fe3O4 for later uses. Further, slurries of nano-Fe3O4 and S2O82- (sodium persulfate) were prepared with three dosage ratios, namely 1:2.5, 1:5 and 1:10.
Nano-Fe3O4/S2O82- slurries thus prepared were used for evaluating their efficiencies in removing target contaminants (i.e., DEHP, PFOS, ERY, and SMX) of two concentration levels. In this study the high concentration level referred to 38 mg/L for DEHP and 10 mg/L each for the rest of target contaminants, whereas 10 μg/L as the low concentration level for each of target contaminants. Batch experiments of nano-Fe3O4/S2O82- oxidation against target contaminants were first carried out in glass beakers. In the case of high concentration level with a nano-Fe3O4-to-S2O82- dosage ratio of 1:10, the respective removal efficiencies for all target contaminants were greater than 98%. Using the same dosage ratio for the case of low concentration level, however, the respective removal efficiencies for all target contaminants decreased to 78-91% except for ERY. When all target contaminants of low concentration level co-existed in the reaction vessel, the residual concentrations of environmental hormones were found to be greater than that of pharmaceuticals. Under the circumstances, the removal efficiency of DEHP dropped to 70% or so.
The reaction pathways of nano-Fe3O4/S2O82- oxidation against each of target contaminants with a high concentration level were also investigated. The degradation intermediates detected for all target contaminants were all in line with the literature. Besides, the degradation intermediates were all close to their respective end products except those originated from DEHP. In other words, nano-Fe3O4/S2O82- per se had a phenomenal oxidation rate against each target contaminant.
The performance of EC/EF-assisted nano-Fe3O4/S2O82- oxidation against target contaminants of low concentration level was also evaluated in this study. In each test every contaminated aqueous solution was physically preconditioned within the EC/EF treatment module for 20 min prior to the application of an electric field to enact electrocoagulation and electrofiltration. The optimal operating conditions obtained were given as follows: aluminum anode, electric field strength of 60 V/cm, transmembrane pressure of 98 kPa, and crossflow velocity of 3.33 cm/s. Under such conditions, the removal efficiencies for DEHP, PFOS, ERY, and SMX were determined to be 95%, 99%, 100%, and 99%, respectively. In the case of mixed environmental hormones and pharmaceuticals, the respective removal efficiencies slightly decreased to 85-99%. It is evident that the coupling of the EC/EF process with nano-Fe3O4/S2O82- oxidation yielded a substantial removal increase for selected target contaminants. Additionally, in all tests of EC/EF-assisted nano-Fe3O4/S2O82- oxidation against target contaminants, no residual nano-Fe3O4 was found in permeate. After a simple adjustment of pH, permeate thus treated would be ready for reuse in cooling towers.
目次 Table of Contents
目錄
聲明切結書...............................................................................i
謝誌..........................................................................................ii
摘要.........................................................................................iv
Abstract.................................................................................vii
目錄..........................................................................................x
圖目錄...................................................................................xvi
表目錄..................................................................................xxii
照片目錄..............................................................................xxvi
第一章 前言.........................................................................1
1.1 研究緣起.........................................................................1
1.2 研究目的.........................................................................4
1.3 研究架構.........................................................................5
第二章 文獻回顧
2.1 環境荷爾蒙與藥物及個人保健用品.............................7
2.1.1 環境荷爾蒙與藥物及個人保健用品之特性與危害...........................................................................................10
2.1.2 鄰苯二甲酸二(2-乙基己基)酯.............................11
2.1.3 全氟辛烷磺酸.......................................................12
2.1.4 紅黴素...................................................................13
2.1.5 磺胺甲噁唑...........................................................14
2.2 高級氧化程序...............................................................15
2.2.1 高級氧化程序處理環境荷爾蒙與藥物及個人保健
用品之發展與應用...............................................................17
2.2.2 過硫酸鹽之反應機制...........................................20
2.3 奈米科技與發展...........................................................23
2.3.1 四氧化三鐵...........................................................24
2.3.2 奈米四氧化三鐵之合成.......................................25
2.3.3 奈米四氧化三鐵之應用.......................................26
2.4 薄膜單元.......................................................................28
2.4.1 薄膜定義與特性...................................................28
2.4.2 薄膜分離程序.......................................................28
2.4.3 薄膜組件形式.......................................................30
2.4.4 無機膜介紹...........................................................32
2.5 薄膜程序過濾方式.......................................................33
2.5.1 垂直過濾...............................................................33
2.5.2 掃流過濾...............................................................34
2.6 電混凝/電過濾程序......................................................35
2.6.1 電混凝...................................................................35
2.6.2 掃流電過濾...........................................................39
2.6.3 同步電混凝/電過濾程序之相關研究..................42
2.7 環境荷爾蒙與藥物及個人保健用品之降解機制.......44
2.7.1 鄰苯二甲酸二(2-乙基己基)酯之降解機制.........44
2.7.2 全氟辛烷磺酸之降解機制...................................46
2.7.3 紅黴素之降解機制...............................................48
2.7.4 磺胺甲噁唑之降解機制.......................................50
第三章 實驗材料與方法...................................................52
3.1 實驗材料.......................................................................52
3.2 實驗設驗.......................................................................55
3.2.1 儀器設備...............................................................55
3.2.2 同步電混凝/電過濾處理系統..............................58
3.3 實驗方法.......................................................................59
3.3.1 奈米Fe3O4之製備...............................................59
3.3.2 奈米Fe3O4之顯微結構觀測與結晶相分析.......59
3.3.3 利用添加可溶性澱粉製備奈米Fe3O4懸浮液...60
3.3.4 配製過硫酸鹽(S2O82-)溶液及奈米Fe3O4/S2O82-溶液............................................................61
