Responsive image
博碩士論文 etd-0224116-155842 詳細資訊
Title page for etd-0224116-155842
論文名稱
Title
應用磁致伸縮換能器於石化管線支撐處之缺陷定量檢測研究
Quantitative Evaluation of Defects on Supports of Pipeline Using Magnetostrictive EMAT
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
164
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-01-28
繳交日期
Date of Submission
2016-03-24
關鍵字
Keywords
管線系統、簡支撐、周向銲接支撐、夾持式支撐、磁致伸縮效應、軸向銲接支撐、高頻SH0短程導波
Simple support, Clamp support, SH0 mode, Magnetostrictive EMAT, Circumferential welding support, Longitudinal welding support, Pipeline systems
統計
Statistics
本論文已被瀏覽 5690 次,被下載 59
The thesis/dissertation has been browsed 5690 times, has been downloaded 59 times.
中文摘要
在今日的能源、石化乃至於民生等工業中,大量使用管線系統來運送原物料或產品,近年來因管線失效破裂而導致的工安事故為造成廠區內經濟損失的主要來源。其中,由於經常用以加強管線固定的支撐座設施遮蔽或包覆了部分管線,使得該處發生腐蝕現象時不易察覺,更由於各式的支撐座類型不盡相同,造成現行對於管線支撐處尚未能有通用的檢測辦法,而多半仰賴人工目視法來評估。
在非破壞檢測技術中,導波法具備有在一段距離外將波傳導入管線支撐處來排除現場狀況所造成量測限制的能力。根據相關文獻顯示,長距導導波進行管線檢測時,因為受到支撐座特徵影響,以致該處則無法有效解析而成檢測上的盲區。本研究係以簡支撐、夾持式支撐、周向銲接和縱向銲接等管線上常見的支撐座為探討對象,利用磁致伸縮效應所產生的高頻短程導波,以局部激振的SH0波傳模態,針對管線的支撐座部位來進行缺陷的檢測評估。由實測結果可觀察到高頻短程導波可有效地分離顯著的支撐座特徵回波與缺陷訊號,並藉由支撐座原有的特徵訊號,可發現當銲接點加入人工缺陷後其訊號特性的改變,對於位在支撐座涵蓋範圍內的人工缺陷則可達10%的深度定量誤差水準。此外,相較於業界常用之T(0,1)扭矩導波的量測結果,可觀察到高頻SH0短程導波不受夾持式支撐座負載扭力的影響;對於周向銲接支撐座內部之缺陷,亦能有效檢出並進行定量分析。以上研究成果將可提供業者實務上的使用評估與資訊,進而發展為管線支撐處檢測的制式辦法。
Abstract
Nowadays, pipeline systems has been extensively used in energy, petrochemical and even the livelihood industries to transport raw materials or products rapidly and safely. However, the recent report shows that industrial issues due to failure of the pipes rupture became the main sources of economic losses in factory. The interfaces between the supports and pipe are prime locations for corrosion to occur, as the interfaces can trap water or contaminants and are inherently difficult to inspect as the corrosion is often hidden by the support interface. Also, because the variety types of pipe support, there has no method can generally apply on every cases currently, and the inspections most rely on manual visual to assess.
Among the non-destructive testing techniques, guided waves has the ability to detect the section where pipe support mounted, precluding the restrictions caused by in-situ condition. According to previous researches, the common long-range guided wave is strongly affected by pipe support, which made these area be a dead zone. This study provides simple support, clamp support, circumferential welding and longitudinal welding support as samples to evaluate the inspecting efficiency of SH0 mode magnetostrictive EMAT(Electromagnetive Acoustic Transducer), which can only be utilized in certain range. It shows this middle-range high frequency guide wave can successfully separate defect signal and significant reflection of supports. Also, by comparing original reflection signal of supports, we discovered the differences of reflection characteristics when the welding points after adding artificial defects, and obtained less than 10% depth quantitative error of these artificial defects created in pipe support region. It can be observed the SH0 middle-range high frequency guide wave technique not only won’t affected by clamp support, but also has good ability to detect the defect in the interior of the circumferential welding support. The results obtained from this study can be a reference or information for companies in practical use and further developed a standard procedure for inspecting pipeline support region.
