Responsive image
博碩士論文 etd-0225112-191509 詳細資訊
Title page for etd-0225112-191509
論文名稱
Title
鈦薄膜經陽極處理與熱處理後形成一氧化鈦與銳鈦礦相變化之機制
Transformation mechanisms to TiO and anatase from Ti thin film by anodizing and thermal annealing treatments
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
62
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-02-24
繳交日期
Date of Submission
2012-02-25
關鍵字
Keywords
熱處理、穿透式電子顯微鏡、非晶質相、X光繞射儀、一氧化鈦、銳鈦礦、陽極氧化
TiO, Anatase, Thermal annealing, Anodization, transmission electron microscopy (TEM), Amorphous phase, XRD
統計
Statistics
本論文已被瀏覽 5683 次,被下載 5
The thesis/dissertation has been browsed 5683 times, has been downloaded 5 times.
中文摘要
本研究探討鈦薄膜經陽極處理及氧化處理後之相變化,分析鈦薄膜相變化至一氧化鈦相、銳鈦礦相和金紅石相。 將利用X光繞射儀、穿透式電子顯微鏡和X光電子能譜儀來觀察其生成相、微結構以及相變化之機制。

第一章是探討鈦薄膜經陽極處理後之相變化,雖然X光繞射儀僅觀察到非晶質的氧化鈦相,但由穿透式電子顯微鏡可觀察到立方晶一氧化鈦,其晶粒小於10 奈米,並由X光電子能譜儀可偵測到Ti2+與Ti4+共存。 陽極處理試片再以500-550 oC在大氣中熱處理後,觀察到銳鈦礦相存在。 隨著溫度升高,隨著銳鈦礦相之增加且一氧化鈦相漸漸消失。 若不經陽極處理的鈦薄膜以同樣的溫度,經熱處理後只得到金紅石相。 本研究結果指出一氧化鈦相可以誘發銳鈦礦相的成核與生長,因為一氧化鈦相與銳鈦礦相有著相似的結構。

第二章是以穿透式電子顯微鏡觀察鈦薄膜經由陽極處理與熱處理後,鈦相變化至一氧化鈦相再變化至銳鈦礦相之機制。 將磊晶鈦薄膜生長在(001)方向的單晶鹽基板上,可以得到兩組方向的組織,經陽極處理後之試片除了非晶質的氧化鈦相之外,且觀察到鈦與一氧化鈦的晶向關係為( )Ti // (220)TiO。 再經熱處理後一氧化鈦相變化至銳鈦礦相其晶向關係為{200}TiO //{200}A。由此處理方式可以得到純的銳鈦礦相。
Abstract
The phase transformation of anodized Ti film has been studied. Although X-ray diffraction detected only the amorphous TiO2 phase, transmission electron microscopy analysis showed that TiO nanocrystallites less than 10 nm in size were also present, which was further supported by x-ray photoelectron spectroscopy analysis. Anatase was found to appear gradually by annealing the as-anodized specimen in air at 500–550 oC, which was accompanied by a simultaneous disappearance of TiO nanocrystallites. In contrast, only rutile is formed by annealing the Ti film at the same temperatures. The results indicate that TiO can induce the formation of anatase, which is explained by the close similarity between their structures. (Chapter 1)

Anatase phase of TiO2 has been shown to have very good biocompability. It was frequently observed on Ti surfaces after anodizing and thermal annealing treatments. In this report the mechanisms of the Ti to TiO and the TiO to anatase phase transitions in anodizing and annealing treatments of Ti have been studied by transmission electron microscopy. Ti thin films of two strong textures were first grown on the (001)NaCl substrates. In addition to amorphous TiO2, the anodization treatment caused the formation of TiO with an orientation relationship of (11-20)Ti // (220)TiO with Ti. The subsequent thermal annealing treatment caused the TiO to anatase transition with an orientation relationship of {200}TiO //{200}A. Pure anatase film was prepared by this method. (Chapter 2)
目次 Table of Contents
論文摘要(中)………………………………………………………………………Ⅰ
Abstract……………………………………………………………………………Ⅱ
Contents……………………………………………………………………………Ⅳ
List of Figure………………………………………………………………………Ⅵ


Chapter 1
Formation of Anatase and TiO from Ti Thin Film after Anodic Treatment and Thermal Annealing
1.1. Introduction……………………………………………………………………...1
1.2. Experimental……………………………………………………………………..3
1.3. Results……………………………………………………………………………5
1.4. Discussion………………………………………………………………………...9
1.5. Conclusions…………………………………………………………………..…11
Figures……………………………………………………………………………....13


Chapter 2
The Ti to TiO and TiO to Anatase Transformations Induced by Anodizing and Annealing Treatments of Ti thin film
2.1. Introduction…………………………………………………………………..27
2.2. Experimental………………………………………………………………….29
2.3. Results and Discussion……………………………………………………….31
2.3.1 Anodization of Ti film
2.3.2 Annealing of anodized film
2.3.3 Oxidation of as-deposited Ti film
2.4. Conclusions……………………………………………...……………………...37
Figures……………………………………………………………………………….38

