Responsive image
博碩士論文 etd-0302115-170630 詳細資訊
Title page for etd-0302115-170630
論文名稱
Title
二維系統上物理與化學性質的原子尺度描述
Exploring the physical and chemical properties on the novel 2D structures in electronic and atomic details
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
153
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-03-19
繳交日期
Date of Submission
2015-04-06
關鍵字
Keywords
水、氮化鎵、二維結構、銦、量子能階、石墨稀、ƒ掃描式穿隧顯微鏡
GaN, 2D structure, Indium, Quantized unoccupied states, Graphene, Scanning tunneling microscopy, H2O
統計
Statistics
本論文已被瀏覽 5716 次,被下載 126
The thesis/dissertation has been browsed 5716 times, has been downloaded 126 times.
中文摘要
表面物理現在已經是一個成熟的領域。綜觀表面物理的過去發展,其發展不只和新的研究工具發明也與新的材料發現有關。這裡我們試著利用具有原子解析度的工具來理解新的材料其物理和化學性質。在這個論文的第一個部份,我們利用掃描式穿隧顯微鏡和能譜來研究能量高於功函數的量子化空軌域。藉由Bohr-Sommerfeld量子化方法,在石墨稀裡的量子化空軌域能階可以被判別。藉由量測這個量子化空軌域能階,石墨稀的厚度也可以被分辨。其空間解析可以到達一個奈米左右。論文的第二部份討論了銦原子在Si(111)-α-√3-Au上的二維結構。第三部份討論了在氮化鎵(1-100)面上水的解離反應。利用光電子能譜配合其他對表面敏銳的工具,我們試著建構水在表面上解離的原子模型。
Abstract
The progress of the surface science is driven by the new tools and also the novel condense materials. The aim of this thesis relative to both of them especially in atomic details. For the first part of the thesis, STM/STS was used to probed the quantized unoccupied states above the vacuum level. By using the Bohr-Sommerfeld quantization, the quantized unoccupied σ states in epitaxial graphene layers were quantitatively identified. These quantized unoccupied states are strongly layer dependent and can be used to identify the absolute number of graphene layers with sub-nanometered resolution. Second part of the thesis is the study of novel 2D structure: √7×√3 In on Si(111)-α-√3-Au. α-√3-Au overlayer on Si(111) is one of the famous two-dimensional electron gas system. Here, an ordered In surface structure with 0.8 ML In coverage was found to be stable on Si(111)-α-√3-Au. Detailed atomic model of this In surface structure was studied by STM/STS, LEED and further comparing with that proposed by the density functional theory. The last work is the atomic structure of H2O molecules on cleaved GaN(1-100) surface. From the theoretical calculations, the H2O molecules was expected to dissociated spontaneously simply by the thermal energy on the non-polar GaN(1-100) surface. Here, the structure and the chemical information of H2O molecules on the cleaved GaN(1-100) surface is studied by STM/STS, LEED and time-dependent XPS. Detailed atomic model was built and compared with that from the calculations.
目次 Table of Contents
[論 文 審 定 書+i]
[acknowledgements+iii]
[中 文 摘 要+iv]
[abstract+v]
[introduction+1]
[Theory and Experimental setup+7]
[STM theory+7]
[STS+9]
[Normalization for dI/dV spectra+10]
[Field emission spectrum+12]
[Low temperature UHV STM system+12]
[Sample preparation+14]
[Si(111)+14]
[graphene/6H-SiC(0001)+16]
[cleavage nonpolar GaN(1-100)+16]
[X-ray photoelectron spectroscopy+22]
[UHV system for XPS measurement+27]
[XPS parameter+28]
[Probing the Quantized unoccupied states by field emission spectroscopy+29]
[Tight binding model for grpahene layers+29]
[Bohr Sommerfeld model of Field Emission Resonance+32]
[Resonance Spectra of Epitaxial Graphene on 6H-SiC(0001)+34]
[Suppression of the resonant electron waves+36]
[Field emission images+38]
[Determing the structure of novel 2D structure - 0.8 ML indium on Si(111)-α-√3×√3-Au+43]
[sample preparation+43]
[5×2-Au and α-√3×√3-Au on Si(111)+43]
[Indium on Si(111)-α-√3×√3-Au+45]
[√7×√3 indium structure on Si(111)-α-√3×√3-Au+47]
[0.8 ML coverage of the In surface structure+49]
[Atomic model of the In surface structure on Si(111)-α-√3×√3-Au+50]
[Identifying the H2O dissociation on Cleaved GaN(1-100) surface+59]
[Crystalline property of cleaved GaN(1-100)+59]
[Morphology of the clean GaN(1-100) surface+59]
[1/3 ML and 1 ML surfaces+61]
[Invisible H2O/D2O on cleaved GaN(1-100) surface+64]
[Missing N dangling bond states by depositing H2O+67]
[H2O structure on GaN(1¯100) studied by LEED+69]
[Chemical results+71]
[Cleaved GaN(1-100) surface in UHV, O2, H2O environments+71]
[Photon-induced reaction+73]
[Heating effect+75]
[Identify XPS features+80]
[Coverage estimation+88]
[H2O and O2 on GaN(0001)+92]
[DFT proposed models+94]
[Discussion+97]
[Fermi level pinning and unpinning on the cleaved GaN(1-100) surface+97]
[Experiments proposed H2O atomic model on GaN(1-100)+105]
[Summary and outlook+111]
[Bibliography+115]
參考文獻 References
[1] R. Schlaf. Calibration of photoemission spectra and work function determination.
