Responsive image
博碩士論文 etd-0229117-204258 詳細資訊
Title page for etd-0229117-204258
論文名稱
Title
有機─無機混合鈣鈦礦單晶品質薄膜的製作與太陽能電池相關性質之研究
Fabrication and properties investigation of single-crystalline organic-inorganic hybrid perovskites for solar cell applications
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
122
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-06-27
繳交日期
Date of Submission
2017-08-18
關鍵字
Keywords
逆向溫度成長法、混合鈣鈦礦、單晶薄膜、空間限制法、化學浴沉積法、太陽能電池
solar cell, single-crystalline thin film, chemical bath deposition, hybrid perovskite, space-confined fabrication, inverse temperature crystallization
統計
Statistics
本論文已被瀏覽 5811 次,被下載 97
The thesis/dissertation has been browsed 5811 times, has been downloaded 97 times.
中文摘要
由於石化能源的供不應求以及核能發電的核廢料處理等能源相關問題,尋找或改進替代能源的重要性日益增加,而太陽能電池是目前替代能源的主要選項。在這許多太陽能電池種類中,矽晶太陽能電池一直是研究主流,並且具有相當好的光電轉換效率。但近年來,另一種結晶材料 – 「有機-無機混成鈣鈦礦結構」所製作而成的太陽能電池,光電轉換效率逐年快速增加,且製作上不需如矽晶太陽能電池等高溫長晶設備,製作成本可大幅度降低,因此受到相當大的矚目。

而本研究主要有兩個研究項目,一是透過化學溶液法製備鈣鈦礦單晶並進行不同量測以了解所得到的單晶品質。二是透過空間限制法來製備鈣鈦礦單晶薄膜,探討不同實驗參數以控制薄膜厚度,希望透過單晶材料的晶界比較少來增加電子遷移率進而增加光電轉換效率。

在第一項工作,我們使用逆向溫度成長方式在溶液中成功製備出鈣鈦礦晶體,透過X-Ray繞射分析確認其為單晶,並透過紫外/可見光吸收光譜儀來分析其光吸收性質及了解其能隙,並了解逆向溫度成長法的長晶機制。在第二項工作,我們成功製備出大縱橫比的鈣鈦礦單晶薄膜,但後續須要進一步克服基板的強力附著力,將這些小單晶薄膜從基板上取出,並且將它們聚合。
Abstract
Alternative energy is the energy resources do not consume the fossil fuels. Searching for alternative energy resources is important for the sustainable development. Currently, due to the issues such as shortage of fossil fuels, nuclear wastes, global warming and so on, to find new alternative energy sources as well as to improve the inherent ones becomes an important task for humans. Due to the abundant and continuous supply from the sun, the solar cell is one of the best choices in the alternative energy source. Silicon-based solar cells are the most widely used because of the remarkable power conversion efficiency and relatively low cost. However, there are new types of solar cells, perovskite solar cells, which are attractive because of their rapid growth of power conversion efficiency (PCE) and lower processing temperature, hence can have the potential to further reduce the cost of the energy conversion by sunlight.

This study contains two parts. In the first part, single crystals of perovskite were grown by the inverse temperature crystallization method. The optical and electrical properties were investigated. Moreover, the mechanism for the inverse temperature crystallization method was studied. It is expected that perovskite single crystals can have better electrical and optical properties and hence to have higher PCE than the polycrystalline counterparts, for the avoiding of the grain boundaries in the polycrystalline films. In the second part, we fabricate single-crystalline thin films of perovskite by space-confined fabrication and study the relationship between thickness and experimental parameters. It is hopeful that the small flakes can be further merged into larger ones, which is suitable for the fabrication of high-quality solar cells.