3.3.5 配製含環境荷爾蒙及藥物之模擬水樣...............62
3.3.6 奈米Fe3O4/S2O82-氧化處理含環境荷爾蒙及藥物之模擬水樣其批次試.......................................................62
3.3.7 管狀TiO2/Al2O3無機複合膜製備......................65
3.3.8 管狀TiO2/Al2O3無機複合膜之顯微結構觀測與薄膜孔徑分佈定...................................................................66
3.3.9 同步電混凝/電過濾程序輔助奈米Fe3O4/S2O82-氧化處理系統之操作................................67
3.3.10 水樣及濾液品質檢驗方法...................................70
第四章 結果與討論...........................................................74
4.1 奈米Fe3O4之基本特性分析.......................................74
4.1.1 場發射型掃描式電子顯微鏡(FE-SEM)..............74
4.1.2 環境掃描式電子顯微鏡-能量分散光譜儀
(ESEM-EDS)分析................................................................76
4.1.3 X-光繞射儀(XRD)................................................77
4.2 利用可溶性澱粉製備奈米級Fe3O4懸浮液之懸浮性探討.......................................................................................78
4.3 奈米Fe3O4/S2O82-氧化處理含環境荷爾蒙及藥物之模擬水樣其批次試驗之成效探討.......................................83
4.3.1 奈米Fe3O4/S2O82-氧化處理含高濃度環境荷爾蒙及藥物之模擬水樣其批次試驗之成效探討...................83
4.3.2 奈米Fe3O4/S2O82-氧化處理含低濃度環境荷爾蒙及藥物之模擬水樣其批次試驗之成效探.......................88
4.4 奈米Fe3O4/S2O82-氧化降解水溶液中之環境荷爾蒙及藥物其降解產物及路徑...................................................96
4.4.1 鄰苯二甲酸二(2-乙基己基)酯降解產物及路徑.96
4.4.2 全氟辛烷磺酸降解產物及路徑.........................100
4.4.3 紅黴素降解產物及路徑.....................................104
4.4.4 磺胺甲噁唑降解產物及路徑.............................108
4.5 管狀TiO2/Al2O3無機複合膜之特性分析................112
4.5.1 管狀TiO2/Al2O3無機複合膜表面與截面顯微結構.........................................................................................112
4.5.2 管狀TiO2/Al2O3無機複合膜孔徑分布............114
4.6 同步電混凝/電過濾輔助奈米Fe3O4/S2O82-氧化處理水溶液中之環境荷爾蒙及藥物其整體成效.................116
4.6.1 陽極材質對於濾液通量及濾液品質之影響.....116
4.6.2 電場強度對於濾液通量及濾液品質之影響.....120
4.6.3 過濾壓差對於濾液通量及濾液品質之影響.....128
4.6.4 最佳操作條件之處理成效.................................137
4.6.5 同步電混凝/電過濾程序輔助奈米Fe3O4/S2O82-氧化處理水溶液中之環境荷爾蒙及藥物其濾液回收再利用評估.........................................................145
4.7 操作費用評估.............................................................148
第五章 結論與建議.........................................................151
5.1 結論.............................................................................151
5.2 建議.............................................................................154
參考文獻.........................................................................................155
附表.....................................................................................182
碩士在學期間發表之學術論文.........................................188
 
圖目錄
圖1-1研究架構圖...................................................................6
圖2-1薄膜孔徑與其分離程序之示意圖.............................29
圖2-2垂直過濾示意圖.........................................................33
圖2-3掃流過濾示意圖.........................................................34
圖2-4膠體粒子懸浮於水溶液中所形成之電雙層結構.....36
圖2-5 DLVO理論之高濃度電解質下的位能曲線圖.........37
圖2-6掃流電過濾中懸浮微粒受力狀況.............................39
圖2-7鄰苯二甲酸二(2-乙基已基)酯降解反應產物...........45
圖2-8紅黴素降解反應路徑.................................................49
圖2-9利用太陽光-Fenton法氧化降解水溶液中磺胺甲噁唑之反應路徑...........................................................................51
圖3-1同步電混凝/電過濾處理系統示意圖........................58
圖3-2同步電混凝/電過濾程序輔助奈米Fe3O4/S2O82-氧化處理水溶液中之環境荷爾蒙及藥物其系統圖...............68
圖3-3樣品前處理流程圖.....................................................70
圖4-1奈米Fe3O4之ESEM-EDS分析圖............................76
圖4-2奈米Fe3O4之XRD分析圖譜....................................77
圖4-3奈米Fe3O4懸浮液(添加3.0 wt% SS)之粒徑分析(靜置0 h)....................................................................................82
圖4-4奈米Fe3O4懸浮液(添加3.0 wt% SS)之粒徑分析(靜置24 h)..................................................................................82
圖4-5利用奈米Fe3O4/S2O82-程序於燒杯中氧化處理含高濃度鄰苯二甲酸二(2-乙基己基)酯模擬水樣之其殘留濃度(反應時間8 h)...................................................................85
圖4-6利用奈米Fe3O4/S2O82-程序於燒杯中氧化處理含高濃度全氟辛烷磺酸之模擬水樣其殘留濃度(反應時間8 h)...........................................................................................85
圖4-7利用奈米Fe3O4/S2O82-程序於燒杯中氧化處理含高濃度紅黴素模擬水樣之其殘留濃度(反應時間8 h).......86
圖4-8利用奈米Fe3O4/S2O82-程序於燒杯中氧化處理含高濃度磺胺甲噁唑之模擬水樣其殘留濃度(反應時間8 h)...........................................................................................86
圖4-9利用奈米Fe3O4/S2O82-程序於燒杯中氧化處理含高濃度鄰苯二甲酸二(2-乙基已基)酯、全氟辛烷磺酸、紅黴素及磺胺甲噁唑模擬水樣之各個組別其殘留濃度(反應時間8 h)................................................................................87
圖4-10利用奈米Fe3O4/S2O82-程序於燒杯中氧化處理個別含鄰苯二甲酸二(2-乙基己基)酯、全氟辛烷磺酸、紅黴素及磺胺甲噁唑模擬水樣之低濃度組別殘留濃度(反應時間8 h)…................................................................................88
圖4-11利用奈米Fe3O4/S2O82-程序於燒杯中氧化處理混合鄰苯二甲酸二(2-乙基己基)酯、全氟辛烷磺酸、紅黴素及磺胺甲噁唑之模擬水樣其殘留濃度(反應時間8 h).......89
圖4-12利用奈米Fe3O4/S2O82-程序於燒杯中氧化處理混合鄰苯二甲酸二(2-乙基己基)酯、全氟辛烷磺酸、紅黴素及磺胺甲噁唑之模擬水樣其殘留濃度(反應時間8 h).......90
圖4-13利用奈米Fe3O4/S2O82-程序於燒杯中氧化處理混合鄰苯二甲酸二(2-乙基己基)酯、全氟辛烷磺酸、紅黴素及磺胺甲噁唑之模擬水樣其殘留濃度(反應時間8 h)…...90
圖4-14利用奈米Fe3O4/S2O82-程序於燒杯中氧化處理含個別鄰苯二甲酸二(2-乙基已基)酯、全氟辛烷磺酸、紅黴素及磺胺甲噁唑模擬水樣之低濃度組別殘留濃度(反應時間1 h)…................................................................................92
圖4-15利用奈米Fe3O4/S2O82-程序於EC/EF模組內氧化處理含個別鄰苯二甲酸二(2-乙基已基)酯、全氟辛烷磺酸、紅黴素及磺胺甲噁唑模擬水樣之低濃度組別殘留濃度(反應時間1 h).......................................................................93
圖4-16利用過硫酸鈉程序於燒杯中氧化處理個別含鄰苯二甲酸二(2-乙基己基)酯、全氟辛烷磺酸、紅黴素及磺胺甲噁唑模擬水樣之低濃度組別殘留濃度(反應時間1 h)...94
圖4-17利用過硫酸鈉程序於燒杯中氧化處理混合鄰苯二甲酸二(2-乙基己基)酯、全氟辛烷磺酸、紅黴素及磺胺甲噁唑之模擬水樣其殘留濃度(反應時間1 h).......................95
圖4-18利用奈米Fe3O4/S2O82-程序於燒杯中氧化處理含混合鄰苯二甲酸二(2-乙基己基)酯、全氟辛烷磺酸、紅黴素及磺胺甲噁唑之模擬水樣其殘留濃度(反應時間1 h)...95
圖4-19利用奈米Fe3O4/S2O82-氧化降解水溶液中鄰苯二甲酸二(2-乙基己基)酯之中間產物其質譜圖.....................98
圖4-20利用奈米Fe3O4/S2O82-氧化降解水溶液中鄰苯二甲酸二(2-乙基己基)酯之反應路徑推測.............................99
圖4-21利用奈米Fe3O4/S2O82-氧化降解水溶液中全氟辛烷磺酸之中間產物其質譜圖.............................................102
圖4-22利用奈米Fe3O4/S2O82-氧化降解水溶液中全氟辛烷磺酸之反應路徑推測.....................................................103
圖4-23利用奈米Fe3O4/S2O82-氧化降解水溶液中紅黴素之中間產物其質譜圖.........................................................106
圖4-24利用奈米Fe3O4/S2O82-氧化降解水溶液中紅黴素之反應路徑推測.................................................................107
圖4-25利用奈米Fe3O4/S2O82-氧化降解水溶液中磺胺甲噁唑之中間產物其質譜圖.................................................110
圖4-26利用奈米Fe3O4/S2O82-氧化降解水溶液中磺胺甲噁唑之反應路徑推測.........................................................111
圖4-27管狀TiO2/Al2O3無機複合膜孔徑分佈圖............115
圖4-28採用不同的陽極材質進行同步電混凝/電過濾程序輔助奈米Fe3O4/S2O82氧化處理含鄰苯二甲酸二(2-乙基己基)酯模擬水樣其濾液通量隨處理時間變化之關係圖.........................................................................................118
圖4-29同步電混凝/電過濾程序輔助奈米Fe3O4/S2O82-氧化處理含鄰苯二甲酸二(2-乙基己基)酯模擬水樣其濾液通量隨電場強度與處理時間變化關係圖.........................122
圖4-30同步電混凝/電過濾程序輔助奈米Fe3O4/S2O82-氧化處理含全氟辛烷磺酸模擬水樣其濾液通量隨電場強度與處理時間變化關係圖.....................................................122
圖4-31同步電混凝/電過濾程序輔助奈米Fe3O4/S2O82-氧化處理含紅黴素模擬水樣其濾液通量隨電場強度與處理時間變化關係圖.................................................................123
