Responsive image
博碩士論文 etd-0230115-093302 詳細資訊
Title page for etd-0230115-093302
論文名稱
Title
海洋衍生物對於大白鼠脊髓損傷之影響
The effects of marine-derived compound on spinal cord injury in rats
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
171
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-01-23
繳交日期
Date of Submission
2015-03-30
關鍵字
Keywords
神經性發炎反應、免疫螢光染色、活性氧化物、自由基、氧化傷害、氧化物自由基
spinal cord injury, nitrotyrosine, immunohistochemistical, inflammatory response, superoxide, reactive oxygen species
統計
Statistics
本論文已被瀏覽 5634 次,被下載 0
The thesis/dissertation has been browsed 5634 times, has been downloaded 0 times.
中文摘要
脊髓損傷的病理過程涉及原發性傷害與繼發性傷害,大多數研究專注於了解繼發性傷害的病理過程,以及減少脊髓損傷後大量細胞的損失。而繼發性傷害病理過程的特點,包括發炎性反應、活性氧化物(reactive oxygen species)或自由基(free radical)的產生,和神經元的凋亡反應。脊髓損傷後所誘導產生的活性氧化物及自由基會引發氧化傷害(oxidatives damage),並且促進神經性發炎反應的生成。在本研究中,我們將試驗海洋化合物WY8作用在大白鼠脊髓損傷模式中對於抗發炎反應與抗氧化傷害的功效。脊髓損傷動物模式是將母大白鼠胸椎利用美國紐約大學脊髓損傷撞擊器(NYU impactor)生成創傷性脊髓損傷。而藥物給予方式,分別在椎管內給予WY8(10 μg)七次於大鼠脊髓損傷後,以及腹腔注射臨床藥物甲基培尼皮質醇(methylprenisolone)30 mg/kg一次。實驗結果發現其椎管內給予WY8對於脊髓損傷大鼠具有保留剩餘未損傷白質區域,以及減少受傷區域的擴大,並且顯著提升後肢運動功能。也利用免疫螢光染色分析,其WY8具有顯著減少脊髓損傷所誘導生成的過氧化物自由基(superoxide radical),也包括降低其生成過氧化物自由基的酵素NADPH氧化酶(NADPH oxidase)和衍生的氨基酪胺酸(nitrotyrosine)的表現。同時我們也發現WY8具有降低發炎因子的表現,如誘導型一氧化氮合成酶(inducible nitric oxide synthase)、細胞間黏附因子-1(intercellular adhesion molecule-1)、白細胞介素-1β(interleukin-1β)和腫瘤壞死因子(tumor necrosis factor-α)。根據上述的結果,我們認為WY8具有脊髓損傷之治療藥物開發的潛力。
Abstract
The pathophysiology of spinal cord injury(SCI)involves primary and secondary mechanisms of injury, most research however has focused on understanding the pathophysiology of the secondary damage processes and reducing the amount of delayed cell loss following SCI. The pathophysiological hallmarks of secondary injury processes include the inflammatory response, reactive oxygen species or free radical generated, and neuron apoptosis. SCI-induced reactive oxygen species(ROS)generated were elicits oxidative damage, and promoted the inflammatory response. In present study we examined the anti-inflammatory response and anti-oxidative damage effects of WY8 in rat SCI model. The spinal cord contusion injury was induced in thoracic spinal cord of in female Wistar rats by NYU impactor. The saline, WY8(10 μg), and methylprednisolone(MP; a standard SCI agent 30 mg/kg)was administered by intrathecal injection for 7 days and intraperitoneal once after SCI respectively. We found that intrathecal injection WY8 were keep the spared white matter area, reduced the lesion area, and significantly upregulation locomotor function after SCI. Immunohistochemistical analyses showed that WY8 were significantly attenuated SCI-induced superoxide (O2-), including generating enzyme NADPH oxidase (NOX2), byproduct of NO-O2- nitrotyrosine (NT), and inflammatory mediators such as inducible nitric oxide synthase (iNOS), intercellular adhesion molecule-1 (ICAM-1), interleukin-1beta (IL-1β), and tumor necrosis factor-alpha (TNF-α) expression. In conclusion, WY8 is a potential candidate compound for drug development to treat SCI.
目次 Table of Contents
目錄
審定書..............................................................i
誌謝................................................................ii
中文摘要.............................................................iii
Abstract.............................................................iv
目錄.................................................................v
圖次................................................................xiii
縮寫表..............................................................xv
第一章、前言..........................................................1
1.1 脊髓損傷背景.................................................1
1.2 脊髓之構造...................................................3
1.3 脊髓損傷之致病過程...........................................9
1.4 脊髓損傷所誘導之發炎反應....................................10
1.5 神經膠質細胞在脊髓損傷上扮演的角色..........................11
1.6 MAPK路徑在神經膠質細胞扮演的角色..........................15
1.7 神經性發炎反應在脊髓損傷之角色..............................17
1.8 神經膠質疤痕的形成..........................................18
1.9 脊髓損傷誘導細胞凋亡........................................19
1.10 脊髓損傷誘導氧化壓力所導致的氧化傷害........................20
1.11 脊髓損傷誘導的自由基影響....................................22
1.12 現今臨床治療脊髓損傷藥物(類固醇:Methylprednisolone)...........23
1.13 現今治療脊髓損傷藥物開發主要策略............................26
1.13.1 抗氧化劑與自由基消除劑..............................26
1.13.2 鴉片受體拮抗劑......................................26
1.13.3 神經節糖咁..........................................27
1.13.4 甲釋素及類似物......................................28
1.13.5 NMDA受體拮抗劑....................................28
1.13.6 鈣離子拮抗劑........................................29
1.13.7 花生四烯酸抑制劑....................................30
1.13.8 生長因子............................................30
1.13.9 類固醇-Lazaroids......................................30
1.14 海洋在藥物開發上的優勢......................................31
1.15 脊髓損傷之動物實驗模式......................................32
1.16 研究動機與目的..............................................35
第二章、實驗方法與材料...............................................36
2.1 實驗動物....................................................36
2.2 椎管插管手術................................................36
2.3 大白鼠脊髓損傷手術..........................................37
2.4 後肢運動行為功能分數評估....................................37
2.5 脊髓組織收集及冷凍切片......................................40
2.6 組織病理學..................................................41
2.7 脊髓面積定量................................................41
2.8 運動神經元的定量............................................42
2.9 組織免疫化學螢光染色(immunohistochemistry)....................43
2.10 末端脫氧核苷酸轉移酶脫氧尿苷三磷酸切口標記染色法(terminal deoxynucleotidyl transferase dUTP nick end labeling stain).................44
2.11 過氧化物自由基(superoxide radical)的檢測........................44
2.12 免疫化學螢光染色定量........................................45
2.13 使用的目標抗體..............................................46
2.14 動物實驗設計及分組..........................................46
2.15 預先於椎管內給予WY8在脊髓損傷大白鼠之運動行為能力觀察......47
2.16 預先於椎管內給予WY8在脊髓損傷大白鼠細胞層面分子之影響......47
2.17 椎管內給予WY8在脊髓損傷大白鼠之運動行為能力觀察............47
2.18 椎管內給予WY8在脊髓損傷大白鼠細胞層面分子之影響............48
2.19 統計分析....................................................48
第三章、實驗結果.....................................................49
3.1 預先於椎管內給予WY8對於脊髓損傷大白鼠之影..................49
3.1.1 實驗流程............................................49
3.1.2 WY8對於脊髓損傷大鼠後肢運動功能之影響..............49
3.1.3 WY8對於脊髓損傷大鼠傷口與髓鞘組織之影響............50
3.1.4 WY8對於脊髓損傷後運動神經元存活之影響..............50
3.1.5 WY8對於脊髓損傷誘發神經軸突之影響..................51
3.1.6 WY8對於脊髓損傷誘發神經元凋亡之影響................51
3.1.7 WY8對於脊髓損傷後腹角運動神經元存活之影響..........51
3.1.8 WY8對於脊髓損傷後微膠細胞之型態變化................52
3.1.9 WY8對於脊髓損傷誘發OX42上升之影響................52
3.1.10 WY8對於脊髓損傷後星狀細胞之型態變化................53
3.1.11 WY8對於脊髓損傷誘發GFAP上升之影響................53
3.1.12 WY8對於脊髓損傷後誘發arg-1免疫螢光活性影響.........53
3.1.13 WY8對於脊髓損傷後誘發NOX2免疫螢光活性影響........54
3.1.14 WY8對於脊髓損傷後誘發NT免疫螢光活性影響...........54
3.1.15 WY8對於脊髓損傷後誘發ICAM-1免疫螢光活性影響......54
3.1.16 WY8對於脊髓損傷後誘發TNF-免疫螢光活性影響........55
3.1.17 WY8對於脊髓損傷後誘發iNOS免疫螢光活性影響.........55
3.2 脊髓損傷後椎管給予WY8對於脊髓損傷大鼠之影響................56
3.2.1 WY8對於脊髓損傷後大鼠之後肢運動功能評估............56
3.2.2 WY8對於脊髓損傷大鼠傷口與髓鞘組織之影響............57
3.2.3 WY8對於脊髓損傷後運動神經元存活之影響..............57
3.2.4 WY8對於脊髓損傷誘發神經軸突之影響..................58
3.2.5 WY8對於脊髓損傷後誘發過氧化物自由基之影響..........58
3.2.6 WY8對於脊髓損傷後運動神經元凋亡之影響..............59
3.2.7 WY8對於脊髓損傷後腹角運動神經元存活之影響..........59
3.2.8 WY8對於脊髓損傷後誘發微膠細胞之型態變化............60
3.2.9 WY8對於脊髓損傷後誘發OX42上升之影響..............60
3.2.10 WY8對於脊髓損傷後誘發星狀細胞之型態變化............60
3.2.11 WY8對於脊髓損傷後誘發GFAP上升之影響..............61
3.2.12 脊髓損傷後誘發p-JNK表現之影響.......................61
3.2.13 WY8對於脊髓損傷後所誘發p-JNK免疫螢光活性之影響....62
3.2.14 脊髓損傷後誘發p-ERK表現之影響......................62
3.2.15 WY8對於脊髓損傷後所誘發p-ERK免疫螢光活性之影響....63
3.2.16 脊髓損傷後誘發p-p38表現之影響.......................63
3.2.17 WY8對於脊髓損傷後所誘發p-p38免疫螢光活性之影響.....63
3.2.18 脊髓損傷後誘發arg-1表現之影響........................64
3.2.19 WY8對於脊髓損傷後所誘發arg-1免疫螢光活性之影響.....64
3.2.20 脊髓損傷後誘發NOX2表現之影響.......................65
3.2.21 WY8對於脊髓損傷後所誘發NOX2免疫螢光活性之影響....65
3.2.22 脊髓損傷後誘發NT表現之影響.........................66
3.2.23 WY8對於脊髓損傷後所誘發NT免疫螢光活性之影響.......66
3.2.24 脊髓損傷後誘發ICAM-1表現之影響.....................67
3.2.25 WY8對於脊髓損傷後所誘發ICAM-1免疫螢光活性之影響..67
3.2.26 脊髓損傷後誘發TNF-表現之影響......................68
3.2.27 WY8對於脊髓損傷後所誘發TNF-免疫螢光活性之影響....68
3.2.28 脊髓損傷後誘發IL-1表現之影響.......................68
3.2.29 WY8對於脊髓損傷後所誘發IL-1免疫螢光活性之影響.....69
3.2.30 脊髓損傷後誘發iNOS表現之影響.......................69
3.2.31 WY8對於脊髓損傷後所誘發iNOS免疫螢光活性之影響.....70
第四章、討論........................................................120
4.1 WY8於脊髓損傷大鼠後肢運動行為能力和組織病理學的影響.......120
4.1.1 WY8對於後肢行為運動功能與組織面積的影響...........121
4.1.2 WY8對於運動神經元及神經軸突的影響.................122
4.2 WY8對於脊髓損傷造成微膠細胞活化的影響.....................123
4.3 WY8對於脊髓損傷造成星狀細胞活化的影響.....................124
4.4 WY8對於脊髓損傷大鼠MAPK的影響...........................125
4.5 WY8對於脊髓損傷大鼠氧化壓力(oxidative stress)的影響..........127
4.5.1 WY8對於O2*ˉ的影響.................................127
4.5.2 WY8對於NOX2的影響...............................128
4.5.3 WY8對於ONOO-的影響..............................128
4.6 WY8對於脊髓損傷大鼠神經性發炎反應的影響...................130
4.6.1 WY8對於ICAM-1的影響.............................130
4.6.2 WY8對於促發炎細胞因子TNF-與IL-1的影響..........131
4.6.3 WY8對於iNOS的影響................................131
4.7 WY8對於脊髓損傷誘發神經細胞凋亡的影響.....................132
4.8 WY8於脊髓損傷後神經保護之機轉.............................133
第五章、未來展望....................................................135
第六章、參考文獻....................................................136