In the first study, we fabricate crystals of perovskite successfully. The crystalline structures are confirmed by the X-ray diffraction analysis, and their optical properties are investigated by the ultraviolet—visible absorption spectroscopy. The mechanism for the inverse temperature crystallization was also investigated. In the second study, it aims to fabricate single-crystalline thin films of perovskite by space-confined fabrication technique. We successfully fabricate thin flakes with a thickness in the order of ten micrometers. It further needs to merge these small films to larger area ones for the photovoltaic devices.
目次 Table of Contents
致謝 i
摘要 iv
Abstract vi
List of tables x
List of figures xi
Chapter 1 Introduction 1
Chapter 2 Background and literature review 4
2.1 Solar cell fundamentals 4
2.1.1 Current–voltage characteristic (IV curve) 4
2.1.2 Short-circuit current and open-circuit voltage 7
2.1.3 Power conversion efficiency and fill factor 7
2.1.4 Series resistance and shunt resistance 8
2.1.5 The sunlight 10
2.1.6 Air mass 10
2.1.7 Shockley–Queisser limit 10
2.1.8 Perovskite solar cells 12
2.2 History of perovskites 13
2.2.1 Inorganic perovskites 13
2.2.2 Halide-based perovskites 14
2.2.3 Hybrid organic-inorganic perovskites 14
2.3 Material properties of perovskites 15
2.3.1 Tolerance factor (t) and Octahedral factor(u) 15

2.3.2 Composition of perovskites 16
2.3.3 Crystal structures of perovskites 18
2.3.4 Tunable band gaps 19
2.4 Fabrications of perovskite solar cells 19
2.4.1 Perovskite thin film solar cells 19
2.4.2 Perovskite single crystals 21
2.4.3 Single-crystalline thin film perovskites 22
2.5 The mechanism for the growth of hybrid organic-inorganic hybrid perovskites
by inverse temperature crystallization Research motivation 22
2.6 Research motivation 23
Chapter 3 Experimental procedures 25
3.1 Materials 25
3.2 Fabricating procedures 25
3.2.1 Single crystals 25
3.2.2 Single-crystalline thin films 27
3.2.3 Mechanism for the growth of hybrid organic-inorganic hybrid perovskites
by inverse temperature crystallization 28
3.3 Property measurements and analyses 29
3.3.1 X-ray diffraction (XRD) 29
3.3.2 Optical microscopy (OM) 30
3.3.3 Scanning electron microscopy (SEM) 30
3.3.4 Ultraviolet–visible spectroscopy (UV–Vis) 30
3.3.5 3D alpha-step profilometer (α-step) 32
Chapter 4 Results and discussion 33
4.1 Crystal growth 33
4.2 X-ray analysis 35
4.3 Morphology analysis 36
4.4 Optical property analysis 38
Chapter 5 Conclusions 40
References 41
Tables 46
Figures 48
參考文獻 References
[1] K. Jäger, O. Isabella, A. H. M. Smets, R. v. Swaaij and M. Zeman, Solar Energy Fundamentals, Technology, and Systems, (UIT, Cambridge, 2014)
[2] M. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop, D. H. Levi and A. W. Y. Ho-Baillie, Progress in Photovoltaics: Research and Applications, 25, (2017) 3-13.
[3] C. T. Sah, Fundamentals of Solid-state Electronics, (World Scienctific, Country, 1991)
[4] C. S. Solanki, Solar Photovoltaics: Fundamentals, Technologies And Applications, (PHI Learning Pvt, India, 2015)
[5] W. Shockley and H. J. Queisser, J. of Appl. Phys., 32, (1961) 510-519.
[6] S. Byrnes, The Shockley-Queisser Limit and its Discontents, American, (2015)
[7] A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka, J. Am. Chem. Soc., 131, (2009) 6050-6051.
[8] National Renewable Energy Laboratory, http://www.nrel.gov/
[9] V. M. Goldschmidt, Die Naturwissenschaften, 14, (1926) 477-485.
[10] C. Li, X. Lu, W. Ding, L. Feng, Y. Gao and Z. Guo, Acta Crystallogr. B, 64, (2008) 702-707.