圖4-32同步電混凝/電過濾輔助奈米Fe3O4/S2O82氧化處理含磺胺甲噁唑模擬水樣其濾液通量隨電場強度與處理時間變化關係圖.....................................................................123
圖4-33同步電混凝/電過濾程序輔助奈米Fe3O4/S2O82-氧化處理含鄰苯二甲酸二(2-乙基己基)酯模擬水樣其濾液通量隨過濾壓差與處理時間變化關係圖.........................130
圖4-34同步電混凝/電過濾程序輔助奈米Fe3O4/S2O82-氧化處理含全氟辛烷磺酸模擬水樣其濾液通量隨過濾壓差與處理時間變化關係圖.....................................................131
圖4-35同步電混凝/電過濾程序輔助奈米Fe3O4/S2O82-氧化處理含紅黴素之模擬水樣其濾液通量隨過濾壓差與處理時間變化關係圖.............................................................131
圖4-36同步電混凝/電過濾程序輔助奈米Fe3O4/S2O82-氧化處理含磺胺甲噁唑模擬水樣其濾液通量隨過濾壓差與處理時間變化關係圖.........................................................132
圖4-37同步電混凝/電過濾程序輔助奈米Fe3O4/S2O82-氧化處理混合鄰苯二甲酸二(2-乙基己基)酯、全氟辛烷磺酸、紅黴素及磺胺甲噁唑模擬水樣其濾液通量隨處理時間變化關係圖.........................................................................140
圖4-38添加HCl於最佳操作條件濾液中其導電度與pH值之變化.................................................................................147
 
表目錄
表2-1環境荷爾蒙與藥物及個人保健用品於環境之流佈...9
表2-2鄰苯二甲酸二(2-乙基己基)酯之基本特性性...........11
表2-3全氟辛烷磺酸之基本特性.........................................12
表2-4紅黴素之基本特性.....................................................13
表2-5磺胺甲噁唑之基本特性.............................................14
表2-6高級氧化程序種類.....................................................16
表2-7過硫酸鹽之物化特性.................................................20
表2-8奈米四氧化三鐵於環境上之應用.............................27
表2-9薄膜分離之主要驅動力.............................................29
表2-10各種薄膜組件之優缺點比較...................................31
表2-11電混凝/電過濾技術相關研究..................................43
表3-1化學試劑與材料列表.................................................52
表3-1化學試劑與材料列表(續)..........................................53
表3-1化學試劑與材料列表(續)..........................................54
表3-2儀器設備之型號及用途列表.....................................55
表3-2儀器設備之型號及用途列表(續)..............................56
表3-2儀器設備之型號及用途列表(續)..............................57
表3-3製備奈米Fe3O4懸浮液所添加可溶性澱粉之劑量與時機….…..............................................................................61
表3-4奈米Fe3O4/S2O82-氧化處理含高濃度環境荷爾蒙及藥物之模擬水樣其批次試驗組別...................................63
表3-5奈米Fe3O4/S2O82-氧化處理含低濃度環境荷爾蒙及藥物之模擬水樣其批次試驗組別...................................64
表3-6同步電混凝/電過濾程序輔助奈米Fe3O4/S2O82-氧化處理水溶液中之環境荷爾蒙及藥物之試驗組別...........69
表3-7同步電混凝/電過濾程序處理水溶液中之環境荷爾蒙及藥物其試驗組別...............................................................69
表3-8液相層析儀流動相混合梯度(DEHP).......................71
表3-9液相層析儀流動相混合梯度(PFOS、ERY與SMX)71
表3-10三重串聯四極桿質譜儀設定參數...........................72
表3-11關切的污染物其中間產物質譜鑑定.......................72
表4-1利用不同劑量可溶性澱粉(SS)製備奈米級Fe3O4懸浮液之穩定性比較(靜置24小時)........................................80
表4-2採用不同的陽極材質進行同步電混凝/電過濾程序輔助奈米Fe3O4/S2O82-氧化處理含鄰苯二甲酸二(2-乙基己基)酯模擬水樣其濾液品質..................................….....119
表4-3同步電混凝/電過濾程序輔助奈米Fe3O4/S2O82-氧化處理含鄰苯二甲酸二(2-乙基己基)酯模擬水樣其濾液品質與電場強度之關係.........................................................124
表4-4同步電混凝/電過濾程序輔助奈米Fe3O4/S2O82-氧化處理含全氟辛烷磺酸模擬水樣其濾液與電場強度之關係.........................................................................................125
表4-5同步電混凝/電過濾程序輔助奈米Fe3O4/S2O82-氧化處理含紅黴素模擬水樣其濾液品質與電場強度之關係.........................................................................................126
表4-6同步電混凝/電過濾程序輔助奈米Fe3O4/S2O82-氧化處理含磺胺甲噁唑模擬水樣其濾液與電場強度之關係.........................................................................................127
表4-7同步電混凝/電過濾程序輔助奈米Fe3O4/S2O82-氧化處理含鄰苯二甲酸二(2-乙基己基)酯模擬水樣其濾液品質與過濾壓差之關係.........................................................133
表4-8同步電混凝/電過濾程序輔助奈米Fe3O4/S2O82-氧化處理含全氟辛烷磺酸模擬水樣其濾液與過濾壓差之關係.........................................................................................134
表4-9同步電混凝/電過濾程序輔助奈米Fe3O4/S2O82-氧化處理含紅黴素模擬水樣其濾液品質與過濾壓差之關係.........................................................................................135
表4-10同步電混凝/電過濾程序輔助奈米Fe3O4/S2O82氧化處理含磺胺甲噁唑模擬水樣其濾液與過濾壓差之關係.........................................................................................136
表4-11同步電混凝/電過濾程序輔助奈米Fe3O4/S2O82-氧化處理混合鄰苯二甲酸二(2-乙基己基)酯、全氟辛烷磺酸、紅黴素、及磺胺甲噁唑模擬水樣其濾液品質.........141
表4-12同步電混凝/電過濾程序處理含個別鄰苯二甲酸二(2-乙基己基)酯、全氟辛烷磺酸、紅黴素及磺胺甲噁唑模擬水樣其濾液品質.............................................................142
表4-13同步電混凝/電過濾程序處理含混合鄰苯二甲酸二(2-乙基己基)酯及全氟辛烷磺酸模擬水樣其濾液品質..143
表4-14同步電混凝/電過濾程序處理含混合紅黴素及磺胺甲噁唑模擬水樣其濾液品質.............................................143
表4-15同步電混凝/電過濾程序處理含混合鄰苯二甲酸二(2-乙基己基)酯、全氟辛烷磺酸、紅黴素及磺胺甲噁唑模擬水樣其濾液品質.............................................................144
表4-16藥品費用一覽表....................................................150

照片目錄
照片4-1化學共沉澱法合成奈米Fe3O4之SEM影像圖
(50,000倍) ...........................................................................74
照片4-2化學共沉澱法合成奈米Fe3O4之SEM影像圖
(100,000倍) ........................................................................75
照片4-3添加2.8 wt%、3.0 wt%及3.2 wt%之可溶性澱粉(SS)製備奈米Fe3O4懸浮液靜置0小時之穩定性比較....79
照片4-4利用2.8 wt%、3.0 wt%及3.2 wt%之可溶性澱粉(SS)製備奈米Fe3O4懸浮液靜置24小時之穩定性比較..79
照片4-5管狀TiO2/Al2O3無機複合膜表面之SEM影像..112
照片4-6管狀TiO2/Al2O3無機複合膜截面之SEM影像..113
參考文獻 References
英文部分:
Abellan, M.N., B. Bayarri, J. Gimenez, and J. Costa, “Photocatalytic Degradation of Sulfamethoxazole in Aqueous Suspension of TiO2,” Applied Catalysis B: Environmental, Vol. 74, pp. 233-241 (2007).
Andreozzi, R., L. Campanella, B. Fraysse, J. Garric, A. Gonnella, R.L. Giudice, R. Marotta, G. Pinto, and A. Pollio, “Effects of Advanced Oxidation Processes (AOPs) on the Toxicity of a Mixture of Pharmaceuticals,” Water Science and Technology, Vol. 50, No. 5, pp. 23-28 (2004).
Andreozzi, R.,V. Caprio, C. Ciniglia, M.D. Champdore, R.L. Giudice, R. Marotta, and E. Zuccato, “Antibiotics in the Environment: Occurrence in Italian STPs, Fate, and Preliminary Assessment on Algal Toxicity of Amoxicillin,” Environmental Science & Technology, Vol. 38, No. 24, pp. 6832-6838 (2004).
Andreozzi, R.,V. Caprio, R. Marotta, and A. Radovnikovic, “Ozonation and H2O2/UV Treatment of Clofibric Acid in Water: A Kinetic Investigation,” Journal of Hazardous Materials, Vol. 103, No. 3, pp. 233-246 (2003).
Arslan-Alaton, I. and A.E. Caglayan, “Toxicity and Biodegradability Assessment of Raw and Ozonated Procaine Penicillin G Formulation Effluent,” Ecotoxicology and Environmental Safety, Vol. 63, No. 1, pp. 131-140 (2006).
Arslan-Alaton, I., and S. Dogruel, “Pre-Treatment of Penicillin Formulation Effluent by Advanced Oxidation Processes,” Journal of Hazardous Materials, Vol. 112, No. 1-2, pp. 105-113 (2004a).
Arslan-Alaton, I., S. Dogruel, E. Baykal, and G. Gerone, “Combined Chemical and Biological Oxidation of Penicillin Formulation Effluent,” Journal of Environmental Management, Vol. 73, No. 2, pp. 155-163 (2004b).
Balcıoğlu, I.A. and M. Otker, “Treatment of Pharmaceutical Wastewater Containing Antibiotics by O3 and O3/H2O2 Processes,” Chemosphere, Vol. 50, No. 1, pp. 85-95 (2003).
Barcelo, D. and M. Petrovic, “Challenges and Achievements of LC-MS in Environmental Analysis: 25 Years on,” Trends in Analytical Chemistry, Vol. 26, pp. 2-11 (2007).
