Responsive image
博碩士論文 etd-0228112-154543 詳細資訊
Title page for etd-0228112-154543
論文名稱
Title
以氧化一氧化鈦薄膜方法生成磊晶二氧化鈦薄膜於氯化鈉基板
Epitaxial Growth of TiO2 Thin Film on NaCl Substrate by Oxidation of TiO Thin Film
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
89
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-02-24
繳交日期
Date of Submission
2012-02-28
關鍵字
Keywords
氯化鈉、一氧化鈦、二氧化鈦、濺鍍、薄膜、穿透式電子顯微鏡
TiO2, TiO, NaCl, Sputtering, Thin Films, Transmission Electron Microscopy (TEM)
統計
Statistics
本論文已被瀏覽 5719 次,被下載 1632
The thesis/dissertation has been browsed 5719 times, has been downloaded 1632 times.
中文摘要
本研究以鈦為靶材,氯化鈉單晶為基板製備了具不同晶向的磊晶一氧化鈦薄膜。並探究其於不同氯化鈉平面上氧化生成磊晶二氧化鈦薄膜(銳鈦礦相或金紅石相)之成因。利用穿透式電子顯微鏡及傅氏轉換來分析相組成、微觀結構、及各界面的晶向關係。

本章實驗以穿透式電子顯微鏡研究在氯化鈉基板(001)平面上一氧化鈦到銳鈦礦相的相變化過程。實驗結果指出在大氣下熱氧化一氧化鈦薄膜將會誘導銳鈦礦相的生成;但將鈦金屬薄膜氧化則會生成金紅石相。在大氣熱氧化鈦金屬薄膜,氯化鈉基板會誘導磊晶一氧化鈦薄膜生成。更進一步的大氣熱氧化,使一部分的一氧化鈦薄膜相轉變為銳鈦礦相並且有一氧化鈦{200}平面平行於銳鈦礦相{200}平面的晶向關係。高解析的晶格影像分析指出相轉變後的薄膜中生成了非常高密度的不匹配差排。另外,在真空中熱退火可將銳鈦礦相逆轉變成一氧化鈦,並且降低了薄膜中差排的總數量。研究結果證實一氧化鈦相轉變至銳鈦礦相是由於二者間相似的結構所導致。(第一章)

據報導指出銳鈦礦相二氧化鈦的(001)平面具有良好的光活化性質。銳鈦礦相(001)平面的磊晶薄膜以往常製作於單晶鈦酸鍶與鋁酸鑭的基板上,本章實驗結果顯示其亦能夠生長於氯化鈉(001)基板上。氯化鈉基板的優點為便宜且容易製備。首先,將磊晶一氧化鈦(001)薄膜生長於氯化鈉(001)基板上。測試一氧化鈦至銳鈦礦相相轉變的溫度及時間範圍,可以簡便的大氣熱氧化方式製備出純磊晶銳鈦礦相的(001)薄膜。本章中亦討論了銳鈦礦相僅形成一個變異體的可能原因。(第二章)

本章實驗將磊晶金紅石相二氧化鈦的(100)薄膜製作於氯化鈉(111)基板,而不使用其他昂貴的基板。首先,藉由熱蒸鍍機台沉積含有少量鈦的磊晶一氧化鈦(111)薄膜於氯化鈉(111)基板。後續以大氣熱氧化使其相轉變為磊晶金紅石相(100)薄膜。使用穿透式電子顯微鏡分析生成相及其與基板間的晶向關係。由於在第一、二章中相似的實驗方法,使用氯化鈉(100)作為基板卻生成銳鈦礦相的(001)磊晶薄膜,乃以界面的不匹配程度及共位晶格面積大小來探討於不同基板上生成不同種類二氧化鈦相的原因。(第三章)
Abstract
Ti thin films were deposited by a radio frequency ion-beam sputtering system. Deposition resulted from sputtering a Ti target (99.995%) with an Ar ion beam. Epitaxial TiO thin films with different orientations, which came from oxidizing Ti thin films, were prepared on single-crystal NaCl substrate. The formation of epitaxial TiO2 thin films (anatase or rutile phase) by oxidation of epitaxial TiO thin films was investigated. The composition, microstructure, and orientation relationships between interfaces were analyzed by TEM and Fourier transformation in the present report.

