Responsive image
博碩士論文 etd-0226115-110118 詳細資訊
Title page for etd-0226115-110118
論文名稱
Title
以多重感測器融合應用於個人定位與三維建圖系統開發
Application of multi-sensor fusion to develop a personal location and 3D mapping system
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
84
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-03-13
繳交日期
Date of Submission
2015-03-26
關鍵字
Keywords
即時定位與建圖、Kinect、慣性量測單元、雷射測距儀、延伸式卡爾曼濾波器
SLAM, Kinect, IMU, Laser Scanner, EKF
統計
Statistics
本論文已被瀏覽 5679 次,被下載 98
The thesis/dissertation has been browsed 5679 times, has been downloaded 98 times.
中文摘要
近年來,室內行人定位系統逐漸發展起來,大多是根據信號的強弱程度來估測使用者的位置或使用感測器量測行人運動物理量進而推得每個時間點的所在位置完成定位,以解決全球定位系統於室內脫鎖的情況。
本論文期望能藉由整合微軟產品Kinect、雷射測距儀與慣性量測單元等量測資訊,開發出一套以行人背負感測器的三維室內建圖與即時定位輔助系統,在行走間同時建立出三維地圖。通過安裝於腰間的慣性量測單元與雷射測距儀資訊,以延伸式卡爾曼濾波器,修正演算法積分造成的累積誤差,透過方位推估法做到行人即時定位。Kinect感測器可得到彩色影像與深度資訊,彩色影像配合GPU-SURF演算法得到影像特徵點並做匹配以尋找影像之間重疊的部分,並以隨機樣本一致性演算法的除錯機制挑選出正確的特徵點對,最後以奇異值分解計算位移量以建立三維彩色點雲圖像。藉由感測器結合行人定位資訊完成室內三維重建功能,以3D立體地圖的方式呈現視覺化、立體化的效果,使建物資訊更完整的呈現。
Abstract
In recent years, the technology of indoor pedestrian positioning system has been developed. This technology utilizes sensors received signal strength indicator to determine the user location, or determine the movement of human and measure the distance of walking to solve the problem of GPS out-of-lock.
This thesis presents a real-time simultaneous localization and mapping system based on fusing Microsoft Kinect, Hokuyo Laser scanner and Inertial Measurement Unit sensors, to developing a human-portable 3D localization and mapping system. With the information of an Inertial Measurement Unit (IMU) and Laser Scanner sensors mounted on the waist, the accumulated error of velocity can be corrected by the extended Kalman filter algorithm. Besides, the dead reckoning method is used to obtain the information of location. The system can measure color images and depth images from Kinect sensor, extracting visual features from the color images. The correspondent extracted features are matched with adjacent images with additional RANSAC outlier removal procedure to select correct feature points. Finally the Singular Value Decomposition (SVD) is used to finding the optimal rotation and translation between corresponding 3D points to create dense 3D environment representations. By combining the sensors and information of pedestrian positioning to presents the 3D indoor map building system and stereoscopic map for visualization purposes.
目次 Table of Contents
論文審定書 i
誌謝 ii
中文摘要 iii
Abstract iv
目 錄 v
圖 次 viii
表 次 xii
第一章 緒論 1
1-1 研究動機 1
1-2 研究背景 3
1-3 論文貢獻 9
1-4 章節簡介 9
第二章 系統概述 11
2-1 系統簡介 11
2-2 系統架構 12
2-2-1 RGBD感測器 13
2-2-2 慣性量測單元 14
2-2-3 雷射測距儀 15
2-3 作業系統與軟體開發套件 16
2-3-1 Visual Studio 16
2-3-2 OpenNI 17
2-3-3 OpenGL 18
2-3-4 OpenCV 20
第三章 系統實現 21
3-1 RGBD即時定位建圖系統[15][19] 21
3-1-1 特徵點萃取 22
3-1-2 RANSAC(Random Sample Consensus)演算法 24
3-1-3 SVD演算法計算平移與旋轉矩陣 26
3-2 IMU/Laser即時定位建圖系統[9][10] 29
3-2-1 延伸卡爾曼濾波器應用於行人定位 30
3-2-2 大地座標轉換 32
3-2-3 雷射測距儀資料處理 36
3-2-4 最近點迭代演算法 39
3-2-5 卡爾曼濾波器模型 42
3-3 多感測器整合建圖系統 44
第四章 實驗結果 51
4-1 定位實驗結果 51
4-2 定位與建圖結果 52
4-2-1 狹窄走道 52
4-2-2 樓層大廳 54
4-2-3 上下樓梯 58
4-3 輪椅平台定位建圖系統 62
4-4 實驗結果討論 64
第五章 結論與未來展望 65
5-1 結論 65
5-2 未來展望 66
參考文獻 67
參考文獻 References
[1] Google街景背包「可借你上玉山」http://www.appledaily.com.tw/appledaily/article/headline/20130717/35155443/
[2] 不再迷路!Google Map可查台北車站室內街景http://travel.ettoday.net/article/281718.htm
[3] Apple buys indoor location company WifiSLAM http://gigaom.com/2013/03/23/apple-buys-indoor-mapping-company-wifislam/
[4] S. H. Shin and C. G. Park, “Adaptive step length estimation algorithm using optimal parameters and movement status awareness,” Journal of Medical Engineering and Physics, 2011, pp. 1064 – 1071.