圖次
圖1-1、脊髓損傷的成因.................................................1
圖1-2-1、(A)脊椎側面圖、(B)脊椎前視圖...................................4
圖1-2-2、脊髓神經連結到人體結構圖......................................5
圖1-2-3、脊髓之橫切面構造..............................................7
圖1-4、脊髓損傷之影響週期.............................................11
圖1-5-1、微膠細胞表型(phenotype)活化路徑及功能.........................14
圖1-5-2、微膠細胞M2之表型(phenotype)介紹..............................14
圖1-6、MAPK路徑示意圖..............................................17
圖1-11、peroxynitrite與微膠細胞之關聯...................................23
圖1-15-1、NYU impactor(脊髓損傷撞擊器) ................................33
圖1-15-2、電腦評估脊髓損傷後標準化的高度、速度與時間...................33
圖2-7、脊髓面積定量示意圖............................................42
圖2-8、(A)腹角運動神經元型態示意圖、(B)脊髓lamina區域分布圖............43
圖2-12、免疫螢光活性定量示意圖.......................................45
圖3-1-1、預先於椎管內給予WY8對於脊髓損傷大白鼠之影響................71
圖3-1-2、WY8對於脊髓損傷大鼠後肢運動功能之影響......................72
圖3-1-3、WY8對於脊髓損傷大鼠傷口與髓鞘組織之影響....................73
圖3-1-4、WY8對於脊髓損傷後運動神經元存活之影響......................74
圖3-1-5、WY8對於脊髓損傷誘發神經軸突之影響..........................75
圖3-1-6、WY8對於脊髓損傷誘發神經元凋亡之影響........................76
圖3-1-7、WY8對於脊髓損傷後運動神經元存活之影響......................77
圖3-1-8、WY8對於脊髓損傷後微膠細胞之型態變化........................78
圖3-1-9、WY8對於脊髓損傷誘發OX42上升之影響.........................79
圖3-1-10 、WY8對於脊髓損傷後星狀細胞之型態變化.......................80
圖3-1-11、WY8對於脊髓損傷誘發GFAP上升之影響........................81
圖3-1-12、WY8對於脊髓損傷後誘發arg-1免疫螢光活性影響.................82
圖3-1-13、WY8對於脊髓損傷後誘發NOX2免疫螢光活性影響...............83
圖3-1-14、WY8對於脊髓損傷後誘發NT免疫螢光活性影響..................84
圖3-1-15、WY8對於脊髓損傷後誘發ICAM-1免疫螢光活性影響..............85
圖3-1-16、WY8對於脊髓損傷後誘發TNF-免疫螢光活性影響...............86
圖3-1-17、WY8對於脊髓損傷後誘發iNOS免疫螢光活性影響................87
圖3-2、脊髓損傷後椎管給予WY8對於脊髓損傷大鼠之影響..................88
圖3-2-1、WY8對於脊髓損傷後大鼠之後肢運動功能評估....................89
圖3-2-2、WY8對於脊髓損傷大鼠傷口與髓鞘組織之影響....................90
圖3-2-3、WY8對於脊髓損傷後運動神經元存活之影響......................91
圖3-2-4、WY8對於脊髓損傷誘發神經軸突之影響..........................92
圖3-2-5、WY8對於脊髓損傷後誘發過氧化物自由基之影響..................93
圖3-2-6、WY8對於脊髓損傷後誘發神經元凋亡之影響......................94
圖3-2-7、WY8對於脊髓損傷後誘發腹角運動神經元存活之影響..............95
圖3-2-8、WY8對於脊髓損傷後誘發微膠細胞之型態變化....................96
圖3-2-9、WY8對於脊髓損傷後誘發OX42上升之影響.......................97
圖3-2-10、WY8對於脊髓損傷後誘發星狀細胞之型態變化...................98
圖3-2-11、對於脊髓損傷後誘發GFAP上升之影響..........................99
圖3-2-12、脊髓損傷後誘發p-JNK表現之影響.............................100
圖3-2-13、WY8對於脊髓損傷後所誘發p-JNK免疫螢光活性之影響..........101
圖3-2-14、脊髓損傷後誘發p-ERK表現之影響.............................102
圖3-2-15、WY8對於脊髓損傷後所誘發p-ERK免疫螢光活性之影響..........103
圖3-2-16、脊髓損傷後誘發p-p38表現之影響..............................104
圖3-2-17、WY8對於脊髓損傷後所誘發p-p38免疫螢光活性之影響...........105
圖3-2-18、脊髓損傷後誘發arg-1表現之影響..............................106
圖3-2-19、WY8對於脊髓損傷後所誘發arg-1免疫螢光活性之影響............107
圖3-2-20、脊髓損傷後誘發NOX2表現之影響.............................108
圖3-2-21、WY8對於脊髓損傷後所誘發NOX2免疫螢光活性之影響..........109
圖3-2-22、脊髓損傷後誘發NT表現之影響................................110
圖3-2-23、WY8對於脊髓損傷後所誘發NT免疫螢光活性之影響.............111
圖3-2-24、脊髓損傷後誘發ICAM-1表現之影響...........................112
圖3-2-25、WY8對於脊髓損傷後所誘發ICAM-1免疫螢光活性之影響.........113
圖3-2-26、脊髓損傷後誘發TNF-表現之影響.............................114
圖3-2-27、WY8對於脊髓損傷後所誘發TNF-免疫螢光活性之影響..........115
圖3-2-28、脊髓損傷後誘發IL-1表現之影響..............................116
圖3-2-29、WY8對於脊髓損傷後所誘發IL-1免疫螢光活性之影響...........117
圖3-2-30、脊髓損傷後誘發iNOS表現之影響..............................118
圖3-2-31、WY8對於脊髓損傷後所誘發iNOS免疫螢光活性之影響...........119
參考文獻 References
1. Spinal cord injury facts and figures at a glance. J Spinal Cord Med, 2014. 37(5): p. 659-60.
2. Anders Holtz, M., PhD and Richard Levi, MD, PhD Spinal Cord Injury. New York Oxford OXFORD UNIVERSITY PRESS, 2010 p. p304.
3. Anderson, C.R., Ashwell, K. W., Collewijn, H., Conta, A., Harvey, A., Heise, C., Hodgetts, S., Holstege, G., Kayalioglu, G., Keast, J. R., McHanwell, S., McLachlan, E, M., Paxinos, G., Plant, G., Scremin, O., Sidhu, A., Stelzner, D., and Watson, C., The spinal cord. 2009.
4. Catherina G. Becker, T.B., Model Organisms in Spinal Cord Regeneration. Wiley-Blackwell, 1997: p. 423
5. Tracey, D.J., Ascending and descending pathways in the spinal cord. In : Paxino G, ed. The rat nervous system : hindbrain and spinal cord. Sydney: Australia Academic, 1985. 2: p. 311-324.
6. Xiong, Y., ROLE OF REACTIVE OXYGEN SPECIES PEROXYNITRITE IN TRAUMATIC SPINAL CORD INJURY. University of Kentucky Doctoral Dissertations., 2008: p. 657.
7. Janssen, L. and R.R. Hansebout, Pathogenesis of spinal cord injury and newer treatments. A review. Spine (Phila Pa 1976), 1989. 14(1): p. 23-32.
8. Wolman, L., The Disturbance of Circulation in Traumatic Paraplegia in Acute and Late Stages: A Pathological Study. Paraplegia, 1965. 2: p. 213-26.
9. Renault-Mihara, F., et al., Spinal cord injury: emerging beneficial role of reactive astrocytes' migration. Int J Biochem Cell Biol, 2008. 40(9): p. 1649-53.