Epitaxial TiO thin films with different orientations were prepared on single-crystal NaCl substrate in the present study. The formation of epitaxial TiO2 thin films (anatase or rutile) by oxidation of epitaxial TiO thin films, which were first grown on different NaCl surfaces, was investigated. The composition, microstructure, and orientation relationships between interfaces were analyzed by TEM and Fourier transformation in this report. The TiO to anatase phase transformation has been studied by transmission electron microscopy in this Article. It is shown that prior formation of TiO from Ti film can induce the formation of anatase by thermal oxidation in air, otherwise only rutile is formed. Ti film deposited on the NaCl (001) surface is induced to form epitaxial TiO film by thermal oxidation in air. Further thermal oxidation in air partially transformed TiO into anatase (A) with a parallel orientation relationship of {200}A // {200}TiO. Detailed analysis of the lattice fringes image of the specimen reveals the presence of very high density of misfit dislocations. The TiO to anatase transformation is reversible as further annealing in a vacuum can turn the anatase back into TiO and eliminates the misfit dislocations. The transformation is analyzed in terms of the crystal structure, orientation relationship, and the dislocation distribution, which show that the TiO to anatase transformation is due to the close similarity between their structures. (Chapter 1)

The anatase TiO2 (001) surface was shown to have superior photoreactivity. Epitaxial anatase (001) films used to be grown on single-crystal SrTiO3 and LaAlO3 substrates. It is shown in this report that these films can be grown also on the NaCl substrate, which is much cheaper and easily prepared. Epitaxial TiO (001) films were first grown on the NaCl (001) substrate. By testing the TiO-to-anatase transformation over temperature and time ranges, an epitaxial anatase (001) film was prepared by simple thermal oxidation in air. The formation of a single-variant anatase (001) film instead of a multiple-variant film is discussed in this report. (Chapter 2)

An epitaxial rutile (100) thin film has been grown on NaCl substrate instead of other more expensive substrates. An epitaxial TiO (111) thin film with minor Ti phase was first deposited on the NaCl (111) surface by thermal evaporation. It was then transformed into the epitaxial rutile (100) thin film by subsequent thermal oxidation in air. TEM was used to analyze the phases and the orientation relationship. Our previous result showed that an epitaxial anatase (001) film was formed on the NaCl (001) surface in a similar process. The substrate-dependent formation of different TiO2 phase is also discussed in terms of the mismatch of the interfaces. (Chapter 3)
目次 Table of Contents
論文審定書…. I
誌謝…………. II
Acknowledgement V
中文摘要……. VII
Abstract…….. IX
Contents…….. XII
Figure Captions XIV
Chapter 1…… 1
Study of the TiO to Anatase Transformation by Thermal Oxidation of Ti Film in Air 1
1.1. Introduction 1
1.2. Experimental Methods 5
1.3. Results 6
1.3.1 Formation of TiO, Anatase, and Rutile. 6
1.3.2 TiO to Anatase Transformation. 9
1.4. Discussion 11
1.4.1. Formation of Anatase by Prior Formation of TiO. 11
1.4.2. Microstructure of the TiO and Anatase Composite Film. 13
1.5. Conclusions 17

Chapter 2…… 34
Growth of Epitaxial Anatase TiO2 (001) Thin Film on NaCl (001) Substrate by Ion Beam Sputtering and Thermal Annealing 34
2.1. Introduction 34
2.2. Experimental Procedures 36
2.3. Results and Discussion 37
2.3.1. Microstructure analysis 37
2.3.2. Formation of single variant (001)A 39
2.4. Conclusions 41

Chapter 3 48
Growth of Epitaxial rutile TiO2 (100) thin film on the NaCl (111) substrate 48
3.1. Introduction 48
3.2. Experimental Procedures 50
3.3. Results and Discussion 51
3.4. Conclusions 55
References List 62
Vita...... 69
參考文獻 References
[1] Grätzel M., Rotzinger F.P. Chem. Phys. Lett. 1985, 118, 474-477.