目次 Table of Contents
誌謝 i
中文摘要 ii
英文摘要 iii
目錄 v
圖目錄 viii
表目錄 xiii
第一章 緒論 1
1.1前言 1
1.2研究動機與目的 3
1.3文獻回顧 4
1.4研究方法 8
1.5論文結構 9
第二章 基本理論 12
2.1 SH導波基本理論 12
2.1.1相位速度與截止頻率 14
2.1.2群波速度 15
2.2以平板假設近似管件模型的適用性評估 16
2.3勞侖茲力與磁致伸縮效應 18
2.3.1勞侖茲力 18
2.3.2磁致伸縮效應 19
第三章 實驗設備與架構 25
3.1短程導波設備 25
3.1.1儀器外觀與規格 25
3.1.2量測前置作業 27
3.1.3基本操作設定 28
3.2測試案例 29
3.3波束擴散現象之模擬 32
3.3.1數值模擬與網格劃分 32
3.3.2收斂性分析 33
3.3.3波束擴散曲線與方程式 34
3.3.4實驗驗證 35
3.4缺陷深度定量計算 36
3.5實驗架設 37
3.5.1簡支撐 38
3.5.2夾持式支撐 38
3.5.3縱向銲接支撐 39
3.5.4周向銲接支撐 40
第四章 實驗架設與量測分析 74
4.1簡支撐 74
4.1.1簡支撐座特徵訊號 74
4.1.2具人工缺陷之簡支撐座量測 75
4.2夾持式支撐 82
4.2.1夾持式支撐座特徵訊號 82
4.2.2具人工缺陷之夾持式支撐座量測 83
4.3縱向銲接支撐 94
4.3.1縱向銲接支撐座特徵訊號 94
4.3.2具人工缺陷之夾持式支撐座量測 94
4.3.3解析度實驗分析 96
4.4周向銲接支撐 109
4.4.1周向銲接支撐座特徵訊號 109
4.4.2周向銲接支撐座銲接內部腐蝕D1量測 109
4.4.3具人工缺陷之周向銲接支撐座量測 110
4.4.4參考塊之指向性分析 111
4.5缺陷檢測靈敏度 119
第五章 結論與未來展望 125
5.1結論 125
5.2未來展望 126
參考文獻 128
附錄A:長距離導波量測結果 133
附錄B:高頻短程導波波束擴散公式補充資訊 144

圖目錄
圖1.1 石化廠組件劣化導致財產損失之百分比 10
圖1.2 傳統接觸式超音波檢測與示意圖 10
圖1.3 導波檢測實作設置與示意圖 11
圖1.4 管線上常見的支撐座設施 11
圖2.1 SH波傳示意圖 20
圖2.2 鋁板SH相位速度頻散曲線圖 20
圖2.3 鋁板SH群波速度頻散曲線圖 20
圖2.4 不同a/b值管件與相同厚度平板之相位速度頻散曲線圖 21
圖2.5 不同d/R值管件與相同厚度平板之相位速度頻散曲線圖 21
圖2.6 不同d/R值管件與相同厚度平板之缺陷反射係數比較圖 21
圖2.7 SH波傳於厚6.02 mm(4吋管壁厚)碳鋼板之相位與群波速度頻散曲線圖 22
圖2.8 SH波傳於厚7.11 mm(6吋管壁厚)碳鋼板之相位與群波速度頻散曲線圖 23
圖2.9 電磁超音波換能器驅動勞侖茲力示意圖 23
圖2.10 磁致伸縮效應示意圖 24
圖2.11 磁致伸縮效應產生波傳 24
圖3.1 操作主機與換能器 44
圖3.2 操作主機外觀介紹 44
圖3.3 操作主機面板按鈕介紹 45
圖3.4 PowerBoxHPCViewer操作介面 46
圖3.5 換能器量測示意圖 46
圖3.6 疊式線圈 46
圖3.7 局部清潔鐵鈷帶欲架設位置 47
圖3.8 高頻短程導波設備操作流程圖 47
圖3.9 鐵鈷帶外觀 48
圖3.10 塗覆耦合劑並設置鐵鈷帶 48
圖3.11 以膠帶全面包覆鐵鈷帶 48
圖3.12 參考塊實際外觀與使用示意圖 49
圖3.13 磁化鐵鈷帶 49
圖3.14 操作主機介面 50
圖3.15 SYSTEM選單 51
圖3.16 GENERAL選單 51
圖3.17 TX/RX選單 52
圖3.18 DAQ選單 52
圖3.19 測試案例現場設置 53
圖3.20 人工缺陷製作示意圖 53
圖3.21 實驗量測過程示意圖 53
圖3.22 換能器使用之夾具 54
圖3.23 測試範例量測訊號 54
圖3.24 正規化之量測訊號平面圖與立體圖 54
圖3.25 以降6 dB方式所得之缺陷寬度 55
圖3.26 相同缺陷於相同激振能量、不同波束寬度下之反射訊號示意圖 55