10. Anderson, D.K. and E.D. Hall, Pathophysiology of spinal cord trauma. Ann Emerg Med, 1993. 22(6): p. 987-92.
11. Li, L., D. Guerini, and E. Carafoli, Calcineurin controls the transcription of Na+/Ca2+ exchanger isoforms in developing cerebellar neurons. J Biol Chem, 2000. 275(27): p. 20903-10.
12. Dumont, R.J., et al., Acute spinal cord injury, part I: pathophysiologic mechanisms. Clin Neuropharmacol, 2001. 24(5): p. 254-64.
13. Tator, C.H. and M.G. Fehlings, Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms. J Neurosurg, 1991. 75(1): p. 15-26.
14. Teng, Y.D., et al., Minocycline inhibits contusion-triggered mitochondrial cytochrome c release and mitigates functional deficits after spinal cord injury. Proc Natl Acad Sci U S A, 2004. 101(9): p. 3071-6.
15. Beattie, M.S., Inflammation and apoptosis: linked therapeutic targets in spinal cord injury. Trends Mol Med, 2004. 10(12): p. 580-3.
16. Moon, Y.J., et al., Inhibition of inflammation and oxidative stress by Angelica dahuricae radix extract decreases apoptotic cell death and improves functional recovery after spinal cord injury. J Neurosci Res, 2012. 90(1): p. 243-56.
17. Choi, D.C., et al., Acupuncture-mediated inhibition of inflammation facilitates significant functional recovery after spinal cord injury. Neurobiol Dis, 2010. 39(3): p. 272-82.
18. Mandalari, G., et al., Neuroprotective effects of almond skins in experimental spinal cord injury. Clin Nutr, 2011. 30(2): p. 221-33.
19. Birdsall, H.H., Induction of ICAM-1 on human neural cells and mechanisms of neutrophil-mediated injury. Am J Pathol, 1991. 139(6): p. 1341-50.
20. Oyinbo, C.A., Secondary injury mechanisms in traumatic spinal cord injury: a nugget of this multiply cascade. Acta Neurobiol Exp (Wars), 2011. 71(2): p. 281-99.
21. Makwana, M., et al., Endogenous transforming growth factor beta 1 suppresses inflammation and promotes survival in adult CNS. J Neurosci, 2007. 27(42): p. 11201-13.
22. Bethea, J.R., et al., Traumatic spinal cord injury induces nuclear factor-kappaB activation. J Neurosci, 1998. 18(9): p. 3251-60.
23. Yang, J., et al., Evaled expression of ICAM-1 and its ligands in the rat spinal cord following lipopolysaccharide intraspinal injection. Neuromolecular Med, 2008. 10(4): p. 385-92.
24. Harry, G.J. and A.D. Kraft, Microglia in the developing brain: a potential target with lifetime effects. Neurotoxicology, 2012. 33(2): p. 191-206.
25. Milligan, E.D. and L.R. Watkins, Pathological and protective roles of glia in chronic pain. Nat Rev Neurosci, 2009. 10(1): p. 23-36.
26. Faulkner, J.R., et al., Reactive astrocytes protect tissue and preserve function after spinal cord injury. J Neurosci, 2004. 24(9): p. 2143-55.
27. Gehrmann, J., Y. Matsumoto, and G.W. Kreutzberg, Microglia: intrinsic immuneffector cell of the brain. Brain Res Brain Res Rev, 1995. 20(3): p. 269-87.
28. Aguzzi, A., B.A. Barres, and M.L. Bennett, Microglia: scapegoat, saboteur, or something else? Science, 2013. 339(6116): p. 156-61.
29. Hernando Raphael Alvis-Miranda, G.A.-C. and L.R. Moscote-Salazar1, Microglia: roles and rules in brain traumatic injury. Romanian Neurosurgery ; University of Cartagena, Colombia, 2013. 1: p. 34 - 45.
30. Tanga, F.Y., V. Raghavendra, and J.A. DeLeo, Quantitative real-time RT-PCR assessment of spinal microglial and astrocytic activation markers in a rat model of neuropathic pain. Neurochem Int, 2004. 45(2-3): p. 397-407.
31. Calvo, M. and D.L. Bennett, The mechanisms of microgliosis and pain following peripheral nerve injury. Exp Neurol, 2012. 234(2): p. 271-82.
32. Sroga, J.M., et al., Rats and mice exhibit distinct inflammatory reactions after spinal cord injury. J Comp Neurol, 2003. 462(2): p. 223-40.
33. Farber, K. and H. Kettenmann, Physiology of microglial cells. Brain Res Brain Res Rev, 2005. 48(2): p. 133-43.
34. Kigerl, K.A., et al., Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci, 2009. 29(43): p. 13435-44.
35. Luo, X.G. and S.D. Chen, The changing phenotype of microglia from homeostasis to disease. Transl Neurodegener, 2012. 1(1): p. 9.
36. Antonelli, M.C., et al., New strategies in neuroprotection and neurorepair. Neurotox Res, 2012. 21(1): p. 49-56.
37. Spencer, J.P., et al., Neuroinflammation: modulation by flavonoids and mechanisms of action. Mol Aspects Med, 2012. 33(1): p. 83-97.
38. Colton, C.A., Heterogeneity of microglial activation in the innate immune response in the brain. J Neuroimmune Pharmacol, 2009. 4(4): p. 399-418.
39. Hirai, T., et al., The prevalence and phenotype of activated microglia/macrophages within the spinal cord of the hyperostotic mouse (twy/twy) changes in response to chronic progressive spinal cord compression: implications for human cervical compressive myelopathy. PLoS One, 2013. 8(5): p. e64528.
40. Rock, R.B. and P.K. Peterson, Microglia as a pharmacological target in infectious and inflammatory diseases of the brain. J Neuroimmune Pharmacol, 2006. 1(2): p. 117-26.