[2] Augustynski, J. Electrochim. Acta 1993, 38, 43-46.
[3] Gnaser H., Huber B., Ziegler C. Encycl. Nanosci. Nanotechnol. 2004, 6, 505-535.
[4] Gao L., Zhang Q., Scr. Mater. 2001, 44, 1195-1198.
[5] Muscat J., Swamy V., Harrison N. M. Phys. Rev. B 2002, 65, 224112.
[6] Stafford U., Gray K. A., Kamat P. V., Varma A. Chem. Phys. Lett. 1993, 205, 55-61.
[7] Georg R., James R. B. J. Phys. Chem. 1995, 99, 4215-4224.
[8] Hurum D. C., Agrios A. G., Gray K. A. J. Phys. Chem. B 2003, 107, 4545-4549.
[9] Gribb A. A., Banfield J. F. Am. Mineral. 1997, 82, 717-728.
[10] Zhang H., Banfield J. F. J. Mater. Chem. 1998, 8, 2073-2076.
[11] Regan B. O., Grätzel M. Nature, 1991, 353, 737-740.
[12] Zhang Z., Wang C. C., Zakaria R., Ying J. Y. J. Phys. Chem. B 1998, 102, 10871-10878.
[13] Huang S.Y., Kavan L., Exnar I., Grätzel M. J. Electrochem. Soc. 1995, 142, L142-L144.
[14] Kavan L., Grätzel M., Rathousky J., Zukal A. J. Electrochem. Soc. 1996, 143, 394-400.
[15] Wicaksana D., Kobayashi A., Kinbara A. J. Vac. Sci. Technol. A 1992, 10, 1479-1482.
[16] Xu W.W., Kershaw R., Dwigh K., Wold A. Mater. Res. Bull. 1990, 25, 1385-1392.
[17] Suhail M. H., Rao G. M., Mohan S. J. Appl. Phys. 1992, 71, 1421-1427.
[18] Radecka M., Zakrzewska K., Czternaste H., Stapinski T. Appl. Surf. Sci. 1993, 65-66, 227-234.
[19] Lee W. G., Woo S. I., Kim J. C., Choi S. H., Oh K. H. Thin Solid Films 1994, 237, 105-111.
[20] Krishna D. S. R., Sun Y. Surf. Coat. Technol. 2005, 198, 447-453.
[21] Ting C. C., Chen S. Y., Liu D. M. J. Appl. Phys. 2000, 88, 4628-4633.
[22] Ting C. C., Chen S. Y., Liu D. M. Thin Solid Films 2002, 402, 290-295.
[23] Lee K. S., Park I. S. Scr. Mater. 2003, 48, 659-663.
[24] Kitazawa S., Choi Y., Yamamoto S. Vacuum 2004, 74, 637-642.
[25] Hengerer R., Bolliger B., Erbudak M., Grätzel M. Surf. Sci. 2000, 460, 162-169.
[26] Rez P., Weiss J. K., Medlin D. L., Howitt D. G. Microsc. Microanal. Microstruct. 1995, 6, 433-440.
[27] Yao J., Shao J., He H., Fan Z. Vacuum 2007, 81, 1023-1028.
[28] Zribi M., Kanzari M., Rezig B. Thin Solid Films 2008, 516, 1476-1479.
[29] Hass G. Vacuum 1952, 2, 331-345.
[30] Sáfrán G., Geszti, O., Barna P. B., Günter J. R. Thin Solid Films 1993, 229, 37-43.
[31] JCPDS file 21-1272.
[32] JCPDS file 08-0117.
[33] Reed-Hill R. E., Abbaschian R. Physical Metallurgy Principles Thomson: Boston 1991, p. 288.
[34] Briggs D. Seah M. P. Practical Surface Analysis Vol. 1 Auger and X-ray Photoelectron Spectroscopy; John Wiley and Sons: Chichester, UK, 1990; p 635.
[35] Tu K. N., Mayer J. W., Feldman L. C., Electronic Thin Film Science, Macmillan, New York, 1992, pp. 163.
[36] Fujishima A., Honda K. Nature 1972, 238, 37-38.