圖3.27 管件網格模型分割示意圖 55
圖3.28 4吋管件模型局部激振之負載設定 56
圖3.29 4吋管局部激振之周向擾動細部示意圖 56
圖3.30 4吋管局部激振之SH0波傳模擬 57
圖3.31 收斂性分析之模型取點位置示意圖 58
圖3.32 局部激振收斂分析 58
圖3.33 正規化SH0波傳於4吋管不同軸向距離之波束擴散圖 59
圖3.34 正規化SH0波傳於4吋管之波束擴散角度 59
圖3.35 正規化SH0波傳於6吋管不同軸向距離之波束擴散圖 60
圖3.36 正規化SH0波傳於6吋管之波束擴散角度 60
圖3.37 正規化SH0波傳於8吋管不同軸向距離之波束擴散圖 61
圖3.38 正規化SH0波傳於8吋管之波束擴散角度 61
圖3.39 正規化SH0波傳於10吋管不同軸向距離之波束擴散圖 62
圖3.40 正規化SH0波傳於10吋管之波束擴散角度 62
圖3.41 正規化SH0波傳於12吋管不同軸向距離之波束擴散圖 63
圖3.42 正規化SH0波傳於12吋管之波束擴散角度 63
圖3.43 4吋管SH0波傳擴散圖 64
圖3.44 6吋管SH0波傳擴散圖 64
圖3.45 8吋管SH0波傳擴散圖 65
圖3.46 10吋管SH0波傳擴散圖 65
圖3.47 12吋管SH0波傳擴散圖 66
圖3.48 波束擴散曲線 66
圖3.49 波束擴散現象驗證之實驗設置 67
圖3.50 4吋管波束擴散的實驗與模擬結果分析 67
圖3.51 簡支撐座實驗案例 68
圖3.52 簡支撐座實驗設置與量測示意圖 68
圖3.53 人工缺陷D1實際外觀 69
圖3.54 夾持式支撐座實驗案例 69
圖3.55 夾持式支撐座實驗設置與量測示意圖 70
圖3.56 縱向銲接支撐座實驗案例 70
圖3.57 縱向銲接支撐座實驗設置與量測示意圖 71
圖3.58 縱向銲接支撐座實驗人工缺陷D1實際外觀 71
圖3.59 周向銲接支撐座 72
圖3.60 周向銲接支撐座實驗設置與量測示意圖 72
圖3.61 周向銲接支撐實驗之人工缺陷外觀 73
圖4.1 簡支撐座特徵訊號與實際位置示意圖 78
圖4.2 簡支撐座實驗之人工缺陷設置位置示意圖 78
圖4.3 簡支撐座實驗量測1 79
圖4.4 簡支撐座實驗量測2 79
圖4.5 簡支撐座實驗量測3 80
圖4.6 簡支撐座實驗量測4 80
圖4.7 簡支撐座實驗量測5 81
圖4.8 以扭力板手施予扭力於夾持式支撐座之固定螺絲 87
圖4.9 夾持式支撐座特徵訊號與實際位置示意圖 87
圖4.10 以30 lb-ft扭力固定之夾持式支撐座訊號圖 88
圖4.11 以40 lb-ft扭力固定之夾持式支撐座訊號圖 88
圖4.12 以50 lb-ft扭力固定之夾持式支撐座訊號圖 89
圖4.13 以60 lb-ft扭力固定之夾持式支撐座訊號圖 89
圖4.14 扭力負載為60 lb-ft的夾持式支撐座實驗立體訊號 90
圖4.15 夾持式支撐座實驗之人工缺陷設置 90
圖4.16 夾持式支撐座實驗量測1 91
圖4.17 夾持式支撐座實驗量測2 91
圖4.18 夾持式支撐座實驗量測3 92
圖4.19 夾持式支撐座實驗量測4 92
圖4.20 夾持式支撐座實驗量測5 93
圖4.21 縱向銲接支撐座原始A掃描訊號與實際管線對應位置 100
圖4.22 縱向銲接支撐座原始訊號 100
圖4.23 縱向銲接支撐座銲接前端加入人工缺陷(深度1 mm)之量測訊號 101
圖4.24 縱向銲接支撐座銲接前端加入人工缺陷(深度2 mm)之量測訊號 101
圖4.25 縱向銲接支撐末端與前端訊號比值 102
圖4.26 縱向銲接支撐座實驗量測1 102
圖4.27 縱向銲接支撐座實驗量測2 103
圖4.28 縱向銲接支撐座實驗量測3 103
圖4.29 縱向銲接支撐座實驗量測4 104
圖4.30 縱向銲接支撐座實驗量測5 104
圖4.31 將換能器移至支撐座另一端進行量測 105
圖4.32 換能器移至支撐座另一端之實驗量測與現場配置圖 105
圖4.33 短程導波技術之解析度實驗設置 106
圖4.34 軸向解析度實驗量測結果 107
圖4.35 周向解析度實驗量測結果 108
圖4.36 未加入人工缺陷之周向銲接支撐座特徵訊號與實際位置對應圖 114