41. Ridet, J.L., et al., Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci, 1997. 20(12): p. 570-7.
42. Gomes, F.C., D. Paulin, and V. Moura Neto, Glial fibrillary acidic protein (GFAP): modulation by growth factors and its implication in astrocyte differentiation. Braz J Med Biol Res, 1999. 32(5): p. 619-31.
43. Garrison, C.J., et al., Staining of glial fibrillary acidic protein (GFAP) in lumbar spinal cord increases following a sciatic nerve constriction injury. Brain Res, 1991. 565(1): p. 1-7.
44. Herlaar, E. and Z. Brown, p38 MAPK signalling cascades in inflammatory disease. Mol Med Today, 1999. 5(10): p. 439-47.
45. Johnson, G.L. and R. Lapadat, Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science, 2002. 298(5600): p. 1911-2.
46. Zhuang, Z.Y., et al., ERK is sequentially activated in neurons, microglia, and astrocytes by spinal nerve ligation and contributes to mechanical allodynia in this neuropathic pain model. Pain, 2005. 114(1-2): p. 149-59.
47. Bains, M. and E.D. Hall, Antioxidant therapies in traumatic brain and spinal cord injury. Biochim Biophys Acta, 2012. 1822(5): p. 675-84.
48. Ji, R.R. and M.R. Suter, p38 MAPK, microglial signaling, and neuropathic pain. Mol Pain, 2007. 3: p. 33.
49. Piehl, F. and O. Lidman, Neuroinflammation in the rat--CNS cells and their role in the regulation of immune reactions. Immunol Rev, 2001. 184: p. 212-25.
50. Choi, D.C., et al., Inhibition of ROS-induced p38MAPK and ERK activation in microglia by acupuncture relieves neuropathic pain after spinal cord injury in rats. Exp Neurol, 2012. 236(2): p. 268-82.
51. Song, Y., et al., Antioxidant effect of quercetin against acute spinal cord injury in rats and its correlation with the p38MAPK/iNOS signaling pathway. Life Sci, 2013. 92(24-26): p. 1215-21.
52. Gao, Y.J. and R.R. Ji, Targeting astrocyte signaling for chronic pain. Neurotherapeutics, 2010. 7(4): p. 482-93.
53. Mei, X.P., et al., Inhibition of spinal astrocytic c-Jun N-terminal kinase (JNK) activation correlates with the analgesic effects of ketamine in neuropathic pain. J Neuroinflammation, 2011. 8(1): p. 6.
54. Sofroniew, M.V. and H.V. Vinters, Astrocytes: biology and pathology. Acta Neuropathol, 2010. 119(1): p. 7-35.
55. Pekny, M. and M. Nilsson, Astrocyte activation and reactive gliosis. Glia, 2005. 50(4): p. 427-34.
56. McMahon, S.B., W.B. Cafferty, and F. Marchand, Immune and glial cell factors as pain mediators and modulators. Exp Neurol, 2005. 192(2): p. 444-62.
57. Kreutzberg, G.W., Microglia: a sensor for pathological events in the CNS. Trends Neurosci, 1996. 19(8): p. 312-8.
58. Gibbons, H.M. and M. Dragunow, Microglia induce neural cell death via a proximity-dependent mechanism involving nitric oxide. Brain Res, 2006. 1084(1): p. 1-15.
59. Wang, J.Y., et al., Dual effects of antioxidants in neurodegeneration: direct neuroprotection against oxidative stress and indirect protection via suppression of glia-mediated inflammation. Curr Pharm Des, 2006. 12(27): p. 3521-33.
60. Takeuchi, H., et al., Tumor necrosis factor-alpha induces neurotoxicity via glutamate release from hemichannels of activated microglia in an autocrine manner. J Biol Chem, 2006. 281(30): p. 21362-8.
61. Moncada, S. and J.P. Bolanos, Nitric oxide, cell bioenergetics and neurodegeneration. J Neurochem, 2006. 97(6): p. 1676-89.
62. Stewart, V.C. and S.J. Heales, Nitric oxide-induced mitochondrial dysfunction: implications for neurodegeneration. Free Radic Biol Med, 2003. 34(3): p. 287-303.
63. Zhang, L., V.L. Dawson, and T.M. Dawson, Role of nitric oxide in Parkinson's disease. Pharmacol Ther, 2006. 109(1-2): p. 33-41.
64. Melino, G., et al., S-nitrosylation regulates apoptosis. Nature, 1997. 388(6641): p. 432-3.
65. Stamler, J.S. and G. Meissner, Physiology of nitric oxide in skeletal muscle. Physiol Rev, 2001. 81(1): p. 209-237.
66. Jaffrey, S.R., et al., Protein S-nitrosylation: a physiological signal for neuronal nitric oxide. Nat Cell Biol, 2001. 3(2): p. 193-7.
67. Stamler, J.S., et al., S-nitrosylation of proteins with nitric oxide: synthesis and characterization of biologically active compounds. Proc Natl Acad Sci U S A, 1992. 89(1): p. 444-8.
68. Mitchell, D.A., et al., Thioredoxin is required for S-nitrosation of procaspase-3 and the inhibition of apoptosis in Jurkat cells. Proc Natl Acad Sci U S A, 2007. 104(28): p. 11609-14.
69. Bush, T.G., et al., Leukocyte infiltration, neuronal degeneration, and neurite outgrowth after ablation of scar-forming, reactive astrocytes in adult transgenic mice. Neuron, 1999. 23(2): p. 297-308.
70. Herrmann, J.E., et al., STAT3 is a critical regulator of astrogliosis and scar formation after spinal cord injury. J Neurosci, 2008. 28(28): p. 7231-43.
71. Jones, L.L., R.U. Margolis, and M.H. Tuszynski, The chondroitin sulfate proteoglycans neurocan, brevican, phosphacan, and versican are differentially regulated following spinal cord injury. Exp Neurol, 2003. 182(2): p. 399-411.
72. McKeon, R.J., M.J. Jurynec, and C.R. Buck, The chondroitin sulfate proteoglycans neurocan and phosphacan are expressed by reactive astrocytes in the chronic CNS glial scar. J Neurosci, 1999. 19(24): p. 10778-88.
73. Su, Z., et al., Triptolide promotes spinal cord repair by inhibiting astrogliosis and inflammation. Glia, 2010. 58(8): p. 901-15.
74. Tian, D.S., et al., Suppression of astroglial scar formation and enhanced axonal regeneration associated with functional recovery in a spinal cord injury rat model by the cell cycle inhibitor olomoucine. J Neurosci Res, 2006. 84(5): p. 1053-63.
75. Tang, X., J.E. Davies, and S.J. Davies, Changes in distribution, cell associations, and protein expression levels of NG2, neurocan, phosphacan, brevican, versican V2, and tenascin-C during acute to chronic maturation of spinal cord scar tissue. J Neurosci Res, 2003. 71(3): p. 427-44.
76. Andrews, E.M., et al., Alterations in chondroitin sulfate proteoglycan expression occur both at and far from the site of spinal contusion injury. Exp Neurol, 2012. 235(1): p. 174-87.
77. Springer, J.E., R.D. Azbill, and P.E. Knapp, Activation of the caspase-3 apoptotic cascade in traumatic spinal cord injury. Nat Med, 1999. 5(8): p. 943-6.
78. Beattie, M.S., et al., Cell death in models of spinal cord injury. Prog Brain Res, 2002. 137: p. 37-47.
79. Liu, X.Z., et al., Neuronal and glial apoptosis after traumatic spinal cord injury. J Neurosci, 1997. 17(14): p. 5395-406.
80. Warden, P., et al., Delayed glial cell death following wallerian degeneration in white matter tracts after spinal cord dorsal column cordotomy in adult rats. Exp Neurol, 2001. 168(2): p. 213-24.
81. Shuman, S.L., J.C. Bresnahan, and M.S. Beattie, Apoptosis of microglia and oligodendrocytes after spinal cord contusion in rats. J Neurosci Res, 1997. 50(5): p. 798-808.
82. Ray, S.K. and N.L. Banik, Calpain and its involvement in the pathophysiology of CNS injuries and diseases: therapeutic potential of calpain inhibitors for prevention of neurodegeneration. Curr Drug Targets CNS Neurol Disord, 2003. 2(3): p. 173-89.
83. Nishio, N., et al., Reactive oxygen species enhance excitatory synaptic transmission in rat spinal dorsal horn neurons by activating TRPA1 and TRPV1 channels. Neuroscience, 2013. 247: p. 201-12.
84. Droge, W., Free radicals in the physiological control of cell function. Physiol Rev, 2002. 82(1): p. 47-95.
85. Valko, M., et al., Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol, 2007. 39(1): p. 44-84.
86. Halliwell, B. and M. Whiteman, Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br J Pharmacol, 2004. 142(2): p. 231-55.
87. Halliwell, B., Phagocyte-derived reactive species: salvation or suicide? Trends Biochem Sci, 2006. 31(9): p. 509-15.
88. Cross, A.R. and A.W. Segal, The NADPH oxidase of professional phagocytes--prototype of the NOX electron transport chain systems. Biochim Biophys Acta, 2004. 1657(1): p. 1-22.