Behrman, E.J. and D.H. Dean, “Sodium Peroxydisulfate is a Stable and Cheap Substitute for Ammonium Peroxydisulfate (Persulfate) in Polyacrylamide Gel Electrophoresis,” Journal of High Resolution Chromatography. B, Vol. 723, pp. 325-326 (1999).
Bhave, R.R., “Inorganic Membranes: Synthesis, Characteristics and Applications,” van Nostrand Rehinhold, New York, U.S.A.(1991)
Block, P.A., R.A. Brown, and D. Robinson, “Novel Activation Technologies for Sodium Persulfate in Situ Chemical Oxidation,” Proceedings of the Fourth International Conference on Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA (2004).
Boreen, A.L., W.A. Arnold, and K. Mcneill, “Photochemical Fate of Sulfa Drugs in the Aquatic Environment: Sulfa Drugs Containing Five-Membered Heterocyclic Groups,” Environmental Science & Technology, Vol. 38, No. 14, pp. 3933-3940 (2004).
Bowen, W.R. and H.A.M. Sabuni, “Pulsed Electrokinetic Cleaning of Cellulose Nitrate Microfiltration Membranes,” Industrial and Engineering Chemistry Research, Vol. 31, pp. 515-523 (1992)
Boxall, A.B.A., K. Tiede, and Q. Chaudhry, Nanomedicine, Vol. 2, No. 6, pp. 919-927 (2007).
Boyd, G.R., H. Reemtsma, D.A. Grimm, and S. Mitra, “Pharmaceuticals and Personal Care Products (PPCPs) in Surface and Treated Waters of Louisiana, USA and Ontario, Canada,” Science of the Total Environment, Vol. 311, Nos. 1-3, pp. 135-149 (2003).
Brossa, L., R.M. Marce, F. Borrull, and E. Pocurull, “Determination of Endocrine-Disrupting Compounds in Water Samples by On-Line Solid-Phase Extraction–Programmed-Temperature Vaporisation–Gas Chromatography–Mass Spectrometry,” Journal of Chromatography A, Vol. 998, No. 1-2, pp. 41-50 (2003).
Calafat, A.M., Z. Kuklenyik, S.P. Caudill, J.A Reidy, and L.L. Needham, “Perfluorochemicals in Pooled Serum Samples from United States Residents in 2001 and 2002,” Environmental Science & Technology, Vol. 40, No. 7, pp. 2128-2134 (2006).
Chang, J.H., T.J. Yang, and C.H. Tung, “Performance of Nano-and Nonnano-Catalytic Electrodes for Decontaminating Municipal Wastewater,” Journal of Hazardous Materials, Vol. 163, pp. 152-157 (2009).
Chang, Y.C. and D.H. Chen, “Preparation and Adsorption Properties of Monodisperse Chitosan-Bound Fe3O4 Magnetic Nanoparticles for Removal of Cu(II) Ions,” Journal of Colloid and Interface Science, Vol. 283, pp. 446-451 (2005).
Chatzitakis, A., C. Berberidou, I. Paspaltsis, G. Kyriakou, T. Sklaviadis, and I. Poulios, “Photocatalytic Degradation and Drug Activity Reduction of Chloramphenicol,” Water Research, Vol. 42, No. 1-2, pp. 386-394 (2008).
Chen, H.C., P.L. Wang, and W.H. Ding, “Using Liquid Chromatography–Ion Trap Mass Spectrometry to Determine Pharmaceutical Residues in Taiwanese Rivers and Wastewaters,” Chemosphere, Vol. 72, pp. 863-869 (2008).
Chen, T.C., M.F. Shue, Y.L. Yeh, and T.J. Kao, “Bisphenol A Occurred in Kao-Pin River and Its Tributaries in Taiwan,” Environmental Monitoring and Assessment, Vol. 161, pp. 135-145 (2010).
Cheng, J., C.D. Vecitis, H. Park, B.T. Mader, and M.R. Hoffmann, “Sonochemical Degradation of Perfluorooctane Sulfonate (PFOS) and Perfluorooctanoate (PFOA) in Landfill Groundwater: Environmental Matrix Effects,” Environmental Science & Technology, Vol. 42, No. 21 , pp. 8057-8063, (2008).
Chung, Y.C. and C.Y. Chen, “Degradation of Di-(2-ethylhexyl) Phthalate (DEHP) by TiO2 Photocatalysis,” Water, Air, & Soil Pollution, Vol. 200, pp. 191-198 (2009).
Cornell, R.N. and U. Schwertmann, “The Iron Oxides: Structure, Properties, Reactions, Occurrences, and Uses,” 2nd Edition, Wiley-VCH, Weinheim (2003).
Daughton, C.G. and T.A. Ternes, “Pharmaceuticals and Personal Care Products in the Environment: Agents of Subtle Change?” Environmental Health Perspectives, Vol. 107, No. 6, pp. 907-938 (1999).
Deng, Y., “Physical and Oxidative Removal of Organics During Fenton Treatment of Mature Municipal Landfill Leachate,” Journal of Hazardous Materials, Vol. 146, No. 1-2, pp. 334-340 (2007).
Dogruela, S., T. Olmez-Hanci, Z. Kartal, I. Arslan-Alatona, and D. Orhon, “Effect of Fenton's Oxidation on the Particle Size Distribution of Organic Carbon in Olive Mill Wastewater,” Water Research,Vol. 43, No. 16, pp. 3974-3983 (2009).
Drouiche, N., N. Ghaffour, H. Lounici, and M. Mameri, “Electrocoagulation of Chemical Mechanical Polishing Wastewater,” Desalination, Vol. 214, pp. 31-37 (2007).
Fan, H.J., S.T. Huang, W. H. Chung, J.L. Jan, W.Y. Linc, and C.C. Chen, “Degradation Pathways of Crystal Violet by Fenton and Fenton-Like Systems: Condition Optimization and Intermediate Separation and Identification,” Journal of Hazardous Materials, Vol. 171, pp. 1032-1044 (2009).
Field, J.A., C.A. Johnson, J.B. Rose, and G. Editorset, “What is “Emerging”?” Environmental Science & Technology.,Vol. 40, pp. 7105-7105 (2006).
Flynn, E.H., M.V. Sigal Jr., P.F. Wiley and K. Gerzon, “Erythromycin. I. Properties and Degradation Studies,” Journal of the American Chemical Society, Vol. 76, pp. 3121-3131 (1954).
FMC Corporation, “Persulfates Technical Information,” Philadelphia, PA, USA (1998).
Fossi, M.C., L. Marsili, S. Casini, and D. Bucalossi, “Development of New-Tools to Investigate Toxicological Hazard due to Endocrine Disruptor Organochlorines and Emerging Contaminants in Mediterranean Cetaceans,” Marine Environmental Research, Vol. 62, pp. S200-S204 (2006).
Gagne, F., C. Blaise, J. Pellerin, E. Pelletier, and J. Strand, “Health Status of Mya Arenaria Bivalves Collected from Contaminated Sites in Canada (Saguenay Fjord) and Denmark (Odense Fjord) During Their Reproductive Period,” Ecotoxicology and Environmental Safety, Vol. 64, No. 3, pp. 348-361 (2006).
Giesy, J.P. and K. Kannan, “Perfluorochemical Surfactants in the Environment-These Bioaccumulative Compounds Occur Globally, Warranting Further Study,” Environmental Science & Technology, Vol. 36, No. 7, pp. 146A-152A, (2002).
Gonźalez, O., C. Sans, and S. Esplugas, “Sulfamethoxazole Abatement by Photo-Fenton Toxicity, Inhibition and Biodegradability Assessment of Intermediates,” Journal of Hazardous Materials, Vol. 146, pp. 459-464 (2007).
Gotvajn, A.Z., J. Zagorc-Koncan, and T. Tisler, “Pretreatment of Highly Polluted Pharmaceutical Waste Broth by Wet Air Oxidation,” Journal of Environmental Engineering, Vol. 133, No. 1, pp. 89-94 (2007).
Goulden, P.D. and D.H.J. Anthony, “Kinetics of Uncatalyzed Peroxydisulfate Oxidation of Organic Material in Fresh Water,” Analytical Chemistry, Vol. 50, pp. 953-958 (1978).
Greenlee, A.R., “Eggs from Embryonic Stem Cells-An Emerging Tool to Identify Female Reproductive Risks?” Fertility and Sterility, Vol. 89, pp. e95 (2008).
Greenwood, N.N. and A. Earnshaw, “Chemistry of the Elements,” 2nd Edition, Oxford:Butterworth-Heinemann. (1997).
Hansen, P.D., “Risk Assessment of Emerging Contaminants in Aquatic Systems,” Trends in Analytical Chemistry, Vol. 26, pp. 1095-1099 (2007).