圖4.37 周向銲接支撐座之射線檢測 115
圖4.38 周向銲接支撐座實驗量測1 115
圖4.39 周向銲接支撐座實驗量測2 116
圖4.40 周向銲接支撐座實驗量測3 116
圖4.41 周向銲接支撐座實驗量測4 117
圖4.42 周向銲接支撐座實驗量測5 117
圖4.43 以不同角度黏貼參考塊之缺陷指向性實驗設置 118
圖4.44 以不同角度黏貼參考塊之缺陷指向性實驗量測結果 118
圖4.45 4吋管缺陷檢測靈敏度實驗設置圖 122
圖4.46 4吋管缺陷檢測靈敏度實驗量測圖(缺陷深度0.5 mm) 122
圖4.47 4吋管缺陷檢測靈敏度實驗量測圖(缺陷深度0.6 mm) 123
圖4.48 6吋管缺陷檢測靈敏度實驗設置圖 123
圖4.49 6吋管缺陷檢測靈敏度實驗量測圖(缺陷深度0.5 mm) 124
圖4.49 6吋管缺陷檢測靈敏度實驗量測圖(缺陷深度0.6 mm) 124

表目錄
表3.1 波束擴散模擬之參數設定 42
表3.2 波束擴散角度表 42
表3.3 波束擴散寬度表 43
表3.4 各管徑波束擴散方程式 43
表4.1 簡支撐座實驗之訊號分析表 77
表4.2 夾持式支撐座實驗之訊號分析表 86
表4.3 縱向銲接支撐座實驗之訊號分析表 99
表4.4 周向銲接支撐座實驗訊號分析表 113
表4.5 參考塊之缺陷指向性實驗訊號分析表 113
表4.6 缺陷檢測靈敏度分析 121
參考文獻 References
1. 台灣高雄氣爆事故。2014年10月2號,取自http://zh.wikipedia.org/wiki/2014年台灣高雄氣爆事故。
2. 吳永豪,石化廠管線支撐座腐蝕偵測技術研究,中華民國行政院勞工委員會勞工衛生安全研究所,中華民國88年10月。
3. M. J. Quarry, A Time Delay Comb Transducer for Guided Wave Mode Tuning in Piping, Ph.D Thesis, the Pennsylvania State University, May 2000.
4. Wavemaker G3 Procedure Based Inspector Training Manual, Guided Ultrasonics Ltd., Nottingham, UK, 2007.
5. D. N. Alleyne and P. Cawley, “The Interaction of Lamb Waves with Defects,” IEEE Trans Ultrason Ferroelectr Freq Control, Vol. 39, pp. 381-397, 1992.
6. M. J. S. Lowe, D. N. Alleyne and P. Cawley, “Defect Detection in Pipes using Guided Waves,” Ultrasonics, Vol. 36, pp. 147-154, 1998.
7. P. Cawley and D. N. Alleyne, “The Use of Lamb Waves for the Long Range Inspection of Large Structures,” Ultrasonics, Vol. 34, pp. 287-290, 1998.
8. 中華民國行政院勞工委員會。台勞職檢字第111011號公告。中華民國83年12月5日。
9. ASME B31.3, “Process Piping Guide,” American Society of Mechanical Engineers, Washington D.C., 2006.
10. 張仁榮,煉油廠管線局部及高溫腐蝕壽命評估和管線檢查策略之研究,國立雲林科技大學工程科技研究所博士論文,中華民國93年4月。
11. S. Yang, P. Lee and J. Cheng, “Effect of Welded Pipe Support Brackets on Torsional Guided Wave Propogation,” Materials Evaluation, Vol. 67, pp. 935-944, 2009.
