Responsive image
博碩士論文 etd-0227115-172213 詳細資訊
Title page for etd-0227115-172213
論文名稱
Title
具日照度及溫度估測之太陽光伏發電最大功率追蹤
Maximum Power Point Tracking for Photovoltaic Generations with Solar Irradiance and Temperature Estimation
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
105
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-03-13
繳交日期
Date of Submission
2015-03-27
關鍵字
Keywords
擾動觀察法、狀態估測、最大功率追蹤、太陽光伏發電
Photovoltaic Generation, Maximum Power Point Tracking, State Estimation, Perturbation and Observation
統計
Statistics
本論文已被瀏覽 5769 次,被下載 0
The thesis/dissertation has been browsed 5769 times, has been downloaded 0 times.
中文摘要
太陽光伏發電(Photovoltaic Generation, PVG)輸出之電壓與電流隨日照度及面板溫度之變動而改變,任一太陽光伏發電在特定日照度與溫度下皆存在一最大功率輸出點(Maximum Power Point),因此為使太陽光伏發電能在不同日照度與溫度度下皆有最大輸出,最大功率追蹤(Maximum Power Point Tracking, MPPT)技術不可或缺。最大功率追蹤技術一直以來都是太陽光伏發電產業重要的研究課題,但如何在快速變動的氣候條件下以最少的損耗達到最大功率點有其困難度。
本論文設計並開發一具日照度及溫度估測之太陽光伏發電追蹤法,其擷取太陽光伏發電之電流與電壓,搭配太陽光伏發電之特性函數,透過狀態估測(State Estimation)直接計算出當下的日照度與溫度,並獲得此時的最大功率點。所提出之方法可有效縮短傳統擾動觀察法(Perturbation and Observation, P&O)暫態追蹤時間並降低追蹤所損失之功率。為驗證本文所提最大功率追蹤法的特點,本文分別利用模擬與實驗驗證此方法,並比對與傳統擾動觀察法在暫態追蹤時間與功率上的差異。結果證實所提出之方法可有效縮短傳統擾動觀察法暫態追蹤時間並提高追蹤之功率。
Abstract
The output power of Photovoltaic Generations (PVGs) varies with solar irradiance and temperature nonlinearly. Therefore, the Maximum Power Point Tracking (MPPT) is very important to operate PVG to harvest the maximum solar energy in real time. However, it is difficult to find the maximum power point in the rapidly changing weather conditions with minimal loss. This thesis proposes a state-estimation-based MPPT for PVGs. Based on the measured voltages and currents and the characteristic output function of PVG, the proposed MPPT uses state estimation to calculate the solar irradiance and temperature directly. The operating voltage of maximum power point can also be found immediately. The proposed MPPT can effectively reduce the maximum power tracking time of conventional MPPT methods and increase the harvested powers during MPPT. Simulation and experimental results comparing the proposed MPPT to a Perturbation and Observation (P&O) MPPT demonstrate the performance achieved by the proposed MPPT.
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 viii
表目錄 xi
第一章 緒論 1
1-1研究背景 1
1-2 研究動機 2
1-3 論文大綱 3
第二章 最大功率追蹤技術簡介 4
2-1太陽光伏介紹 4
2-1-1太陽光伏簡介 4
2-1-2太陽光伏種類 6
2-1-3太陽光伏電氣特性 9
2-2最大功率追蹤技術 12
2-2-1擾動觀察法 13
2-2-2電壓迴授法 14
2-2-3功率迴授法 14
2-2-4增量電導法 15
2-2-5粒子群演算法 16
2-2-6拋物線預測法 18
2-2-7模糊邏輯控制法 19
2-2-8神經網路法 20
2-2-9分數開路電壓法 20
2-2-10電流掃描法 21
2-2-11曲線擬合法 22
2-3各種演算法之比較 23
第三章 利用狀態估測之最大功率追蹤 25
3-1牛頓法及最小加權平方狀態估測法簡介 25
3-1-1牛頓法 26
3-1-2加權最小平方狀態估計法 27
3-2利用牛頓法之最大功率追蹤 28
3-3利用狀態估計之最大功率追蹤法 31
3-4結合其它之太陽光伏發電系統特性函數 35
第四章 新型太陽能最大功率追蹤系統軟硬體架構 37
4-1電路架構分析 37
4-1-1升壓式轉換器介紹 37
4-1-2升壓型轉換器連續導通模式分析 40
4-2升壓型轉換器元件參數設計 42