[37] Grätzel M., Nature 2001, 414, 338-344.
[38] Varghese O. K., Paulose M., LaTempa T. J., Grimes C. A. Nano Lett. 2009, 9, 731-737.
[39] Gong X. Q., Selloni A. J. Phys. Chem. B 2005, 109, 19560-19562.
[40] Barnard A. S., Zapol P. J. Phys. Chem. B 2004, 108, 18435-18440.
[41] Lazzeri M., Vittadini A., Selloni A. Phys. Rev. B 2001, 63, 155409.
[42] Yang H. G., Sun C. H., Qiao S. Z., Zou J., Liu G., Smith S. C., Cheng H. M., Lu G. Q., Nature 2008, 453, 638-642.
[43] Yang H. G., Liu G., Qiao S. Z., Sun C. H., Jin Y. G., Smith S. C., Zou J., Cheng H. M., Lu G. Q., J. Am. Chem. Soc. 2009, 131, 4078-4083.
[44] Herman G. S., Gao Y., Tran T. T., Osterwalder J. Surf. Sci. 2000, 447, 201-211.
[45] Sugiharto, Yamamoto S., Sumita T., Miyashita A. J. Phys.: Condens. Matter 2001, 13, 2875-2881.
[46] Herman G. S., Gao Y. Thin Solid Films 2001, 397, 157-161.
[47] Hsieh C. C., Wu K. H., Juang J. Y., Uen T. M., Lin J. Y., Gou Y. S. J. Appl. Phys. 2002, 92, 2518-2523.
[48] Miao L., Tanemura S., Jin P., Kaneko K., Terai A., Nabatova-Gabain N. J. Cryst. Growth 2003, 254, 100-106.
[49] Zhang Z. M. J. Mater. Res. 2005, 20, 292-294.
[50] Ohsawa T., Lyubinetsky I. V., Henderson M. A., Chambers S. A. J. Phys. Chem. C 2008, 112, 20050-20056.
[51] Chambers S. A., Ohsawa T., Wang C. M., Lyubinetsky I., Jaffe J. E. Surf. Sci. 2009, 603, 771-780.
[52] Chan K.Y. S., Goh G. K. L. J. Electrochem. Soc. 2009, 156, D231-D235.
[53] Lotnyk A., Senz S., Hesse D. Thin Solid Films 2007, 515, 3439-3447.
[54] Yamamoto S., Sumita T., Yamaki T., Miyashita A., Naramoto H., J. Cryst. Growth 2002, 237-239, 569-573.
[55] Kennedy R. J., Stampe P. A. J. Cryst. Growth 2003, 252, 333-342.
[56] Silva V. F., Bouquet V., Députier S., Boursicot S., Ollivier S., Weber I. T., Silva V. L., Santos I. M. G., Guilloux-Viry M., Perrin A. J. Appl. Crystallogr. 2010, 43, 1502-1512.
[57] Huang J. Y., Park B. H., Jan D., Pan X. Q., Zhu Y. T., Jia Q. X. Philos: Mag. A 2002, 82, 735-749.
[58] Jeong B. S., Budai J. D., Norton D. P. Thin Solid Films 2002, 422, 166-169.
[59] Jeong B. S., Norton D. P., Budai J. D., Jellison G. E. Thin Solid Films 2004, 446, 18-22.
[60] Singh P., Kumar A., Kaur D. Phys. B 2008, 403, 3769-3773.
[61] Wang Z., Zeng W., Gu L., Saito M., Tsukimoto S., Ikuhara Y. J. Appl. Phys. 2010, 108, 113701.
[62] Burbure N. V., Salvador P. A., Rohrer G. S. J. Am. Ceram. Soc. 2010, 93, 2530-2533.
[63] Mitchell D. R. G., Attard D. J., Triani G. J Cryst. Growth 2005, 285, 208-214.
[64] Kao C. H., Yeh S. W., Gan D., Shen P. J. Phys. Chem. C 2011, 115, 5648-5656.
[65] Chung Y. L., Gan D., Ou K. L., Chiou S. Y. J. Electrochem. Soc. 2011, 158, C319-C324.