[11] H. D. Megaw, Proc. Phys. Soc., 58, (1946) 21.
[12] D. Weber, Z Naturforsch B J. Chem. Sci., 33, (1978) 1443-1445.
[13] Y. H. Chang and C. H. Park, J. Korean Phys. Soc., 44, (2004) 5.
[14] C. C. Stoumpos, C. D. Malliakas and M. G. Kanatzidis, Inorg. Chem., 52, (2013) 9019-9038.
[15] J. H. Heo, H. J. Han, D. Kim, T. K. Ahn and S. H. Im, Energy Environ. Sci., 8, (2015) 1602-1608.
[16] T. M. Koh, K. Fu, Y. Fang, S. Chen, T. C. Sum, N. Mathews, S. G. Mhaisalkar, P. P. Boix and T. Baikie, J. Phys. Chem. C, 118, (2014) 16458-16462.
[17] Q. Chen, N. De Marco, Y. Yang, T.-B. Song, C.-C. Chen, H. Zhao, Z. Hong, H. Zhou and Y. Yang, Nano Today, 10, (2015) 355-396.
[18] R. Long, Y. Dai, G. Meng and B. Huang, Phys Chem Chem Phys, 11, (2009) 8165-8172.
[19] F. X. Xie, H. Su, J. Mao, K. S. Wong and W. C. H. Choy, J. Phys. Chem. C, 120, (2016) 21248-21253.
[20] G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz and H. J. Snaith, Energy Environ. Sci., 7, (2014) 982.
[21] E. Mosconi, A. Amat, M. K. Nazeeruddin, M. Grätzel and F. De Angelis, The J. Phys. Chem. C, 117, (2013) 13902-13913.
[22] Z. Xiao, Y. Yuan, Q. Wang, Y. Shao, Y. Bai, Y. Deng, Q. Dong, M. Hu, C. Bi and J. Huang, Mater. Sci. Eng. R Rep., 101, (2016) 1-38.
[23] J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal and S. I. Seok, Nano Lett., 13, (2013) 1764-1769.
[24] M. Liu, M. B. Johnston and H. J. Snaith, Nature, 501, (2013) 395-398.
[25] Q. Chen, H. Zhou, Z. Hong, S. Luo, H. S. Duan, H. H. Wang, Y. Liu, G. Li and Y. Yang, J. Am. Chem. Soc., 136, (2014) 622-625.
[26] J.-H. Im, H.-S. Kim and N.-G. Park, APL Mater., 2, (2014) 081510.
[27] S. Pang, H. Hu, J. Zhang, S. Lv, Y. Yu, F. Wei, T. Qin, H. Xu, Z. Liu and G. Cui, Chem. Mater., 26, (2014) 1485-1491.
[28] J. H. Im, I. H. Jang, N. Pellet, M. Gratzel and N. G. Park, Nat. Nanotechnol, 9, (2014) 927-932.
[29] D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P. A. Dowben, O. F. Mohammed, E. H. Sargent and O. M. Bakr, Science, 347, (2015) 519-522.
[30] Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao and J. Huang, Science, 347, (2015) 967-970.
[31] Y. Dang, Y. Liu, Y. Sun, D. Yuan, X. Liu, W. Lu, G. Liu, H. Xia and X. Tao, CrystEngComm, 17, (2015) 665-670.
[32] M. I. Saidaminov, A. L. Abdelhady, B. Murali, E. Alarousu, V. M. Burlakov, W. Peng, I. Dursun, L. Wang, Y. He, G. Maculan, A. Goriely, T. Wu, O. F. Mohammed and O. M. Bakr, Nat. Commun., 6, (2015) 7586.
[33] Y. Liu, Z. Yang, D. Cui, X. Ren, J. Sun, X. Liu, J. Zhang, Q. Wei, H. Fan, F. Yu, X. Zhang, C. Zhao and S. F. Liu, Adv. Mater., 27, (2015) 5176-5183.