Reference…………………………………………………………………………..47
參考文獻 References
Arsov L. D., Kormann C., Plieth W., J. Electrochem. Soc., 138, 2964 (1991).
Carlson S. L., Rostlunt T. R., Abrektsson B., Brånemark P. I., Acta Orthop. Scand., 57, 285 (1986).
Cheng H. C., Lee S. Y., Chen C. C., Shyng Y. C., Ou K. L., J. Electrochem. Soc., 154, E13 (2007).
Chung Y. L., Gan D. S., Ou K. L., Chiou S. Y., J. Electrochem. Soc., 158, C319 (2011).
Diamanti M. V., Pedeferri M. P., Corros. Sci., 49, 939 (2007).
Exarhos G. J., J. Vac. Sci. Tech., A 4, 2962 (1986).
Fujibayashi S., Nakamura T., Nishiguchi S., Tamura J., Uchida M., Kim H. M., Kokubo T., J. Biomed. Mater. Res., 56, 562 (2001).
He J., Zhou W., Zhou X., Zhong X., Zhang X., Wan P., Zhu B., Chen W., J. Mater Sci. Mater. Med., 19, 3465 (2008).
Habazaki H., Uozumi M., Konno H., Shimizu K., Skeldon P., Thompson G. E., Corros. Sci., 45, 2063 (2003).
Hannor D. A. H., Sorrell C.C., J. Mater. Sci., 46, 855 (2011).
Hass G., Vacuum, 11, 331 (1952).

Hengerer R., Bolliger B., Erbudak M., Grätzel M., Surf. Sci., 460, 162 (2000).
Jobim M., Taborelli M., Descouts P., J. Appl. Phys., 77, 5149 (1995).
Kasemo B., J. Prosthet. Dent., 49, 832 (1983).
Kao C. H., Yeh S. W., Huang H. L., Gan D., Shen P., J. Phys. Chem. C., 115, 5648 (2011).
Löbl P., Huppertz M., Mergel D., Thin Solid Films, 251, 72 (1994).
Lin C. M., Yen S. K., Mater. Sci. Eng. C, 26, 54 (2006).
LaGrange T., Campbell G. H., Colvin J. D., Reed B., King W. E., J. Mater. Sci., 41, 4440, (2006).
Martin N.. Rousselot C., Rondot D., Palmino F., Mercier R., Thin Solid Films, 300, 113 (1997).
Mor G. K., Varghese O. K., Paulose M., Grimes C. A., Adv. Funct. Mater., 15, 1291 (2005).
Meng X., Lee T. Y., Chen H., Shin D. W., Kwon K. W., Kwon S. J., Yoo J. B., J. Nanosci. Nanotechno., 10, 4259 (2010).
Masahashi N., Mizukoshi Y., Semboshi S., Ohtsu N., Appl. Catal. B-Environ, 90, 255 (2009).
Masahashi N., Semboshi S., Ohtsu N., Oku M., Thin Solid Films, 516, 7488 (2008).

Narayanan R., Seshadri S. K., J. Appl. Electrochem., 36, 475 (2006).
Ohtsuka T., Guo J., Sato N., J. Electrochem. Soc., 133, 2473 (1986).
Roman I., Fratila C., Vasile E., Petre A., Soare M. L., Mater. Sci. Eng. B, 165, 207 (2009).
Rez P., Weiss J. K., Medlin D. L., Howitt D. G., Microsc. Microanal. Microstruct., 6, 433 (1995).
Reddy M. V., Jose R., Teng T. H., Chowdari B. V. R., S. Ramakrishna, Electrochim. Acta., 55, 3109 (2010).
Solar R. J., Pollack S. R., Korostoff E., J. Biomed. Mater. Res., 13, 217 (1979).
Shibata T., Zhu Y. C., Corros. Sci., 37, 253 (1995).
Sáfrán G., Geszti O., Barna P.B. and Günter J.R., Thin Solid Films, 229, 37 (1993).
Ting C. C., Chen S. Y., Liu D. M., J. App. Phys., 88, 4628 (2000).
Uchida M., Kim H. M., Kokubo T., Fujibayashi S., Nakamura T., J. Biomed. Mater. Res., 64A, 164 (2003).
Velten D., Biehl V., Aubertin F., Valeske B., Possart W., Breme J., J. Biomed. Mater. Res., 59, 18 (2002).
Xie Y. B., Li X. Z., Mater. Chem. Phys., 95, 39 (2006).
Yang X. F., Chen Y., Yang F., He F. M., Zhao S. F., Dent Mater, 25, 473 (2009).
Yamada Y., Kasukabe Y., Nagataand S. and Yamaguchi S., Jpn. J. Appl. Phys., 29, L1888 (1990).
Yamada Y., Kasukabe Y., Yoshida K., Jpn. J. Appl. Phys., 29, 706 (1990).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.117.142.248
論文開放下載的時間是 校外不公開

Your IP address is 18.117.142.248
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code