4-2-1電感器設計 43
4-2-2電容器設計 44
4-2-3決定元件參數 45
4-3周邊電路設計與實驗周邊 45
4-3-1取樣電路設計 46
4-3-2控制晶片設計 46
4-3-3PI控制 48
4-3-4太陽能模擬器 50
4-3-5太陽能模擬陣列軟體介面 50
4-3-6實驗電子負載 52
第五章 實驗結果 53
5-1最大功率追蹤系統模擬與實測規格 54
5-2本文方法與擾動觀察法模擬結果與比較 55
5-2-1單一日照度模擬比較 56
5-2-2變動日照度模擬比較 62
5-3本文方法與擾動觀察法實測結果與比較 69
5-3-1單一日照度實測比較 69
5-3-2變動日照度實測比較 78
第六章 結論與未來展望 89
6-1結論 89
6-2未來展望 90
參考文獻 91
參考文獻 References
[1] 丹尼爾.尤金、劉道捷,“能源大探索:石油即將枯竭?”,時報出版,2012年七月。
[2] “99-108年長期負載預測與電源開發規劃摘要報告”,經濟部能源局,100年1月。
[3] “2010年能源產業技術白皮書”,經濟部能源局、99年4月。
[4] “太陽能發電裝置容量年底達5百萬瓦”, http://www.epochtimes.com/b5/8/12/27/n2376878.htm
[5] 太陽能產業產業鏈簡介,http://ic.gretai.org.tw/introduce.php?ic=A100
[6] A. Pandey, N. Dasgupta, and A. K. Mukerjee, “High-performance algorithms for drift avoidance and fast tracking in solar MPPT system,” IEEE Trans. Energy Convers., vol. 23, no. 2, pp.681-689, Jun. 2008.
[7] 李奇樵,“新型變動步階擾動觀察法於最大功率追蹤之研究與實現”,台灣科技大學電機工程研究所,103年碩士論文。
[8] N. Femia, G. Petrone, G. Spagnuolo, and M. Vitelli, “Optimization of perturb and observe maximum power point tracking method,” IEEE Trans. Power Election., vol. 20, no. 4, pp. 963-973, Jul. 2005.
[9] J. Sachin and V. Agarwal, “An integrated hybrid power supply for distributed generation applications fed by nonconventional energy sources,” IEEE Trans. Energy Convers., vol. 23, no. 2, pp. 622-631, Jun. 2008.
[10] A.F. Boehringer, “Self-adapting dc converter for solar spacecraft power supply,” IEEE Trans. Aerosp. Electron. Syst., vol.AES-4,no.1, pp.102-111,Jan. 1968.
[11] L. Wu, Z. Zhao, and J. Liu, “A single-stage three-phase grid-connected photovoltaic system with modified MPPT method and reactive power compensation,” IEEE Trans. Energy Convers., vol.22, no.44, pp.881-886, Dec. 2007.
[12] M. A. S. Masoum, S.M.M. Badejani, and E.F. Fuchs, “Microprocessor – controlled new class of optimal battery chargers for photovoltaic applications,” IEEE Trans. Energy Convers., vol. 19, no. 3, pp.599-606,Sep. 2004.
[13] M. A. S. Masoum, H. Dehbonei, and E.F. Fuchs, “Theoretical and experimental analyses of photovoltaic systems with voltage and current-based maximum power-point tracking,” IEEE Trans. Energy Convers., vol. 17, no. 4,pp.514-522,Dec. 2002.
[14] T. Noguchi, S. Togashi, and R. Nakamoto, “Short-current pulse-based maximum-power-point tracking method for multiple photovoltaic-and-power-converter module system,” IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 217-223,Feb. 2002.
[15] T.L. Kottas, Y.S. Boutalis, and A.D. Karlis, “New maximum power point tracker for PV arrays using fuzzy controller in close cooperation with fuzzy cognitive networks,” IEEE Trans. Energy Convers., vol. 21,no. 3,pp. 793-803,Sep. 2006.
[16] Liang-Rui Chen, “A Biological Swarm Chasing Algorithm for Tracking the PV Maximum Power Point,” IEEE Trans. Energy Convers., vol. 25,no. 2,June 2010.