[66] Weibel A., Bouchet R., Knauth P. Solid State Ionics 2006, 177, 229-236.
[67] Koudriachova M. V., Harrison N. M., de Leeuw S. W. Phys. Rev. Lett. 2001, 86, 1275-1278.
[68] Fujishima A., Rao T. N., Donald A. T. J. Photochem. Photobiol. C 2000, 1, 1-21.
[69] Diebold U. Surf. Sci. Rep. 2003, 48, 53-229.
[70] Hanaor D. A. H., Sorrell C. C. J. Mater. Sci. 2011, 46, 855-874.
[71] Fukushima K., Yamada I. Surf. Coat. Technol. 1992, 51, 197-202.
[72] Fujii T., Sakata N., Takada J., Miura Y., Daitoh Y., Takano M. J. Mater. Res. 1994, 9, 1468-1473.
[73] Burgess D. R., Morris Hotsenpiller P. A., Anderson T. J., Hohman J. L. J. Cryst. Growth 1996, 166, 763-768.
[74] Morris Hotsenpiller P. A., Wilson G. A., Roshko A., Rothman J. B., Rohrer G. S. J. Cryst. Growth 1996, 166, 779-785.
[75] Morris Hotsenpiller P. A., Roshko A., Lowekamp J. B., Rohrer G. S. , J. Cryst. Growth 1997, 174, 424-433.
[76] Choi Y., Yamamoto S., Hiroaki A., Itoh H. Surf. Sci. 2002, 499, 203-209.
[77] Yamaki T., Sumita T., Yamamoto S., Miyashita A. J. Cryst. Growth 2002, 237-239, 574-579.
[78] Moon W. T., Lee K. S., Jun Y. K., Kim H. S., Hong S. H. Sens. Actuators B 2006, 115, 123-127.
[79] Xin Y., Han K., Stampe P. A., Kennedy R. J. J. Cryst. Growth 2006, 290, 459-465.
[80] Hansen P. J., Vaithyanathan V., Wu Y., Mates T., Heikman S., Mishra U. K., York R. A., Schlom D. G., Speck J. S. J. Vac. Sci. Technol. B 2005, 23, 499-506.
[81] Hitosugi T, Hirose Y, Kasai J, Furubayashi Y, Ohtani M, Nakajima K, Chikyow T, Shimada T, Hasegawa T. Jpn. J. Appl. Phys. 2005, 44, L1503-L1505.
[82] Burbure N. V., Salvador P. A., Rohrer G. S. Chem. Mater. 2010, 22, 5831-5837.
[83] Aoki T., Maki K., Tang Q., Kumagai Y., Matsumoto S. J. Vac. Sci. Technol. A 1997, 15, 2485-2488.
[84] Okimura K., Furumi T. Jpn. J. Appl. Phys. 2005, 44, 3192-3195.
[85] Ohsawa T., Henderson M. A., Chambers S. A. J. Phys. Chem. C 2010, 114, 6595-6601.
[86] Doucette L. D., Christensen T. M., DeSisto W. J., Lad R. J. J. Cryst. Growth 2006, 290, 653-659.
[87] Dho J. J. Cryst. Growth 2009, 311, 2635-2640.
[88] Soulen R. J., Byers J. M., Osofsky M. S., Nadgorny B. E., Ambrose T., Cheng S. F., Broussard P. R., Tanaka C. T., Nowak J., Moodera J. S., Barry A., Coey J. M. D. Science 1998, 282, 85-88.
[89] Ji Y., Strijkers G. J., Yang F. Y., Chien C. L., Byers J. M., Anguelouch A., Xiao G., Gupta A. Phys. Rev. Lett. 2001, 86, 5585-5588.
[90] Anguelouch A., Gupta A., Xiao G., Abraham D. W., Ji Y., Ingvarsson S., Chien C. L. Phys. Rev. B 2001, 64, 180408.
[91] JCPDS file 44-1294.
[92] JCPDS file 21-1276.
[93] Kao C. H., Tsai J. H., Yeh S. W., Huang H. L., Gan D., Shen P. Jpn. J. Appl. Phys. 2012, in press.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code