89. Kazama, K., et al., Angiotensin II impairs neurovascular coupling in neocortex through NADPH oxidase-derived radicals. Circ Res, 2004. 95(10): p. 1019-26.
90. Abramov, A.Y. and M.R. Duchen, The role of an astrocytic NADPH oxidase in the neurotoxicity of amyloid beta peptides. Philos Trans R Soc Lond B Biol Sci, 2005. 360(1464): p. 2309-14.
91. Infanger, D.W., R.V. Sharma, and R.L. Davisson, NADPH oxidases of the brain: distribution, regulation, and function. Antioxid Redox Signal, 2006. 8(9-10): p. 1583-96.
92. Aldskogius, H. and E.N. Kozlova, Central neuron-glial and glial-glial interactions following axon injury. Prog Neurobiol, 1998. 55(1): p. 1-26.
93. Pawate, S., et al., Redox regulation of glial inflammatory response to lipopolysaccharide and interferongamma. J Neurosci Res, 2004. 77(4): p. 540-51.
94. Qin, L., et al., NADPH oxidase mediates lipopolysaccharide-induced neurotoxicity and proinflammatory gene expression in activated microglia. J Biol Chem, 2004. 279(2): p. 1415-21.
95. Zekry, D., T.K. Epperson, and K.H. Krause, A role for NOX NADPH oxidases in Alzheimer's disease and other types of dementia? IUBMB Life, 2003. 55(6): p. 307-13.
96. Gao, H.M. and J.S. Hong, Why neurodegenerative diseases are progressive: uncontrolled inflammation drives disease progression. Trends Immunol, 2008. 29(8): p. 357-65.
97. Jaquet, V., et al., Small-molecule NOX inhibitors: ROS-generating NADPH oxidases as therapeutic targets. Antioxid Redox Signal, 2009. 11(10): p. 2535-52.
98. Sorce, S. and K.H. Krause, NOX enzymes in the central nervous system: from signaling to disease. Antioxid Redox Signal, 2009. 11(10): p. 2481-504.
99. Glass, C.K., et al., Mechanisms underlying inflammation in neurodegeneration. Cell, 2010. 140(6): p. 918-34.
100. Philips, T. and W. Robberecht, Neuroinflammation in amyotrophic lateral sclerosis: role of glial activation in motor neuron disease. Lancet Neurol, 2011. 10(3): p. 253-63.
101. Smith, J.A., et al., Oxidative stress, DNA damage, and the telomeric complex as therapeutic targets in acute neurodegeneration. Neurochem Int, 2013. 62(5): p. 764-75.
102. Bao, F., et al., An integrin inhibiting molecule decreases oxidative damage and improves neurological function after spinal cord injury. Exp Neurol, 2008. 214(2): p. 160-7.
103. Fleming, J.C., et al., Alpha4beta1 integrin blockade after spinal cord injury decreases damage and improves neurological function. Exp Neurol, 2008. 214(2): p. 147-59.
104. JM., H.B.a.G., Free radicals in Biology and Medicine. Clarendon Press, Oxford, 2007: p. 888.
105. Hall, E.D., Free radicals and CNS injury. Crit Care Clin, 1989. 5(4): p. 793-805.
106. Hall, E.D. and J.M. Braughler, Free radicals in CNS injury. Res Publ Assoc Res Nerv Ment Dis, 1993. 71: p. 81-105.
107. Lewen, A., P. Matz, and P.H. Chan, Free radical pathways in CNS injury. J Neurotrauma, 2000. 17(10): p. 871-90.
108. Blight, A.R., Effects of silica on the outcome from experimental spinal cord injury: implication of macrophages in secondary tissue damage. Neuroscience, 1994. 60(1): p. 263-73.
109. Taoka, Y. and K. Okajima, Spinal cord injury in the rat. Prog Neurobiol, 1998. 56(3): p. 341-58.
110. Xiong, Y., A.G. Rabchevsky, and E.D. Hall, Role of peroxynitrite in secondary oxidative damage after spinal cord injury. J Neurochem, 2007. 100(3): p. 639-49.
111. Cristante, A.F., et al., Therapeutic approaches for spinal cord injury. Clinics (Sao Paulo), 2012. 67(10): p. 1219-24.
112. van der Veen, R.C., et al., Extensive peroxynitrite activity during progressive stages of central nervous system inflammation. J Neuroimmunol, 1997. 77(1): p. 1-7.
113. Winrow, V.R., et al., Free radicals in inflammation: second messengers and mediators of tissue destruction. Br Med Bull, 1993. 49(3): p. 506-22.
114. Zingarelli, B., et al., Peroxynitrite-mediated DNA strand breakage activates poly-adenosine diphosphate ribosyl synthetase and causes cellular energy depletion in macrophages stimulated with bacterial lipopolysaccharide. J Immunol, 1996. 156(1): p. 350-8.
115. Ohkuma, S., et al., Nitric oxide-induced [3H] GABA release from cerebral cortical neurons is mediated by peroxynitrite. J Neurochem, 1995. 65(3): p. 1109-14.
116. Torreilles, F., et al., Neurodegenerative disorders: the role of peroxynitrite. Brain Res Brain Res Rev, 1999. 30(2): p. 153-63.
117. Beckman, J.S., Peroxynitrite versus hydroxyl radical: the role of nitric oxide in superoxide-dependent cerebral injury. Ann N Y Acad Sci, 1994. 738: p. 69-75.
118. Xiong, Y. and E.D. Hall, Pharmacological evidence for a role of peroxynitrite in the pathophysiology of spinal cord injury. Exp Neurol, 2009. 216(1): p. 105-14.
119. Calingasan, N.Y., et al., Induction of nitric oxide synthase and microglial responses precede selective cell death induced by chronic impairment of oxidative metabolism. Am J Pathol, 1998. 153(2): p. 599-610.
120. Ii, M., et al., beta-Amyloid protein-dependent nitric oxide production from microglial cells and neurotoxicity. Brain Res, 1996. 720(1-2): p. 93-100.
121. Cassina, P., et al., Peroxynitrite triggers a phenotypic transformation in spinal cord astrocytes that induces motor neuron apoptosis. J Neurosci Res, 2002. 67(1): p. 21-9.
122. Bolanos, J.P. and J.M. Medina, Induction of nitric oxide synthase inhibits gap junction permeability in cultured rat astrocytes. J Neurochem, 1996. 66(5): p. 2091-9.
123. Trotti, D., et al., Peroxynitrite inhibits glutamate transporter subtypes. J Biol Chem, 1996. 271(11): p. 5976-9.
124. Braughler, J.M., Lipid peroxidation-induced inhibition of gamma-aminobutyric acid uptake in rat brain synaptosomes: protection by glucocorticoids. J Neurochem, 1985. 44(4): p. 1282-8.
125. Hall, E.D. and J.M. Braughler, Glucocorticoid mechanisms in acute spinal cord injury: a review and therapeutic rationale. Surg Neurol, 1982. 18(5): p. 320-7.
126. Hall, E.D., The neuroprotective pharmacology of methylprednisolone. J Neurosurg, 1992. 76(1): p. 13-22.
127. Hall, E.D. and J.M. Braughler, Acute effects of intravenous glucocorticoid pretreatment on the in vitro peroxidation of cat spinal cord tissue. Exp Neurol, 1981. 73(1): p. 321-4.
128. Hall, E.D., Lipid antioxidants in acute central nervous system injury. Ann Emerg Med, 1993. 22(6): p. 1022-7.
129. Flamm, E.S., et al., A phase I trial of naloxone treatment in acute spinal cord injury. J Neurosurg, 1985. 63(3): p. 390-7.
130. Young, W. and E.S. Flamm, Effect of high-dose corticosteroid therapy on blood flow, evoked potentials, and extracellular calcium in experimental spinal injury. J Neurosurg, 1982. 57(5): p. 667-73.
131. Hall, E.D., Glucocorticoid effects on central nervous excitability and synaptic transmission. Int Rev Neurobiol, 1982. 23: p. 165-95.
132. Hall, E.D. and T. Baker, Acute effects of methylprednisolone sodium succinate on spinal reflexes. Exp Neurol, 1979. 63(3): p. 476-84.
133. Hall, E.D., Glucocorticoid effects on the electrical properties of spinal motor neurons. Brain Res, 1982. 240(1): p. 109-16.
134. Young, W., Methylprednisolone treatment of acute spinal cord injury: an introduction. J Neurotrauma, 1991. 8 Suppl 1: p. S43-6.
135. Bracken, M.B., et al., A randomized, controlled trial of methylprednisolone or naloxone in the treatment of acute spinal-cord injury. Results of the Second National Acute Spinal Cord Injury Study. N Engl J Med, 1990. 322(20): p. 1405-11.