[17] “太陽光電資訊網,太陽光電發電原理”, http://solarpv.itri.org.tw/page2.html
[18] 戴寶通、鄭晃忠,“太陽光伏技術手冊”,台灣電子材料與元件協會,2008年6月。
[19] 林冠宇,「獨立型太陽能發電系統用準Z源換流器之設計與研製」國立台灣科技大學電機工程系碩士學位論文,民國102年7月。
[20] 翁敏航、楊茹媛、管鴻、晁成虎,「太陽光伏:原理、元件、材料、製程與檢測技術」東華書局,民國99年5月。
[21] 顧鴻濤,「太陽光伏元件導論:材料、元件、製程、系統」全威圖書,民國98年10月。
[22] K.H.Hussein, I Muta, T.Hoshino, and M. Osakada, “Maximum photovoltaic power tracking: an algorithm for rapidly changing atmospheric conditions,” IEE Proc. Gener. Transm. Distrib.,vol. 142, no.1, pp. 59-64 Jan. 1995.
[23] Z. Salameh, F. Dagher and W. A. Lynch, “Step-Down Maximum Power Point Tracker for Photovoltaic System,” Solar Energy, Vol. 46, No. 1, pp. 278-282, 1991.
[24] K. Harada, G. Zhao, “Controlled Power Interface Between Solar Cells and AC Source,” IEEE Trans. On Power Electronics, Vol. 8, No. 4, Oct. 1993, pp. 654-662.
[25] S. Singer and A. Braunstein, “Maximum Power Transfer from a Nonlinear Energy Source to an Arbitrary Load,” IEE Proceedings of Generation Transmission & Distribution, Vol. 134, No. 4, pp. 281-287, 1987.
[26] Fu-Sheng Pai, Ru-Min Chao, Shin Hong Ko, Tai-Sheng Lee, “Performance Evaluation of Parabolic Prediction to Maximum Power Point Tracking for PV Array,” IEEE Transactions on Sustainable energy, Vol. 2, No. 1, January 2011.
[27] R. M. Hilloowala and A. M. Sharaf, “A rule-based fuzzy logic controller for a PWM inverter in photo-voltaic energy conversion scheme,” in Proc. IEEE Ind. Appl. Soc. Annu. Meet., 1992, pp. 762-769.
[28] K. Ro and S. Rahman, “Two-loop controller for maximizing performance of a grid-connected photovoltaic-fuel cell hybrid power plant,” IEEE Trans. Energy Convers., vol.13, no. 3, pp, 276-281, Sep. 1998.
[29] J. J. Schoeman and J. D. van Wyk, “A simplified maximal power controller for terrestrial photovoltaic panel arrays,” in Proc. 13th Annu. IEEE Power Electron. Sepc. Conf., 1982, pp. 361-367.
[30] M. Bodur and M. Ermis, “Maximum power point tracking for low power photovoltaic solar panels,” in Proc. 7th Mediterranean Electrotechnical Conf., 1994, pp. 758-761.
[31] T. T. N. Khatib, A. Mohamed, N. Amin, and K. Sopian, “An efficient maximum power point tracking controller for photovoltaic systems using new boost converter design and improved control algorithm,” WSEAS Trans. Power Syst., vol. 5, no. 2, pp. 53–63, 2010.
[32] J. C. H. Phang, D. S. H. Chan, and J. R. Phillips, “Accurate analytical method for the extraction of solar cell,” Electron. Lett., vol. 20, no. 10, pp. 406–408, 1984.
[33] 賴伯榕、"擾動觀察法於最大功率追蹤之評估"、台灣科技大學電機工程研究所、103年碩士論文。
[34] Hadi Saadat, “Power System Analysis, ” McGraw Hill.
[35] E.Handschin, Ed., “Real time data processing using state estimation in electric power systems,” in Real Time Control of Electric Power Systems. London, U. K. :Elsevier, 1972, pp.29-57.
[36] A. Bose and K. A. Clements, “Real-time modeling of power networks, ” Proc. IEEE, vol. 75, pp. 1607-1622, Dec. 1987.
[37] F.F. Wu, “Power system state estimation: A survey, ” Elect. Power Eng. Syst., vol. 12, pp. 80-87, Jan. 1990.
[38] 梁適安,“交換式電源供給器之理論與實務設計”全華圖書股份有限公司
[39] 曾百由,“數位訊號控制器原理與應用,”宏友圖書開發股份有限公司,民國96年十一月。
[40] 馬學軍、方靈、康勇,“數位PI控制器的原理模擬與數位實現”華中科技大學 2005年十二月。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.118.32.213
論文開放下載的時間是 校外不公開

Your IP address is 18.118.32.213
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code