12. J. A. Mcfadden, “Radial Vibrations of Thick-walled Hollow Cylinders,” Journal of the Acoustical Society of America, Vol. 26, pp. 714-715, 1954.
13. P. M. Naghdi and R. M. Cooper, “Propagation of Elastic Wave in Cylindrical Shells. Including the Effect of Transverse Shear and Rotatory Intertia,” Journal of the Acoustical Society of America, Vol. 28, pp. 56-63, 1956.
14. D. C. Gazis, “Three-dimensional Investigation of the Propagation of Waves in Hollow Circular Cylinders. I. Analytical Foundation,” Journal of the Acoustical Society of America, Vol. 31, pp. 568-573, 1959.
15. D. C. Gazis, “Three-dimensional Investigation of the Propagation of Waves in Hollow Circular Cylinders.Ⅱ. Numerical Results,” Journal of the Acoustical Society of America, Vol. 31, pp. 573-578, 1959.
16. M. J. S. Lowe, D. N. Alleyne and P. Cawley, “Defect Detection in Pipes using Guided Waves,” Ultrasonics, Vol. 36, pp. 147-154, 1998.
17. D. N. Alleyne, P. Cawley and M. Lowe, “The Mode Conversion of a Guided Wave by a Part-Circumferential Notch in a Pipe,” Journal of Applied Mechanics, Vol. 65, pp. 649-656, 1998.
18. P. Cawley, M. J. S. Lowe, F. Simonetti, C. Chevalier and A. G. Roosenbrand, “The Variation of the Reflection Coefficient of Extensional Guided Waves in Pipes from Defects as a Function of Defect Depth, Axial Extent, Circumferential Extent and Frequency,” Journal of Mechanical Engineering Science, Vol. 216, pp. 1131-1143, 1998.
19. P. Wilcox, M. J. S. Lowe and P. Cawley, “The Effect of the Dispersion on Long-Range Inspection using Ultrasonic Guided Waves,” NDT&E International, Vol. 34, pp. 1-9, 2001.
20. R. Carandente and P. Cawley, “The Effect of Complex Defect Profiles on the Reflection of the Fundamental Torsional Mode in Pipes,” NDT&E International, Vol. 46, pp. 41-47, 2012.
21. R. Carandente, A. Løvstad and P. Cawley, “The Influence of Sharp Edges in Corrosion Profiles on the Reflection of Guided Waves,” NDT&E International, Vol. 52, pp. 57-68, 2012.
22. M. Hirao and H. Ogi, EMATS for Science and Industry: Noncontacting Ultrasonic Measurements, London: Kluwer Academic Publishers, 2003.
23. R. D. James and M. Wutting, “Magnetostriction of Martensite,” Philosophical Magazine A, Vol. 77, pp. 1273-1299, 1998.
24. R. B. Thompson, “New Configurations For the Electromagnetic Generation of SH Waves in Ferromagnetic Materials,” IEEE Ultrasonics Symposium, Vol. 1, pp. 374-378, 1978.
25. R. B. Thompson, “Generation of Horizontally Polarized Shear Waves in Ferromagnetic Materials Using Magnetostrictively Coupled Meander-coil Electromagnetic Transducers,” Appl. Phys., Vol. 34, pp. 175-177, 1979.
26. B. Igarashi and G. A. Alers, “Excitation of Bulk Shear Waves in Steel by Magnetostrictive Coupling,” IEEE Ultrasonics Symposium, Vol. 1, pp. 896-902 1998.
27. J. Gauthier, V. Mustafa and A. Chahbaz, “EMAT Generation of Horizontally Polarized Guided Shear Waves For Ultrasonic Pipe Inspection,” International Pipeline Conference, Vol. 1, pp. 327-334, 1998.
28. M. Hirao and H. Ogi, “An SH-wave EMAT Technique for Gas Pipeline Inspection,” NDT&E International, Vol. 32, pp 127-132, 1999.
29. W. Li and Y. Cho, “Quantification and Imaging of Corrosion Wall Thinning Using Shear Horizontal Guided Waves Generated by Magnetostrictive Sensors,” Sensors and Actuators A: Physical, Vol. 232, pp. 251-258, 2015.
30. J. Cheng, S. Yang and B. Li, “Guided Wave Attenuation in Clamp Support Mounted Pipe,” Materials Evaluation, Vol. 67, pp. 327-332, 2007.