Hartmann, J., P. Bartels, U. Mau, M. Witter, W.V. Tumpling, J. Hofmann, and E. Nietzschmann, “Degradation of the Drug Diclofenac in Water by Sonolysis in Presence of Catalysts,” Chemosphere, Vol. 70, No. 3, pp. 453-461 (2008).
Hirsch, R., T. Ternes, K. Haberer, and K.L. Kratz, “Occurrence of Antibiotics in the Aquatic Environment,” Science of the Total Environment, Vol. 225, No. 1-2, pp. 109-118 (1999).
Hori, H., A. Yamamoto, K. Koike, S. Kutsuna, I. Osaka, and R. Arakawa, “Photochemical Decomposition of Environmentally Persistent Short-Chain Perfluorocarboxylic Acids in Water Mediated by Iron(II)/(III) Redox Reactions,” Chemosphere, Vol. 68, pp. 572–578 (2007).
House, D.A., “Kinetics and Mechanism of Oxidations by Peroxydisulfate,” Chemical Reviews, Vol. 62, pp. 185-203 (1962).
Hsieh, H.P.,“Inorganic Membranes for Separation and Reaction,” Elsevier Science, Amsterdam, The Netherlands (1996).
Hu, L., P.M. Flanders, P.L. Miller, and T.J. Strathmann, “Oxidation of Sulfamethoxazole and Related Antimicrobial Agents by TiO2 Photocatalysis,” Water Research, Vol. 41, pp. 2612-2626 (2007).
Hua, W., E.R. Bennett, and R.J. Letcher, “Ozone Treatment and the Depletion of Detectable Pharmaceuticals and Atrazine Herbicide in Drinking Water Sourced from the Upper Detroit River, Ontario, Canada,” Water Research, Vol. 40, No. 12, pp. 2259-2266 (2006).
Huang, S.H. and D.H. Chen, “Rapid Removal of Heavy Metal Cations and Anions from Aqueous Solutions by An Amino-Functionalized Magnetic Nano-Adsorbent,” Journal of Hazardous Materials, Vol. 163, pp.174-179 (2009).
Huang, Z., J. Li, Q.W. Chen, and H. Wang, “A Facile Carboxylation of CNT/Fe3O4 Composite Nanofibers for Biomedical Applications,” Materials Chemistry and Physics, Vol. 114, pp. 33-36 (2009).
Huang, P., N. Xu, J. Shi, and Y.S. Lin, “Characterization of Asymmetric Ceramic Membrane by Modified Permporometry,” Journal of Membrane Science, Vol. 116, pp. 301-305 (1996).
Huber, M.M., S. Korhonen, T.A. Ternes, and U. von Gunten, “Oxidation of Pharmaceuticals During Water Treatment with Chlorine Dioxide,” Water Research, Vol. 39, No. 15, pp. 3607-3617 (2005).
Huotari, H.M., I.H. Huisman, and G. Tragardh, “Electrically Enhanced Crossflow Membrane Filtration of Oily Waste Water Using the Membrane As a Cathode,” Journal of Membrane Science, Vol. 156, pp. 49-60 (1999).
Irmak, S., O. Erbaturb, and A. Akgerman, “Degradation of 17β-Estradiol and Bisphenol A in Aqueous Medium by Using Ozone and Ozone/UV Techniques,” Journal of Hazardous Materials, Vol. 126, No. 1-3, pp. 54-62 (2005).
Jagannadh, S.N. and H.S. Muralidhara, “Electrokinetics Methods to Control Membrane Fouling,” Industrial and Engineering Chemistry Research, Vol. 35, pp.1133-1140 (1996).
Jjemba, P.K., “Excretion and Ecotoxicity of Pharmaceutical and Personal Care Products in the Environment,” Ecotoxicology and Environmental Safety, Vol. 63, No. 1, pp. 113-130 (2006).
Kajitvichyanukul, P. and N. Suntronvipart, “Evaluation of Biodegradability and Oxidation Degree of Hospital Wastewater Using Photo-Fenton Process as the Pretreatment Method,” Journal of Hazardous Materials, Vol. 138, No. 2, pp. 384-391 (2006).
Kaneco, S., H. Katsumata, T. Suzuki, and K. Ohta, “Titanium Dioxide Mediated Photocatalytic Degradation of Dibutyl Phthalate in Aqueous Solution-Kinetics, Mineralization and Reaction Mechanism,” Chemical Engineering Journal, Vol. 125, pp. 59-66 (2006).
Kanfer, I., M.F. Skinner, and R.B. Walker, “Analysis of Macrolide Antibiotics,” Journal of Chromatography A, Vol. 812, pp. 255-286 (1998).
Kaniou, S., K. Pitarakis, I. Barlagianni, and I. Poulios, “Photocatalytic Oxidation of Sulfamethazine,” Chemosphere, Vol. 60, No. 3, pp. 372-380 (2005).
Kasprzyk-Hordern, B., R.M. Dinsdale, and A.J. Guwy, “The Occurrence of Pharmaceuticals, Personal Care Products, Endocrine Disruptors and Illicit Drugs in Surface Water in South Wales, UK,” Water Research, Vol. 42, No. 13, pp. 3498-3518 (2008).
Khan, M.S.N., A.A. Khan, and C.E. Cerniglia, “Simultaneous Detection of Erythromycin Resistant Methylase Genes ermA and ermC from Staphylococcus Spp. by Multiplex-PCR,” Molecular and Cellular Probes, Vol. 13, pp. 381-387 (1999).
Khetan, S.K., and T.J. Collins., “Human Pharmaceuticals in the Aquatic Environment: A Challenge to Green Chemistry,” Chemical Reviews, Vol. 107, No. 6, pp.2319-2364 (2007).
Kim Y.H., T.M. Heinze, R.Beger, J.V. Pothuluri, and C.E. Cerniglia, “A Kinetic Study on the Degradation of Erythromycin A in Aqueous Solution,” International Journal of Pharmaceutics, Vol. 271, pp. 63-76 (2004).
Kim, D.K., Y. Zhang, J. Kehr, T. Klason, B. Bjelke, and M. Muhammed, “Characterization and MRI Study of Surfactant-Coated Superparamagnetic Nanoparticles Administered into the Rat Brain,” Journal of Magnetism and Magnetic Materials, Vol. 225, pp. 256-261 (2001).
Kim, S.D., J. Cho, I.S. Kim, B.J. Vanderford, and S.A. Snyder, “Occurrence and Removal of Pharmaceuticals and Endocrine Disruptors in South Korean Surface, Drinking, and Waste Waters,” Water Research, Vol. 41, No. 5, pp. 1013-1021 (2007).
Kim, Y.H., T.M. Heinze, R. Beger, J.V. Pothuluri, and C.E. Cerniglia, “A kinetic Study on the Degradation of Erythromycin A in Aqueous Solution,” International Journal of Pharmaceutics, Vol. 271, pp. 63-76 (2004).
Kimura, K., T. Iwase, S. Kita, and Y. Watanabe, “Influence of Residual Organic Macromolecules Produced in Biological Wastewater Treatment Processes on Removal of Pharmaceuticals by NF/RO Membranes,” Water Research, Vol. 43, pp. 3751-3758 (2009).
Kleywegt, S., V. Pileggi, P. Yang, C. Hao, X. Zhao, C. Rocks, S. Thach, P. Cheung, and B. Whitehead, “Pharmaceuticals, Hormones and Bisphenol A in Untreated Source and Finished Drinking Water in Ontario, Canada-Occurrence and Treatment Efficiency,” Science of the Total Environment, Vol. 409, No. 8, pp. 1481-1488 (2011).
Kolpin, D.W., E.T. Furlong, M.T. Meyer, E.M. Thurman, S.D. Zaugg, L.B. Barber, and H.T. Buxton, “Pharmaceuticals, Hormones, and Other Organic Wastewater Contaminants in U.S. Streams, 1999-2000: A National Reconnaissance,” Environmental Science & Technology, Vol. 36, No. 6, pp. 1202-1211 (2002).
Kolthoff, I.M., A.I. Medalia, and H.P. Raaen, “The Reaction between Ferrous Iron and Peroxides IV. Reaction with Potassium Persulfate,” Journal of the American Chemical Society, 73, 1733-1739 (1951).
Kosjek, T., E. Heath, and A. Krbavčič, “Determination of Non-Steroidal Anti-Inflammatory Drug (NSAIDs) Residues in Water Samples,” Environment International, Vol. 31, No. 5, pp. 679-685 (2005).
Kulik, N., M. Trapido, A. Goi, Y. Veressinina, and R. Munter, “Combined Chemical Treatment of Pharmaceutical Effluents from Medical Ointment Production,” Chemosphere, Vol. 70, No. 8, pp. 1525-1531 (2008).