[34] C. Li, Z. Zang, W. Chen, Z. Hu, X. Tang, W. Hu, K. Sun, X. Liu and W. Chen, Opt. Express, 24, (2016) 15071-15078.
[35] J. Huang, Y. Shao and Q. Dong, J. Phys. Chem. Lett., 6, (2015) 3218-3227.
[36] Y. Rakita, S. R. Cohen, N. K. Kedem, G. Hodes and D. Cahen, MRS Commun., 5, (2015) 623-629.
[37] M. I. Saidaminov, A. L. Abdelhady, G. Maculan and O. M. Bakr, Chem. Commun., 51, (2015) 17658-17661.
[38] W. L. Bragg and W. H. Bragg, Pro. R. Soc. A, 88, (1913) 428-438.
[39] R. A. Kerner, L. Zhao, Z. Xiao and B. P. Rand, J. Mater. Chem. A, 4, (2016) 8308-8315.
[40] W. Di, Z. Kun, L. E. I. Yong, S. U. Jing and W. Wan-Fu, Journal of Inorganic Materials, 31, (2016) 1063.
[41] P. K. Nayak, D. T. Moore, B. Wenger, S. Nayak, A. A. Haghighirad, A. Fineberg, N. K. Noel, O. G. Reid, G. Rumbles, P. Kukura, K. A. Vincent and H. J. Snaith, Nat. Commun., 7, (2016) 13303.
[42] Y. X. Chen, Q. Q. Ge, Y. Shi, J. Liu, D. J. Xue, J. Y. Ma, J. Ding, H. J. Yan, J. S. Hu and L. J. Wan, J. Am. Chem. Soc., 138, (2016) 16196-16199.
[43] M. Yang, T. Zhang, P. Schulz, Z. Li, G. Li, D. H. Kim, N. Guo, J. J. Berry, K. Zhu and Y. Zhao, Nat. Commun., 7, (2016) 12305.
[44] S. Bag and M. F. Durstock, ACS Appl. Mater. Interfaces, 8, (2016) 5053-5057.
[45] Z. Liang, S. Zhang, X. Xu, N. Wang, J. Wang, X. Wang, Z. Bi, G. Xu, N. Yuan and J. Ding, RSC Adv., 5, (2015) 60562-60569.
[46] Photovoltaics CD-ROM, C. Honsberg and S. Bowden, http://www.pveducation.org/pvcdrom
[47] M. Lqbal, An introduction to Solar Radiation, (Academic press canada, Canada, 1983)
[48] D. Wang, M. Wright, N. K. Elumalai and A. Uddin, SOL ENERG MAT SOL C, 147, (2016) 255-275.
[49] J. Cui, H. Yuan, J. Li, X. Xu, Y. Shen, H. Lin and M. Wang, Sci. Technol. Adv. Mater., 16, (2015) 036004.
[50] N.-G. Park, Mater. Today, 18, (2015) 65-72.
[51] Y. Chen, M. He, J. Peng, Y. Sun and Z. Liang, Advanced Science, 3, (2016) 1500392.
[52] B. D. Cullity and S. R. Stock, Elements oF X-RAY Diffraction, 3rd Ed. (Prentice Hall, Reading, MA, 2001)
[53] B. Hafner, Scanning Electron Microscopy Primer, University of Minnesota, (2007) http://www.charfac.umn.edu/sem_primer.pdf
[54] J. Clark, Essential bonding theory for UV-visible Absorption spectrometry, (2016) http://www.chemguide.co.uk/analysis/uvvisible/bonding.html
[55] S. Rahimnejad, A. Kovalenko, S. M. Fores, C. Aranda and A. Guerrero, ChemPhysChem, 17, (2016) 1-5.
[56] S. J. Yoon, K. G. Stamplecoskie and P. V. Kamat, J. Phys. Chem. Lett., 7, (2016) 1368-1373.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code