31. A. Galvagni and P. Cawley, “The Reflection of Guided Waves from Simple Supports in Pipes,” Journal of the Acoustical Society of America, Vol. 129, pp. 1869-1880 , 2011.
32. D. N. Alleyne, M. J. S. Lowe and P. Cawley, “Detection of Corrosion in Pipe using Lamb Waves,” Review of Progress in Quantitative Nondestructive Evaluation, Vol. 14, pp. 2073-2080, 1995.
33. C. H. Yew, “Using Ultrasonic SH Waves to Estimate the Quality of Adhesive Bonds: A Preliminary Study,” Journal of the Acoustical Society of America, Vol. 76(2), pp. 525-531, 1984.
34. H. J. Salzburger and W. Repplinger, “Thickness Measurements of Sheets and Plates with Horizontally Polarized Guided Plate Waves (SH-Modes) and Electromagnetic Ultrasonic (EMUS) Transducers,” Nondestructive Testing, Vol. 4, pp. 2314-2321, 2002.
35. J. L. Rose, Ultrasonic Waves in Solid Media, New York: Cambridge University Press, 1999.
36. J. D. Achenbach, Wave Propagation in Elastic Solid, New York: North-Holland, 1984.
37. X. Zhao and J. L. Rose, “Guided circumferential shear horizontal waves in an isotropic hollow cylinder,” Journal of the Acoustical Society of America, Vol. 115(5), pp. 1912-1916, 2004.
38. W. Luo, X. Zhao and J. L. Rose, “A Guided Wave Plate Experiment for a Pipe,” Journal of Pressure Vessel Technology, Vol. 127, pp. 345-350, 2005.
39. B. Pavlakovic, M. J. S. Lowe, D. N. Alleyne and P. Cawley, “DISPERSE: A General Purpose Program for Creating Dispersion Curve,” Review of Progress in Quantitative Nondestructive Evaluation, Vol. 16, pp. 185-192, 1997.
40. 林書玉,超聲換能器的原理及設計,科學出版社,中華民國93年6月。
41. X. Zhao and D. G. Lord, “Application of the Villari Effect to Electric Power Harvesting,” Appl. Phys., Vol. 99, pp. 08M703, 2006.
42. B. Igarashi, G. A. Alers and P. T. Purtscher, “Magnetostrictive EMAT Efficiency as a Materials Characterization Tool,” Review of Progress in Quantitative Nondestructive Evaluation, Vol 16, pp. 1485-1492, 1997.
43. 電磁超聲波設備量測應用之參考塊。高雄市:台灣金屬材料品管股份有限公司。
44. 李羊林,感測器與檢測技術,清華大學出版社,2013。
45. 彭錦銅,旋轉編碼器的認識,中華民國行政院勞工委員會職業訓練局,中華民國90年12月。
46. G. Zhai, T. Jiang and L. Kang, “Analysis of Multiple Wavelengths of Lamb Waves Generated by Meander-line Coil EMATs,” Ultrasonics, Vol. 54, pp. 632-636, 2014.
47. 電磁超聲波設備輔助夾具。高雄市:台灣金屬材料品管股份有限公司。
48. P. Wilcox, M. Evans, O. Diligent, M. Lowe and P. Cawley, “Dispersion and Excitability of Guided Acoustic Waves in Isotropic Beams with Arbitrary Cross Section,” Review of Progress in Quatitative NDE, Vol. 11, pp. 203-210, 2002.
49. 張宗偉,彎管對導波波傳遞之影響,國立中山大學機械與機電工程研究所碩士論文,中華民國96年7月。
50. 郭俊宏,管路中夾持式支撐架對導波T(0,1)之影響與其模擬,國立中山大學機械與機電工程研究所碩士論文,中華民國96年7月。
51. 台灣金屬材料品管股份有限公司,管線之周向銲接支撐處RT檢測報告,高雄市,中華民國104年9月。
52. F. Benmeddour, F. Treyssede, and L. Laguerre, “Numerical Modeling of Guided Wave Interaction with Non-axisymmetric Cracks in Elastic Cylinders,” International Journal of Solids and Structures, Vol. 48, pp. 764-774, 2011.
53. L. Moreau, M. Caleap, A. Velichko and P. Wilcox, “Scattering of Guided Waves by Flat-bottomed Cavities with Irregular Shapes,” Wave Motion, Vol. 49, pp. 375-387, 2012.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code