Lam, M.W. and S.A. Mabury, “Photodegradation of the Pharmaceuticals Atorvastatin, Carbamazepine, Levofloxacin, and Sulfamethoxazole in Natural Waters,” Aquatic Sciences, Vol. 67, pp. 177-188 (2005).
Lange, F., S. Cornelissen, D. Kubac, M.M. Sein, J. von Sonntag, C.B. Hannich, A. Golloch, H.J. Heipieper, M. Moder, and C. von Sonntag, “Degradation of Macrolide Antibiotics by Ozone: A Mechanistic Case Study with Clarithromycin,” Chemosphere, Vol. 65, pp. 17-23 (2006).
Larry, D.B., J.F. Jukins, and B.L. Weand, Process Chemistry for Water and Wastewater Treatment, Prentice-Hall, New Jersey (1982).
Li, S.X., D. Wei, N.K. Mak, Z.W. Cai, X.R. Xu, H.B. Li, and Y. Jiang, “Degradation of Diphenylamine by Persulfate: Performance Optimization, Kinetics and Mechanism,” Journal of Hazardous Materials, Vol. 164, pp. 26-31 (2009).
Liang, C.J., Z.S. Wang, and C.J. Bruell, “Influence of pH in Persulfate Oxidation of TCE at Ambient Temperatures,” Chemosphere, Vol. 66, pp. 106-113 (2007).
Lin, A.Y.C. and Y.T. Tsai, “Occurrence of Pharmaceuticals in Taiwan's Surface Waters: Impact of Waste Streams from Hospitals and Pharmaceutical Production Facilities,” Science of the Total Environment, Vol. 407, pp. 3793-3802 (2009).
Lin, A.Y.C., T.H. Yu, and C.F. Lin., “Pharmaceutical Contamination in Residential, Industrial, and Agricultural Waste Streams: Risk to Aqueous Environments in Taiwan,” Chemosphere, Vol. 74, pp. 131-141 (2008).
Liu, L., G. Zheng, and F. Yang, “Adsorptive Removal and Oxidation of Organic Pollutants from Water Using a Novel Membrane,” Chemical Engineering Journal, Vol. 156, pp. 553-556 (2010).
Loos, R., B.M. Gawlik, G. Locoro, E. Rimaviciute, S. Contini, and G. Bidoglio, “EU-Wide Survey of Polar Organic Persistent Pollutants in European River Waters,” Environmental Pollution, Vol. 157, No. 2, pp. 561-568 (2009).
Lowry, G.V. and E.A. Casman, “Nanomaterial Transport, Transformation, and Fate in the Environment,” In: Nanomaterials: Risks and Benefits, NATO Science for Peace and Security Series C: Environmental Security, Linkov, I. and J. A. Steevens (Eds.), Springer, pp. 125-137 (2009).
Luiz, D.B., A.K. Genena, E. Virmond, H.J. Jose, R.F.P.M. Moreira, W. Gebhardt, and H.Fr. Schrbder, “Identification of Degradation Products of Erythromycin A Arising from Ozone and Advanced Oxidation Process Treatment,” Water Environment Research, Vol. 82, No. 9, pp. 797-805 (2010).
Ma, J., W.J. Song, C.C. Chen, W.H. Ma, .C. Zhao, and Y.L. Tang, “Fenton Degradation of Organic Compounds Promoted by Dyes under Visible Irradiation,” Environmental Science & Technology, Vol. 39, pp. 5810-5815 (2005).
Managaki, S., A. Murata, H. Takada, B.C. Tuyen, and N.H. Chiem, “Distribution of Macrolides, Sulfonamides, and Trimethoprim in Tropical Waters: Ubiquitous Occurrence of Veterinary Antibiotics in the Mekong Delta,” Environmental Science & Technology, Vol. 41, No. 23, pp. 8004-8010 (2007).
Martı́nez, N.S.S., J.F. Fernandez, X.F. Segura, and A.S. Ferrer, “Pre-Oxidation of an Extremely Polluted Industrial Wastewater by the Fenton’s Reagent,” Journal of Hazardous Materials, Vol. 101, No. 3, pp. 315-322 (2003).
Masciangioli, T., and W.X. Zhang, “Environmental Technologies at the Nanoscale-Nanotechnology Could Substantially Enhance Environmental Quality and Sustainability Through Pollution Prevention, Treatment, and Remediation.,” Environmental Science & Technology, Vol. 37, pp. 102-108 (2003).
Mehta, R.V., R.V. Upadhyay, S.W. Charles, and C.N. Ramchand, “Direct Bindig of Protein to Magnetic Particles,” Biotechnology Techniques, Vol. 11, pp. 493-496 (1997).
Mollah, M.Y.A., R. Schennach, J.R. Parga, and D.L. Coake, “Electrocoagulation (EC)-Science and Applications,” Journal Of Hazardous Materials, Vol. B84, pp. 29-41 (2001).
Mordi, M.N., M.D. Pelta, V. Boote, G.A. Morris, and J. Barber, “Acid-Catalyzed Degradation of Clarithromycin and Erythromycin B: A Comparative Study Using NMR Spectroscopy,” Journal of Medicinal Chemistry, Vol. 43, pp. 467-474 (2000).
Moriwaki, H., Y. Takagi, M. Tanaka, K. Tsuruho, K. Okitsu, and Y. Maeda, “Sonochemical Decomposition of Perfluorooctane Sulfonate and Perfluorooctanoic Acid,” Environmental Science & Technology, Vol. 39, No. 9, pp. 3388-3392 (2005).
Nakada, N., S. Hiroyuki, M. Ayako, K. Kiri, S. Managaki, S. Nobuyuki, and T. Hideshige, “Removal of Selected Pharmaceuticals and Personal Care Products (PPCPs) and Endocrine-Disrupting Chemicals (EDCs) During Sand Filtration and Ozonation at a Municipal Sewage Treatment Plant,” Water Research, Vol. 41, No. 19, pp. 4373-4382 (2007).
Nakashima, T., Y. Ohko, D.A. Tryk, and A. Fujishima, “Decomposition of Endocrine-Disrupting Chemicals in Water by Use of TiO2 Photocatalysts Immobilized on Polytetrafluoroethylene Mesh Sheets,” Journal of Photochemistry and Photobiology A: Chemistry, Vol. 151, No. 1-3, pp. 207-212 (2008).
National Research Council, “The Use of Drugs in Food Animals: Benefits and Risks,” National Academy Press, Washington, DC. (1999).
Navarro, E., A. Baun, R. Behra, N.B. Hartmann, J. Filser, A.J. Miao, A. Quigg, P.H. Santschi, and L. Sigg, “Environmental Behavior and Ecotoxicity of Engineered Nanoparticles to Algae, Plants, and Fungi,” Ecotoxicology, Vol. 17, pp. 372-386 (2008).
Nohara, K., M. Toma, S. Kutsuna, K. Takeuchi, and T. Ibusuki, “Cl Atom-Initiated Oxidation of Three Homologous Methyl Perfluoroalkyl Ethers,” Environmental Science & Technology, Vol. 35, No. 1, pp. 114-120 (2001).
Nowack, B. and T.D. Bucheli, “Occurrence, Behavior and Effects of Nanoparticles in the Environment,” Environmental Pollution, Vol. 150, pp. 5-22 (2007).
OECD Co-Operation on Existing Chemicals Hazard Assessment of Perfluorooctane Sulfonate (PFOS) and Its Salts, Environment Directorate Joint Meeting of the Chemicals Committee and the Working Party on Chemicals, Pesticides and Biotechnology, Organisation for Economic Co-Operation and Development, (2002).
Ohe, K., Y. Tagai, S. Nakamura, T. Oshima, Y. Baba, Adsorptive Behavior of Arsenic (III) and Arsenic (V) Using Magnetite,” Journal of Chemical Engineering of Japan, Vol. 38, pp. 671-676 (2005).
Ohko, Y., K.I. Iuchi, C. Niwa, T. Tatsuma, T. Nakashima, T Iguchi, Y. Kubota, and A. Fujishima, “17β-Estradiol Degradation by TiO2 Photocatalysis as a Means of Reducing Estrogenic Activity,” Environmental Science & Technology, Vol. 36, No. 19, pp. 4175-4181 (2002).
Pauwels, B.,S. Deconinck, and W. Verstraete “Electrolytic Removal of 17α-ethinylestradiol (EE2) in Water Streams,” Journal of Chemical Technology and Biotechnology, Vol. 81, No. 8, pp. 1338–1343 (2006).
Pereira, G.R., R.T. Lopes, M.J. Anjos, H.S. Rocha, and C.A. Perez, “X-Ray Fluorescence Microtomography Analyzing Reference Samples,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 579, No. 1, pp. 322-325 (2007).