136. Hsu, C.Y. and M.R. Dimitrijevic, Methylprednisolone in spinal cord injury: the possible mechanism of action. J Neurotrauma, 1990. 7(3): p. 115-9.
137. Young, W. and I. Koreh, Potassium and calcium changes in injured spinal cords. Brain Res, 1986. 365(1): p. 42-53.
138. Means, E.D., et al., Effect of methylprednisolone in compression trauma to the feline spinal cord. J Neurosurg, 1981. 55(2): p. 200-8.
139. Braughler, J.M. and E.D. Hall, Lactate and pyruvate metabolism in injured cat spinal cord before and after a single large intravenous dose of methylprednisolone. J Neurosurg, 1983. 59(2): p. 256-61.
140. Fadul, C.E., et al., Perforation of the gastrointestinal tract in patients receiving steroids for neurologic disease. Neurology, 1988. 38(3): p. 348-52.
141. Galandiuk, S., et al., The two-edged sword of large-dose steroids for spinal cord trauma. Ann Surg, 1993. 218(4): p. 419-25; discussion 425-7.
142. Bracken, M.B., et al., Efficacy of methylprednisolone in acute spinal cord injury. JAMA, 1984. 251(1): p. 45-52.
143. Bracken, M.B., et al., Methylprednisolone and neurological function 1 year after spinal cord injury. Results of the National Acute Spinal Cord Injury Study. J Neurosurg, 1985. 63(5): p. 704-13.
144. Bracken, M.B., et al., Methylprednisolone or naloxone treatment after acute spinal cord injury: 1-year follow-up data. Results of the second National Acute Spinal Cord Injury Study. J Neurosurg, 1992. 76(1): p. 23-31.
145. Bracken, M.B. and T.R. Holford, Effects of timing of methylprednisolone or naloxone administration on recovery of segmental and long-tract neurological function in NASCIS 2. J Neurosurg, 1993. 79(4): p. 500-7.
146. Bracken, M.B., Treatment of acute spinal cord injury with methylprednisolone: results of a multicenter, randomized clinical trial. J Neurotrauma, 1991. 8 Suppl 1: p. S47-50; discussion S51-2.
147. Saunders, R.D., et al., Effects of methylprednisolone and the combination of alpha-tocopherol and selenium on arachidonic acid metabolism and lipid peroxidation in traumatized spinal cord tissue. J Neurochem, 1987. 49(1): p. 24-31.
148. Anderson, D.K., et al., Lipid hydrolysis and peroxidation in injured spinal cord: partial protection with methylprednisolone or vitamin E and selenium. Cent Nerv Syst Trauma, 1985. 2(4): p. 257-67.
149. Dumont, R.J., et al., Acute spinal cord injury, part II: contemporary pharmacotherapy. Clin Neuropharmacol, 2001. 24(5): p. 265-79.
150. Anderson, D.K., T.R. Waters, and E.D. Means, Pretreatment with alpha tocopherol enhances neurologic recovery after experimental spinal cord compression injury. J Neurotrauma, 1988. 5(1): p. 61-7.
151. Hall, E.D., J.M. Braughler, and J.M. McCall, Antioxidant effects in brain and spinal cord injury. J Neurotrauma, 1992. 9 Suppl 1: p. S165-72.
152. Hall, E.D. and J.M. Braughler, Role of lipid peroxidation in post-traumatic spinal cord degeneration: a review. Cent Nerv Syst Trauma, 1986. 3(4): p. 281-94.
153. Faden, A.I., et al., Endorphins in experimental spinal injury: therapeutic effect of naloxone. Ann Neurol, 1981. 10(4): p. 326-32.
154. Faden, A.I., T.P. Jacobs, and J.W. Holaday, Opiate antagonist improves neurologic recovery after spinal injury. Science, 1981. 211(4481): p. 493-4.
155. Faden, A.I., New pharmacologic approaches to spinal cord injury: opiate antagonists and thyrotropin-releasing hormone. Cent Nerv Syst Trauma, 1985. 2(1): p. 5-8.
156. Young, W., et al., Effect of naloxone on posttraumatic ischemia in experimental spinal contusion. J Neurosurg, 1981. 55(2): p. 209-19.
157. Flamm, E.S., et al., Experimental spinal cord injury: treatment with naloxone. Neurosurgery, 1982. 10(2): p. 227-31.
158. Faden, A.I., T.P. Jacobs, and J.W. Holaday, Comparison of early and late naloxone treatment in experimental spinal injury. Neurology, 1982. 32(6): p. 677-81.
159. Baskin, D.S., et al., The effect of long-term high-dose naloxone infusion in experimental blunt spinal cord injury. J Spinal Disord, 1993. 6(1): p. 38-43.
160. Wallace, M.C. and C.H. Tator, Failure of naloxone to improve spinal cord blood flow and cardiac output after spinal cord injury. Neurosurgery, 1986. 18(4): p. 428-32.
161. Black, P., et al., Naloxone and experimental spinal cord injury: effect of varying dose and intensity of injury. J Neurotrauma, 1991. 8(2): p. 157-71.
162. Holtz, A., B. Nystrom, and B. Gerdin, Blocking weight-induced spinal cord injury in rats: effects of TRH or naloxone on motor function recovery and spinal cord blood flow. Acta Neurol Scand, 1989. 80(3): p. 215-20.
163. Krumins, S.A. and A.I. Faden, Traumatic injury alters opiate receptor binding in rat spinal cord. Ann Neurol, 1986. 19(5): p. 498-501.
164. Olsson, Y., et al., The opioid receptor antagonist naloxone influences the pathophysiology of spinal cord injury. Prog Brain Res, 1995. 104: p. 381-99.
165. Skaper, S.D. and A. Leon, Monosialogangliosides, neuroprotection, and neuronal repair processes. J Neurotrauma, 1992. 9 Suppl 2: p. S507-16.
166. Nicoletti, F., et al., Gangliosides attenuate NMDA receptor-mediated excitatory amino acid release in cultured cerebellar neurons. Neuropharmacology, 1989. 28(11): p. 1283-6.
167. Magal, E., et al., Gangliosides prevent ischemia-induced down-regulation of protein kinase C in fetal rat brain. J Neurochem, 1990. 55(6): p. 2126-31.
168. Sabel, B.A., G.L. Dunbar, and D.G. Stein, Gangliosides minimize behavioral deficits and enhance structural repair after brain injury. J Neurosci Res, 1984. 12(2-3): p. 429-43.
169. Gorio, A., et al., Gangliosides and their effects on rearranging peripheral and central neural pathways. Cent Nerv Syst Trauma, 1984. 1(1): p. 29-37.
170. Gorio, A., Ganglioside enhancement of neuronal differentiation, plasticity, and repair. CRC Crit Rev Clin Neurobiol, 1986. 2(3): p. 241-96.
171. Imanaka, T., S. Hukuda, and T. Maeda, The role of GM1-ganglioside in the injured spinal cord of rats: an immunohistochemical study using GM1-antisera. J Neurotrauma, 1996. 13(3): p. 163-70.
172. Geisler, F.H., F.C. Dorsey, and W.P. Coleman, Recovery of motor function after spinal-cord injury--a randomized, placebo-controlled trial with GM-1 ganglioside. N Engl J Med, 1991. 324(26): p. 1829-38.
173. Geisler, F.H., F.C. Dorsey, and W.P. Coleman, GM-1 ganglioside in human spinal cord injury. J Neurotrauma, 1992. 9 Suppl 1: p. S407-16.
174. Geisler, F.H., F.C. Dorsey, and W.P. Coleman, GM-1 ganglioside in human spinal cord injury. J Neurotrauma, 1992. 9 Suppl 2: p. S517-30.
175. Geisler, F.H., GM-1 ganglioside and motor recovery following human spinal cord injury. J Emerg Med, 1993. 11 Suppl 1: p. 49-55.
176. Geisler, F.H., Clinical trials of pharmacotherapy for spinal cord injury. Ann N Y Acad Sci, 1998. 845: p. 374-81.
177. Geisler, F.H., F.C. Dorsey, and W.P. Coleman, GM1 gangliosides in the treatment of spinal cord injury: report of preliminary data analysis. Acta Neurobiol Exp (Wars), 1990. 50(4-5): p. 515-21.
178. Walker, J.B. and M. Harris, GM-1 ganglioside administration combined with physical therapy restores ambulation in humans with chronic spinal cord injury. Neurosci Lett, 1993. 161(2): p. 174-8.
179. Yarbrough, G.G., On the neuropharmacology of thyrotropin releasing hormone (TRH). Prog Neurobiol, 1979. 12(3-4): p. 291-312.
180. Horita, A., An update on the CNS actions of TRH and its analogs. Life Sci, 1998. 62(17-18): p. 1443-8.
181. Faden, A.I., et al., Comparison of thyrotropin-releasing hormone (TRH), naloxone, and dexamethasone treatments in experimental spinal injury. Neurology, 1983. 33(6): p. 673-8.