[5] S. H. Shin, C. G. Park, J. W. Kim, H. S. Hong and J. M. Lee, “Adaptive step length estimation algorithm using low-cost MEMS inertial sensors,” IEEE Conference on Sensors Applications Symposium, 2007, pp. 1 – 5.
[6] B. Stephane, “A helmet- mounted pedestrian dead reckoning system,” IEEE International Forum Applied Wearable Computing, 2006, pp. 1 – 11.
[7] R. Feliz, E. Zalama and J. Gomez, “Pedestrian Tracking Using Inertial Sensors” Journal of Physical Agents, 2009, pp. 35 – 43.
[8] J. W. Kim, H. J. Jang, D. H. Hwang and C. Park, “A Step Stride and Heading Determination for the Pedestrian Navigation System,” Journal of Global Positioning Systems, 2004, pp. 273 – 279.
[9] M. Baglietto, A. Sgorbissa, D. Verda and R. Zaccaria, “Human navigation and mapping with a 6DOF IMU and a laser scanner,” Journal of Robotics and Autonomous Systems, 2011, pp. 1060 – 1069.
[10] B. Cinaz, H. Kenn, “HeadSLAM – simultaneous localization and mapping with head-mounted inertial and laser range sensors”, 12th IEEE International Symposium on Wearable Computers, 2008, pp.3 – 10.
[11] X. Meng, F. Hong, Y. Chen, “Monocular simultaneous localization and mapping with a modified covariance Extended Kalman Filter,” IEEE International Conference on Intelligent Computing and Intelligent Systems, 2009, 2009, pp. 900 – 903.
[12] J. Smisek, M. Jancosek and T. Pajdla, “3D with Kinect,” IEEE International Conference on Computer Vision Workshops, 2011, pp. 1154 – 1160.
[13] V. Högman, “Building a 3D map from RGB-D sensors,” Master’s Thesis, Kungliga Tekniska Högskolan, Computer Science, 2012.
[14] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” International Journal of Computer Vision, 2004, pp. 91 – 110.
[15] P. Henry, M. Krainin, E. Herbst, X. Ren and D. Fox, “RGB-D mapping: using Kinect-style depth cameras for dense 3D modeling of indoor environments,” International Journal of Robotics Research, 2012, pp. 647 – 663.
[16] B. Rister, G. H. Wang, M. Wu and J. R. Cavallaro, “A fast and efficient sift detector using the mobile GPU,” IEEE International Conference on Acoustics, Speech and Signal Processing, 2013, pp. 2674 – 2678.
[17] M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography,” Magazine Communications of the ACM, 1981, pp. 381 – 395.
[18] S. Rusinkiewicz and M. Levoy, “Efficient variants of the ICP algorithm,” Conference on 3‐D Digital Imaging and Modeling, 2001, pp. 145 – 152.
[19] F. Endres, J. Hess, N. Engelhard, J. Sturm, D. Cremers and W. Burgard, “An evaluation of the RGB-D SLAM system,” IEEE International Conference on Robotics and Automation, 2012, pp. 1691 – 1696.
[20] H. Bay, A. Ess, T. Tuytelaars and L. V. Gool, “Speeded-up robust features (SURF) ,” Computer Vision and Image Understanding, 2008, pp. 346 – 359.
[21] E. Rublee, V. Rabaud, K. Konolige and G. Bradski, “ORB: an efficient alternative to SIFT or SURF,” IEEE International Conference on Computer Vision, 2011, pp. 2564 – 2571.
[22] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli, J. Shotton, S. Hodges, D. Freeman, A. Davison, and A. Fitzgibbon, “Kinect fusion: real-time 3D reconstruction and interaction using a moving depth camera,” ACM Symposium on User Interface Software and Technology, 2011, pp. 559–568.
[23] T. Whelan, M. Kaess, M. Fallon, H. Johannsson, J. Leonard and J. McDonald, “Kintinuous: spatially extended Kinect fusion,” MIT Computer Science and Artificial Intelligence Laboratory Technical Report, 2012.
[24] A. Bethencourt and L. Jaulin, “3D reconstruction using interval methods on the Kinect device coupled with an IMU,” International Journal of Advanced Robotic Systems, 2013, pp. 1 – 10.
[25] L. Ling, E. Cheng, and I.S. Burnett, “An Iterated Extended Kalman Filter for 3D mapping via Kinect camera,” IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2013, pp. 1773 – 1777.
[26] D.W. Eggert, A. Lorusso, R.B. Fisher, “Estimating 3-D rigid body transformations: a comparison of four major algorithms,” Machine Vision and Applications, 1997, pp. 272 – 290.
[27] G. Welch and G. Bishop, “An Introduction to the Kalman Filter,” Master’s Thesis, University of North Carolina at Chapel Hill Department of Computer Science, 2001.
[28] P.J. Besl and N.D. McKay, “A method for registration of 3-D shapes,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, pp. 239 – 256.
[29] K. Khoshelham, S.O. Elberink. “Accuracy and Resolution of Kinect Depth Data for Indoor Mapping Applications,” Sensors, 2012, pp. 1437 – 1454.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code