Perez-Estrada, L.A., M.I. Maldonado, W. Gernjak, A. Aguera, A.R. Fernandez-Alba, M.M. Ballesteros, and S. Malato, “Decomposition of Diclofenac by Solar Driven Photocatalysis at Pilot Plant Scale,” Catalysis Today, Vol. 101, No. 3-4, pp. 219-226 (2005).
Ravina, M., L. Campanella, and J. Kiwi, “Accelerated Mineralization of the Drug Diclofenac via Fenton Reactions in a Concentric Photo-Reactor,” Water Research, Vol. 36, No. 14, pp. 3553-3560 (2002).
Richardson, S.D., “Environmental Mass Spectrometry: Emerging Contaminants and Current Issues,” Analytical Chemistry, Vol. 80, No. 12, pp. 4373-4402 (2008).
Richardson, S.D., “Water Analysis: Emerging Contaminants and Current Issues,” Analytical Chemistry, Vol. 81, No. 12, pp. 4645-4677 (2009).
Rosenfeldt, E.J. and K.G. Linden, “Degradation of Endocrine Disrupting Chemicals Bisphenol A, Ethinyl Estradiol, and Estradiol During UV Photolysis and Advanced Oxidation Processes,” Environmental Science & Technology, Vol. 38, No. 20, pp. 5476-5483 (2004).
Sanchez-Prado, L., R. Barro, C. Garcia-Jares, M. Llompart, M. Lores, C. Petrakis, N. Kalogerakis, D. Mantzavinos, and E. Psillakis, “Sonochemical Degradation of Triclosan in Water and Wastewater,” Ultrasonics Sonochemistry, Vol. 15, No. 5, pp. 689-694 (2008).
Sen, T., A. Sebastianelli, and I.J. Bruce, “Mesoporous Silica-Magnetite Nanocomposite: Fabrication and Applications in Magnetic Bioseparations,” Journel of the American Chemical Society, Vol. 128, pp. 7130-7131 (2006).
Shemer, H. and K.G. Linden, “Degradation and By-Product Formation of Diazinon in Water During UV and UV/H2O2 Treatment” Journal of Hazardous Materials B, Vol. 136, pp. 553-559 (2006).
Shemer, H., Y.K. Kunukcu, and K.G. Linden, “Degradation of the Pharmaceutical Metronidazole via UV, Fenton and Photo-Fenton Processes,” Chemosphere, Vol. 63, No. 2, pp. 269-276 (2006).
Shen, Y.F., F. Tang, Z.H. Nie, Y.D. Wang, Y. Ren, and L. Zoua, “Tailoring Size and Structural Distortion of Fe3O4 Nanoparticles for the Purification of Contaminated Water,” Bioresource Technology, Vol. 100, pp. 4139-4146 (2009).
Sigal, Jr. M.V., P.F. Wiley, K. Gerzon, E.H. Flynn, U.C. Quarck and O. Weave, “Erythromycin. VI. Degradation Studies,” Journal of the American Chemical Society, Vol. 78, pp. 388-395 (1955).
Sima, J., and J.Makanova, “Photochemistry of Iron(III) Complexes,” Coordination Chemistry Reviews, Vol. 160, pp. 161-189 (1997).
Sires, I., F. Centellas, J.A. Garrido, R.M. Rodriguez, C. Arias, P.L. Cabot, and E. Brillas, “Mineralization of Clofibric Acid by Electrochemical Advanced Oxidation Processes Using a Boron-Doped Diamond Anode and Fe2+ and UVA Light as Catalysts,” Applied Catalysis B: Environmental, Vol. 72, No. 3-4, pp. 373-381 (2007).
Skoumal, M., P.L. Cabot, F. Centellas, C. Arias, R.M. Rodriguez, J.A. Garrido, and E. Brillas, “Mineralization of Paracetamol by Ozonation Catalyzed with Fe2+, Cu2+ and UVA Light,” Applied Catalysis B: Environmental, Vol. 66, No. 3-4, pp. 228-240 (2006).
Stengl, V., S. Bakardjieva, and N. Murafa, “Preparation and Photocatalytic Activity of Rare Earth Doped TiO2 Nanoparticles,” Materials Chemistry and Physics, Vol. 114, pp. 217-226 (2009).
Stoob, K., H.P. Singer, C.W. Goetz, M. Ruff, and S.R. Mueller, “Fully Automated Online Solid Phase Extraction Coupled Directly to Liquid Chromatography-Tandem Mass Spectrometry: Quantification of Sulfonamide Antibiotics, Neutral and Acidic Pesticides at Low Concentrations in Surface Waters,” Journal of Chromatography A, Vol. 1097, No. 1-2, pp. 138-147 (2005).
Ternesa, T.A., J. Stubera, N. Herrmanna, D. McDowell, A. Ried, M. Kampmann, and B. Teiser, “Ozonation: A Tool for Removal of Pharmaceuticals, Contrast Media and Musk Fragrances From Wastewater?” Water Research, Vol. 37, No. 8, pp. 1976-1982 (2007).
Tri, P.M., K.S. Khim, K. Hidajat, and M.S. Uddin, “Surface Functionalized Nano-Magnetic Particles for Wastewater Treatment: Adsorption and Desorption of Mercury,” Journal of Nanoscience and Nanotechnology, Vol. 9, pp. 905-908 (2009).
Trovo, A.G., R.F.P. Nogueira, A. Agűer, A.R. Fernandez-Alba, C. Sirtori, and S. Malato, “Degradation of Sulfamethoxazole in Water by Solar Photo-Fenton. Chemical and Toxicological Evaluation,” Water Research, Vol. 43, pp. 3922-3931 (2009).
Vieno, N., T. Tuhkanen, and L. Kronberg, “Elimination of Pharmaceuticals in Sewage Treatment Plants in Finland,” Water Research, Vol. 41, No. 5, pp. 1001-1012 (2007).
Vognaa, D., R. Marottab, A. Napolitanoa, R. Andreozzib, and M. d’Ischiaa, “Advanced Oxidation of the Pharmaceutical Drug Diclofenac with UV/H2O2 and Ozone,” Water Research, Vol. 38, No. 2, pp. 414-422 (2004).
Wang, S.H., C. Wang, B. Zhang, Z. Sun, Z. Li, X. Jiang, and X. Bai, “Preparation of Fe3O4/PVA Nanofibers Via Combining In-Situ Composite with Electrospinning,” Materials Letters, Vol. 64, pp. 9-11 (2010).
Watkinson, A.J., E.J. Murby, D.W. Kolpin, and S.D. Costanzo, “The Occurrence of Antibiotics in an Urban Watershed: From Wastewater to Drinking Water,” Science of the Total Environment, Vol. 407, No. 8, pp. 2711-2723 (2009).
Weigert, T., J. Altmann, and S. Ripperger, “Crossflow Electrofiltration in Pilot Scale,” Journal of Membrane Science, Vol. 159, pp. 253-262 (1999).
Wigginton, N.S., K.L. Haus, and M.F. Hochella, “Aquatic Environmental Nanoparticles,” Journal of Environmental Monitoring, Vol. 9, pp. 1306-1316 (2007).
Wu, Y.J., J.H. Zhang, Y.F. Tong, and X.H. Xu, “Chromium(VI) Reduction in Aqueous Solutions by Fe3o4-Stabilized Fe0 Nanoparticles,” Journal of Hazardous Materials, Vol. 172, pp. 1640-1645 (2009).
Xu, X., Q.F. Ye, T.M. Tang, and D.H. Wang, “Hg0 Oxidative Absorption by K2S2O8 Solution Catalyzed by Ag+ and Cu2+,” Journal of Hazardous Materials, Vol. 158, pp. 410-416 (2008).
Yan, J., M. Lei, L. Zhu, M. N. Anjum, J. Zou, and H.Tang, “Degradation of Sulfamonomethoxine with Fe3O4 Magnetic Nanoparticles as Heterogeneous Activator of Persulfate,” Journal of Hazardous Materials, Vol. 186, pp. 1398-1404 (2011).
Yang, G.C.C. and C.J. Li, Preparation of Tubular TiO2/Al2O3 Composite Membranes and Their Performance in Electrofiltration of Oxide-CMP Wastewater,” Desalination, Vol. 200, pp. 74-76 (2006).
Yang, G.C.C. and C.M. Tsai, “Performance Evaluation of a Simultaneous Electrocoagulation and Electrofiltration Module for the Treatment of Cu-CMP and Oxide-CMP Wastewaters,” Journal of Membrane Science, Vol. 28, pp. 36-44 (2006).
Yang, G.C.C. and C.J. Li, “Tubular TiO2/Al2O3 Composite Membranes: Preparation, Characterization, and Performance in Electrofiltration of Oxide-CMP Wastewater,” Desalination, Vol. 234, pp. 354-361 (2008).
Yang, G.C.C. and C.M. Tsai, “Effects of Starch Addition on Characteristics of Tubular Porous Ceramic Membrane Substrates,” Desalination, Vol. 233, pp. 129-136 (2008a).