182. Faden, A.I., T.P. Jacobs, and J.W. Holaday, Thyrotropin-releasing hormone improves neurologic recovery after spinal trauma in cats. N Engl J Med, 1981. 305(18): p. 1063-7.
183. Arias, M.J., Treatment of experimental spinal cord injury with TRH, naloxone, and dexamethasone. Surg Neurol, 1987. 28(5): p. 335-8.
184. Akdemir, H., et al., Effects of TRH and high-dose corticosteroid therapy on evoked potentials, and tissue Na+,K+ and water content in experimental spinal injury. Res Exp Med (Berl), 1993. 193(5): p. 297-304.
185. Pitts, L.H., et al., Treatment with thyrotropin-releasing hormone (TRH) in patients with traumatic spinal cord injuries. J Neurotrauma, 1995. 12(3): p. 235-43.
186. Faden, A.I. and T.P. Jacobs, Effect of TRH analogs on neurologic recovery after experimental spinal trauma. Neurology, 1985. 35(9): p. 1331-4.
187. Faden, A.I., TRH analog YM-14673 improves outcome following traumatic brain and spinal cord injury in rats: dose-response studies. Brain Res, 1989. 486(2): p. 228-35.
188. Puniak, M.A., et al., Comparison of a serotonin antagonist, opioid antagonist, and TRH analog for the acute treatment of experimental spinal trauma. J Neurotrauma, 1991. 8(3): p. 193-203.
189. Behrmann, D.L., J.C. Bresnahan, and M.S. Beattie, Modeling of acute spinal cord injury in the rat: neuroprotection and enhanced recovery with methylprednisolone, U-74006F and YM-14673. Exp Neurol, 1994. 126(1): p. 61-75.
190. Rogawski, M.A., The NMDA receptor, NMDA antagonists and epilepsy therapy. A status report. Drugs, 1992. 44(3): p. 279-92.
191. Gomez-Pinilla, F., et al., Neuroprotective effect of MK-801 and U-50488H after contusive spinal cord injury. Exp Neurol, 1989. 104(2): p. 118-24.
192. Faden, A.I., et al., N-methyl-D-aspartate antagonist MK801 improves outcome following traumatic spinal cord injury in rats: behavioral, anatomic, and neurochemical studies. J Neurotrauma, 1988. 5(1): p. 33-45.
193. Yanase, M., T. Sakou, and T. Fukuda, Role of N-methyl-D-aspartate receptor in acute spinal cord injury. J Neurosurg, 1995. 83(5): p. 884-8.
194. Yum, S.W. and A.I. Faden, Comparison of the neuroprotective effects of the N-methyl-D-aspartate antagonist MK-801 and the opiate-receptor antagonist nalmefene in experimental spinal cord ischemia. Arch Neurol, 1990. 47(3): p. 277-81.
195. Ferkany, J.W., et al., Pharmacological profile of NPC 17742 [2R,4R,5S-(2-amino-4,5-(1, 2-cyclohexyl)-7-phosphonoheptanoic acid)], a potent, selective and competitive N-methyl-D-aspartate receptor antagonist. J Pharmacol Exp Ther, 1993. 264(1): p. 256-64.
196. Faden, A.I., J.A. Ellison, and L.J. Noble, Effects of competitive and non-competitive NMDA receptor antagonists in spinal cord injury. Eur J Pharmacol, 1990. 175(2): p. 165-74.
197. Guha, A., C.H. Tator, and I. Piper, Increase in rat spinal cord blood flow with the calcium channel blocker, nimodipine. J Neurosurg, 1985. 63(2): p. 250-9.
198. Guha, A., C.H. Tator, and I. Piper, Effect of a calcium channel blocker on posttraumatic spinal cord blood flow. J Neurosurg, 1987. 66(3): p. 423-30.
199. Haghighi, S.S., et al., Evaluation of the calcium channel antagonist nimodipine after experimental spinal cord injury. Surg Neurol, 1993. 39(5): p. 403-8.
200. Ford, R.W. and D.N. Malm, Failure of nimodipine to reverse acute experimental spinal cord injury. Cent Nerv Syst Trauma, 1985. 2(1): p. 9-17.
201. Ross, I.B. and C.H. Tator, Spinal cord blood flow and evoked potential responses after treatment with nimodipine or methylprednisolone in spinal cord-injured rats. Neurosurgery, 1993. 33(3): p. 470-6; discussion 476-7.
202. Ross, I.B. and C.H. Tator, Further studies of nimodipine in experimental spinal cord injury in the rat. J Neurotrauma, 1991. 8(4): p. 229-38.
203. Ross, I.B., C.H. Tator, and E. Theriault, Effect of nimodipine or methylprednisolone on recovery from acute experimental spinal cord injury in rats. Surg Neurol, 1993. 40(6): p. 461-70.
204. Hall, E.D. and D.L. Wolf, A pharmacological analysis of the pathophysiological mechanisms of posttraumatic spinal cord ischemia. J Neurosurg, 1986. 64(6): p. 951-61.
205. Lefer, A.M., Eicosanoids as mediators of ischemia and shock. Fed Proc, 1985. 44(2): p. 275-80.
206. Jonsson, H.T., Jr. and H.B. Daniell, Altered levels of PGF in cat spinal cord tissue following traumatic injury. Prostaglandins, 1976. 11(1): p. 51-61.
207. Hsu, C.Y., et al., Alteration of thromboxane and prostacyclin levels in experimental spinal cord injury. Neurology, 1985. 35(7): p. 1003-9.
208. Faden, A.I., P.H. Chan, and S. Longar, Alterations in lipid metabolism, Na+,K+-ATPase activity, and tissue water content of spinal cord following experimental traumatic injury. J Neurochem, 1987. 48(6): p. 1809-16.
209. Hallenbeck, J.M., T.P. Jacobs, and A.I. Faden, Combined PGI2, indomethacin, and heparin improves neurological recovery after spinal trauma in cats. J Neurosurg, 1983. 58(5): p. 749-54.
210. Shetty, K.R., et al., Hyposomatomedinemia in quadriplegic men. Am J Med Sci, 1993. 305(2): p. 95-100.
211. Mocchetti, I. and J.R. Wrathall, Neurotrophic factors in central nervous system trauma. J Neurotrauma, 1995. 12(5): p. 853-70.
212. Baffour, R., et al., Synergistic effect of basic fibroblast growth factor and methylprednisolone on neurological function after experimental spinal cord injury. J Neurosurg, 1995. 83(1): p. 105-10.
213. Newman, D.J. and G.M. Cragg, Marine natural products and related compounds in clinical and advanced preclinical trials. J Nat Prod, 2004. 67(8): p. 1216-38.
214. Blunt, J.W., et al., Marine natural products. Nat Prod Rep, 2012. 29(2): p. 144-222.
215. Mayer, A.M., et al., Marine pharmacology in 2009-2011: marine compounds with antibacterial, antidiabetic, antifungal, anti-inflammatory, antiprotozoal, antituberculosis, and antiviral activities; affecting the immune and nervous systems, and other miscellaneous mechanisms of action. Mar Drugs, 2013. 11(7): p. 2510-73.
216. Blunt, J.W., et al., Marine natural products. Nat Prod Rep, 2014. 31(2): p. 160-258.
217. Blunt, J.W., et al., Marine natural products. Nat Prod Rep, 2013. 30(2): p. 237-323.
218. Lee, J.C., et al., Marine algal natural products with anti-oxidative, anti-inflammatory, and anti-cancer properties. Cancer Cell Int, 2013. 13(1): p. 55.
219. Metz, G.A., et al., Validation of the weight-drop contusion model in rats: a comparative study of human spinal cord injury. J Neurotrauma, 2000. 17(1): p. 1-17.
220. ALFRED REGINALD ALLEN, M.D., Surgery of experimental lesions of spinal cord equivalent to crush injury of fracture dislocation of spinal column. JAMA Otolaryngol Head Neck Surg, 1911(11): p. 878-880.
221. Freeman, L.W. and T.W. Wright, Experimental observations of concussion and contusion of the spinal cord. Ann Surg, 1953. 137(4): p. 433-43.
222. Kajihara, K., et al., Dimethyl sulfoxide in the treatment of experimental acute spinal cord injury. Surg Neurol, 1973. 1(1): p. 16-22.
223. Koozekanani, S.H., et al., Possible mechanisms for observed pathophysiological variability in experimental spinal cord injury by the method of Allen. J Neurosurg, 1976. 44(4): p. 429-34.
224. JAMES B. AYER, M.D., CEREBROSPINAL FLUID IN EXPERIMENTAL COMPRESSION OF THE SPINAL CORD. Arch Neurol Psychiat, 1919. 2(2): p. 158-164.
225. Thompson, J.E., Pathological Changes, Occurring in the Spinal Cord, Following Fracture Dislocation of the Vertebrae. Ann Surg, 1923. 78(2): p. 260-93.
226. JOSEPH F. McVEIGH, B.A., M.D. , WITH ESPECIAL REFERENCE TO THE MECHANICAL FACTORS INVOLVED AND SUBSEQUENT CHANGES IN THE AREAS OF THE CORD AFFECTED. Arch Surg, 1923. 7(3): p. 573-600.
227. Anthes, D.L., E. Theriault, and C.H. Tator, Characterization of axonal ultrastructural pathology following experimental spinal cord compression injury. Brain Res, 1995. 702(1-2): p. 1-16.
228. Rivlin, A.S. and C.H. Tator, Effect of duration of acute spinal cord compression in a new acute cord injury model in the rat. Surg Neurol, 1978. 10(1): p. 38-43.
229. Gale, K., H. Kerasidis, and J.R. Wrathall, Spinal cord contusion in the rat: behavioral analysis of functional neurologic impairment. Exp Neurol, 1985. 88(1): p. 123-34.
230. Basso, D.M., M.S. Beattie, and J.C. Bresnahan, A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma, 1995. 12(1): p. 1-21.
231. Yaksh, T.L. and T.A. Rudy, Analgesia mediated by a direct spinal action of narcotics. Science, 1976. 192(4246): p. 1357-8.
232. Basso, D.M., M.S. Beattie, and J.C. Bresnahan, Graded histological and locomotor outcomes after spinal cord contusion using the NYU weight-drop device versus transection. Exp Neurol, 1996. 139(2): p. 244-56.
233. Grossman, S.D., L.J. Rosenberg, and J.R. Wrathall, Temporal-spatial pattern of acute neuronal and glial loss after spinal cord contusion. Exp Neurol, 2001. 168(2): p. 273-82.
234. Zhang, H., et al., Evidence that spinal astrocytes but not microglia contribute to the pathogenesis of Paclitaxel-induced painful neuropathy. J Pain, 2012. 13(3): p. 293-303.
235. Huang, S.Y., et al., Sinularin from indigenous soft coral attenuates nociceptive responses and spinal neuroinflammation in carrageenan-induced inflammatory rat model. Mar Drugs, 2012. 10(9): p. 1899-919.
236. Fu, E.S., et al., Transgenic inhibition of glial NF-kappa B reduces pain behavior and inflammation after peripheral nerve injury. Pain, 2010. 148(3): p. 509-18.
237. Ankeny, D.P., D.M. McTigue, and L.B. Jakeman, Bone marrow transplants provide tissue protection and directional guidance for axons after contusive spinal cord injury in rats. Exp Neurol, 2004. 190(1): p. 17-31.
238. Yin, Y., et al., Effects of combining methylprednisolone with rolipram on functional recovery in adult rats following spinal cord injury. Neurochem Int, 2013. 62(7): p. 903-12.
239. Pearse, D.D., et al., cAMP and Schwann cells promote axonal growth and functional recovery after spinal cord injury. Nat Med, 2004. 10(6): p. 610-6.
240. Meng, B., et al., Effects of a single dose of methylprednisolone versus three doses of rosiglitazone on nerve growth factor levels after spinal cord injury. J Int Med Res, 2011. 39(3): p. 805-14.
241. Sayin, M., et al., The dose-dependent neuroprotective effect of alpha-lipoic acid in experimental spinal cord injury. Neurol Neurochir Pol, 2013. 47(4): p. 345-51.
242. Lee, D.H. and J.K. Lee, Animal models of axon regeneration after spinal cord injury. Neurosci Bull, 2013. 29(4): p. 436-44.
243. Grill, R., et al., Cellular delivery of neurotrophin-3 promotes corticospinal axonal growth and partial functional recovery after spinal cord injury. J Neurosci, 1997. 17(14): p. 5560-72.
244. McTigue, D.M., et al., Neurotrophin-3 and brain-derived neurotrophic factor induce oligodendrocyte proliferation and myelination of regenerating axons in the contused adult rat spinal cord. J Neurosci, 1998. 18(14): p. 5354-65.
245. Popovich, P.G., et al., Independent evaluation of the anatomical and behavioral effects of Taxol in rat models of spinal cord injury. Exp Neurol, 2014. 261: p. 97-108.
246. Jeong, S.R., et al., Hepatocyte growth factor reduces astrocytic scar formation and promotes axonal growth beyond glial scars after spinal cord injury. Exp Neurol, 2012. 233(1): p. 312-22.
247. Gwak, Y.S., et al., Spatial and temporal activation of spinal glial cells: role of gliopathy in central neuropathic pain following spinal cord injury in rats. Exp Neurol, 2012. 234(2): p. 362-72.
248. Xiong, Y., ROLE OF REACTIVE OXYGEN SPECIES PEROXYNITRITE IN TRAUMATIC SPINAL CORD INJURY. University of Kentucky Doctoral Dissertations, 2008. p. 657.
249. Xu, Z., et al., ERK1/2 and p38 mitogen-activated protein kinase mediate iNOS-induced spinal neuron degeneration after acute traumatic spinal cord injury. Life Sci, 2006. 79(20): p. 1895-905.
250. Kim, J.Y., et al., Attenuation of spinal cord injury-induced astroglial and microglial activation by repetitive transcranial magnetic stimulation in rats. J Korean Med Sci, 2013. 28(2): p. 295-9.
251. Xu, J., et al., iNOS and nitrotyrosine expression after spinal cord injury. J Neurotrauma, 2001. 18(5): p. 523-32.
252. Yin, K.J., et al., JNK activation contributes to DP5 induction and apoptosis following traumatic spinal cord injury. Neurobiol Dis, 2005. 20(3): p. 881-9.
253. Repici, M., et al., Specific inhibition of the JNK pathway promotes locomotor recovery and neuroprotection after mouse spinal cord injury. Neurobiol Dis, 2012. 46(3): p. 710-21.
254. Horiuchi, H., et al., Continuous intrathecal infusion of SB203580, a selective inhibitor of p38 mitogen-activated protein kinase, reduces the damage of hind-limb function after thoracic spinal cord injury in rat. Neurosci Res, 2003. 47(2): p. 209-17.
255. Bhat, N.R., et al., Extracellular signal-regulated kinase and p38 subgroups of mitogen-activated protein kinases regulate inducible nitric oxide synthase and tumor necrosis factor-alpha gene expression in endotoxin-stimulated primary glial cultures. J Neurosci, 1998. 18(5): p. 1633-41.
256. Lu, K., et al., Inhibition of extracellular signal-regulated kinases 1/2 provides neuroprotection in spinal cord ischemia/reperfusion injury in rats: relationship with the nuclear factor-kappaB-regulated anti-apoptotic mechanisms. J Neurochem, 2010. 114(1): p. 237-46.
257. Bao, F., G.A. Dekaban, and L.C. Weaver, Anti-CD11d antibody treatment reduces free radical formation and cell death in the injured spinal cord of rats. J Neurochem, 2005. 94(5): p. 1361-73.
258. Surace, M.J. and M.L. Block, Targeting microglia-mediated neurotoxicity: the potential of NOX2 inhibitors. Cell Mol Life Sci, 2012. 69(14): p. 2409-27.
259. Dohi, K., et al., Gp91phox (NOX2) in classically activated microglia exacerbates traumatic brain injury. J Neuroinflammation, 2010. 7: p. 41.
260. Genovese, T., et al., Immunomodulatory effects of etanercept in an experimental model of spinal cord injury. J Pharmacol Exp Ther, 2006. 316(3): p. 1006-16.
261. Lee, S.J. and E.N. Benveniste, Adhesion molecule expression and regulation on cells of the central nervous system. J Neuroimmunol, 1999. 98(2): p. 77-88.
262. Lebedeva, T., M.L. Dustin, and Y. Sykulev, ICAM-1 co-stimulates target cells to facilitate antigen presentation. Curr Opin Immunol, 2005. 17(3): p. 251-8.
263. Han, X., et al., Targeting IKK/NF-kappaB pathway reduces infiltration of inflammatory cells and apoptosis after spinal cord injury in rats. Neurosci Lett, 2012. 511(1): p. 28-32.
264. Cavallin, M.A. and L.P. McCluskey, Upregulation of intracellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1 after unilateral nerve injury in the peripheral taste system. J Neurosci Res, 2007. 85(2): p. 364-72.
265. Qu, W.S., et al., Inhibition of EGFR/MAPK signaling reduces microglial inflammatory response and the associated secondary damage in rats after spinal cord injury. J Neuroinflammation, 2012. 9: p. 178.
266. Hausmann, O.N., Post-traumatic inflammation following spinal cord injury. Spinal Cord, 2003. 41(7): p. 369-78.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.117.196.184
論文開放下載的時間是 校外不公開

Your IP address is 18.117.196.184
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code