Yang, G.C.C. and C.M. Tsai, “Preparation of Carbon Fibers/Carbon/Alumina Tubular Composite Membranes and Their Applications in Treating Cu-CMP Wastewater by a Novel Electrochemical Process,” Journal of Membrane Science, Vol. 321, pp. 232-239 (2008b)
Yang, G.C.C. and C.M. Tsai, “Preparation of Carbon Fibers/Carbon/Alumina Tubular Composite Membranes and Their Applications in Treating Cu-CMP Wastewater by a Novel Electrochemical Process: Part 2,” Journal of Membrane Science, Vol. 331, pp. 100-108 (2009).
Yang, G.C.C. and M.Y. Wu, “Injection of Nanoscale Fe3O4 Slurry Coupled with the Electrokinetic Process for Remediation of NO3− in Saturated Soil: Remediation Performance and Reaction Behavior,” Separation and Purification Technology, Vol. 79, pp. 272-277 (2011).
Yang, G.C.C. and C.F. Yeh, “Enhanced Nano-Fe3O4/S2O82− Oxidation of Trichloroethylene in a Clayey Soil by Electrokinetics,” Separation and Purification Technology, Vol. 79, pp. 264-271(2011).
Yang, G.C.C., T.Y. Yang, and S.H. Tsai, “Crossflow Electro-Microfiltration of Oxide-CMP Wastewater,” Water Research, Vol. 37, pp. 785–792 (2003).
Zhang, L., Y. Jiang, Y. Ding, M. Povey, and D. York, “Investigation into the Antibacterial Behaviour of Suspensions of ZnO Nanoparticles (ZnO Nanofluids),” Journal of Nanoparticle Research, Vol. 9, pp. 479-489 (2007).
Zhang, S.X., X.L. Zhao, H.Y. Niu, Y.L. Shi, Y.Q. Cai, and G.B. Jiang, “Superparamagnetic Fe3O4 Nanoparticles as Catalysts for the Catalytic Oxidation of Phenolic and Aniline Compound,” Journal of Hazardous Materials, Vol. 167, pp. 560-566 (2009).
Zwiener, C. and F.H. Frimmel, “Oxidative Treatment of Pharmaceuticals in Water,” Water Research, Vol. 34, No. 6, pp. 1881-1885 (2000).

中文部分:
中華民國國家標準,「鍋爐規章-鍋爐給水及鍋爐水水質標準」,CNS10231 (1993)。
台灣電力公司,“公告電價表”,http://www.cogen.org.tw/doc%5Cnew%20service%5C4-17%E5%8F%B0%E7%81%A3%E9%9B%BB%E5%8A%9B%E5%85%AC%E5%8F%B8%E9%9B%BB%E5%83%B9%E8%A1%A8%E8%AA%AA%E6%98%8E%E6%9B%B8.htm (2010)。
行政院環保署,「地面水體分類及水質標準」,環署水字第0039159號 (1998)。
行政院環保署,「污水處理後注入地下水體標準」,環署水字第0910084141號 (2002)。
行政院環保署,「放流水標準」,環署水字第10000103860號 (2011)。
行政院環保署,「建築物生活污水回收再利用建議事項」,環署水字第0960078115A號 (2007)。
吳育勳,“牡蠣養殖發展之研究-以台南市牡蠣養殖區為例”,碩士學位論文,國立中山大學海洋環境及工程學研究所,高雄市 (2008)。
吳明諺,“奈米級Fe3O4及[Fe3O4]MgO懸浮液注入結合電動力法整治飽和土壤中NO3-及Cr6+之反應行為探討”,碩士學位論文,國立中山大學環境工程研究所,高雄市 (2010)。
呂忠成,“Hazardous Substance Process Management 歐盟PFOS限用指令介紹”,財團法人台灣電子檢驗中心綠色產品測試實驗室,桃園縣 (2008)。
呂冠霖、司洪濤,“高濃度COD廢水氧化處理技術評析”,經濟部環保技術e報,台北市 (2003)。
李維豐,“全氟辛烷磺酸鹽有效管理制度與策略之研究以臺灣為例”,碩士學位論文,國立中央大學環境工程研究所,桃園縣 (2006)。
林千喬,“性早熟女童尿液中鄰苯二甲酸酯代謝物檢測與家戶灰塵暴露之相關性研究”,碩士學位論文,國立成功大學環境醫學研究所,台南市 (2009)。
林郁真,“論環境中之新興污染物”,環境工程會刊,第十八卷,第一期,第3-55頁(2007)。
施周、張文輝,“環境奈米技術”,五南圖書出版社股份有限公司,台北市 (2006)。
施明智,“食物學原理”,第六章,穀類與澱粉,第147-158頁 (1996)。
孫中溪、郭淑雲,“奈米四氧化三鐵表面酸鹼性質研究”,高等學校化學學報,第二十七卷,第七期,第1351-1354頁,中國 (2006)。
徐國財、張立德,“奈米複合材料”,五南圖書出版社股份有限公司,台北市 (2004)。
張世佳,“以微波水熱法輔助過硫酸鹽降解水中全氟辛酸”,碩士學位論文,國立台灣大學環境工程學研究所,台北市 (2007)。
張原豪,“自製管狀氧化鈦/氧化鋁複合膜同步電混凝/電過濾處理化學機械研磨廢水之效能評估”,碩士學位論文,國立中山大學環境工程研究所,高雄市 (2008)。
曹盛茂、關長斌、徐甲強,“奈米材料導論”,學富文化事業有限公司,台北市 (2002)。
莊智琄,“利用同步電混凝/電過濾程序處理含奈米級TiO2”,碩士學位論文,國立中山大學環境工程研究所,高雄市 (2004)。
莊順興,“廢污水回收再利用技術評估”,推動新生水水源開發成功案例分享,第3-24頁,財團法人中技社,台北市 (2011)。
陳吉欽,“EDTA螯合三價鐵活化過硫酸鹽氧化三氯乙烯”,碩士學位論文,國立中興大學環境工程研究所,台中市 (2007)。
陳富政,“利用電混凝/電過濾技術於廢水處理之應用”,碩士學位論文,國立中山大學環境工程研究所,高雄市 (2003)。
彭子峻,“奈米級[Fe3O4]MgO於地下水環境中與三氯乙烯之反應行為探討”,碩士學位論文,國立中山大學環境工程研究所,高雄市 (2008)。
楊士弘,“利用TMCS表面改質管狀陶瓷膜結合同步電混凝/電過濾程序去除水中之砷及過氯酸鹽”,碩士學位論文,國立中山大學環境工程研究所,高雄市 (2011)。
楊金鐘,“淺談無機濾膜及其於廢水處理之應用”,化工技術, 第16卷,第7期,第174-185 頁 (2008)。
楊金鐘、顏嘉亨,“利用同步電混凝/電過濾程序去除生活污水中多溴聯苯醚、乙醯胺酚和紅黴素之研究”,第六屆環境荷爾蒙及持久性有機污染物論壇及研討會,高雄市 (2010)。
經濟部工業局,“化學混凝處理單元設計與操作”,工業污染防治技術手冊,第26期,第6-6頁 (1990)。
經濟部水利署,“自來水水質標準”,經水字第09204610280號 (2003)。
葉峮甫,“電動力法輔助奈米Fe3O4/S2O82-程序整治受TCE及1,2-DCA污染土壤”,碩士學位論文,國立中山大學環境工程研究所,高雄市 (2010)。
歐陽嶠暉,“下水道工程學”,第三版,長松文化興業股份有限公司,台北市 (2000)。
蔡啟明,“新穎管狀碳質/陶瓷複合膜製備其應用於同步電混凝/電過濾程序處理化學機械研磨廢水之研究”,博士學位論文,國立中山大學環境工程研究所,高雄市 (2008)。
鄭領英、王學松,“膜的高科技應用”,五南圖書出版股份有限公司,台北市 (2000)。
賴志敏,“利用兩種不同孔徑之單一管狀陶瓷膜結合同步電混凝/電過濾程序回收再利用加工出口區二種放流水及晶背研磨廢水之可行性研究” ,碩士學位論文,國立中山大學環境工程研究所,高雄市 (2010)。
顏嘉亨,“多管式TiO2/Al2O3複合膜同步電混凝/電過濾處理光電產業廢水之效能評估”,碩士學位論文,國立中山大學環境工程研究所,高雄市 (2008)。
羅大倫,張家耀,“微奈米材料的綠色合成法”,中國化學學誌,第六十五卷,第四期,第409-418頁,台北市 (2007)。
顧幸苑,“都市污水回收再利用用途與水質要求-節水開源由再利用開始”,節約用水季刊,第17期,http://www.wcis.itri.org.tw/Upload/QUARTC/000268/17-10.pdf (2000)。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code