[2] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov. Electric field effect in atomically thin carbon films. Science, 306(5696):666–669, 2004.
[3] A. K. Geim and K. S. Novoselov. The rise of graphene. Nat Mater, 6(3):183–
191, March 2007.
[4] Aaron Bostwick, Taisuke Ohta, Thomas Seyller, Karsten Horn, and Eli
Rotenberg. Quasiparticle dynamics in graphene. Nat Phys, 3(1):36–40, January 2007.
[5] Xiao-Liang Qi and Shou-Cheng Zhang. Topological insulators and super-conductors. Rev. Mod. Phys., 83(4):1057–1110, October 2011.
[6] Yang Xu, Ireneusz Miotkowski, Chang Liu, Jifa Tian, Hyoungdo Nam,
Nasser Alidoust, Jiuning Hu, Chih-Kang Shih, M. Zahid Hasan, and
Yong P. Chen. Observation of topological surface state quantum hall
effect in an intrinsic three-dimensional topological insulator. Nat Phys,
10(12):956–963, December 2014.
[7] Cheng-Tien Chiang, Aimo Winkelmann, Ping Yu, and J ¨urgen Kirschner.
Magnetic dichroism from optically excited quantum well states. Phys. Rev.
Lett, 103:077601, 2009.
[8] I. Sch¨afer, M. Schl ¨uter, and M. Skibowski. Conduction-band structure of
graphite studied by combined angle-resolved inverse photoemission and
target current spectroscopy. Physical Review B, 35(14):7663–7670, May 1987.
[9] H. Petek and S. Ogawa. Femtosecond time-resolved two-photon photoe-
mission studies of electron dynamics in metals. Progress in Surface Science,
56(4):239–310, 1997.
[10] V. N. Strocov, P. Blaha, H. I. Starnberg, M. Rohlfing, R. Claessen, J.-M.
Debever, and J.-M. Themlin. Three-dimensional unoccupied band structure
of graphite: Very-low-energy electron diffraction and band calculations.
Phys. Rev. B, 61:4994–5001, 2000.
[11] GV Nazin, XH Qiu, and W Ho. Visualization and spectroscopy of a metal-
molecule-metal bridge. Science, 302(5642):77–81, OCT 3 2003.
[12] J. Tersoff and D. Hamann. Theory and application for the scanning tunnel-
ing microscope. Phys. Rev. Lett., 50(25):1998–2001, June 1983.
[13] M. Feng, J. Zhao, and H. Petek. Atomlike, hollow-core-bound molecular
orbitals of c-60 rid a-3546-2011 rid a-3912-2009. Science, 320(5874):359–362,
2008.
[14] A. Sperl, J. Kr¨oger, N. N´eel, H. Jensen, R. Berndt, A. Franke, and E. Pehlke. Unoccupied states of individual silver clusters and chains on ag(111). Phys. Rev. B, 77:085422, 2008.
[15] C. L. Lin, S. M. Lu, W. B. Su, H. T. Shih, B. F. Wu, Y. D. Yao, C. S. Chang,
and Tien T. Tsong. Manifestation of work function difference in high order
gundlach oscillation. Phys. Rev. Lett., 99:216103, 2007.
[16] A. Sommerfeld. Zur quantentheorie der spektrallinien. Annalen der Physik,
356(17):1–94, 1916.
[17] O.Yu. Kolesnychenko, Yu.A. Kolesnichenko, O.I. Shklyarevskii, and H. van
Kempen. Field-emission resonance measurements with mechanically controlled break junctions. Physica B: Condensed Matter, 291(3–4):246–255,
September 2000.
[18] Shuji Hasegawa, Xiao Tong, Sakura Takeda, Norio Sato, and Tadaaki Na-
gao. Structures and electronic transport on silicon surfaces. Progress in
Surface Science, 60(5–8):89–257, March 1999.
[19] Joseph M. Carpinelli, Hanno H. Weitering, E. Ward Plummer, and Roland
Stumpf. Direct observation of a surface charge density wave. Nature,
381(6581):398–400, May 1996.
[20] H. W. Yeom, S. Takeda, E. Rotenberg, I. Matsuda, K. Horikoshi, J. Schaefer, C. M. Lee, S. D. Kevan, T. Ohta, T. Nagao, and S. Hasegawa. Instability and charge density wave of metallic quantum chains on a silicon surface. Phys. Rev. Lett., 82:4898–4901, Jun 1999.
[21] R. Cort´es, A. Tejeda, J. Lobo, C. Didiot, B. Kierren, D. Malterre, E. G. Michel, and A. Mascaraque. Observation of a mott insulating ground state for
Sn/Ge(111) at low temperature. Phys. Rev. Lett., 96:126103, Mar 2006.
[22] Won Hoon Choi, Pil Gyu Kang, Kyung Deuk Ryang, and Han Woong
Yeom. Band-structure engineering of gold atomic wires on silicon by con-
trolled doping. Phys. Rev. Lett., 100:126801, Mar 2008.
[23] Shengyong Qin, Jungdae Kim, Qian Niu, and Chih-Kang Shih. Supercon-
ductivity at the two-dimensional limit. Science, 324(5932):1314–1317, 2009.
[24] Keun Su Kim, Sung Chul Jung, Myung Ho Kang, and Han Woong Yeom.
Nearly massless electrons in the silicon interface with a metal film. Phys.
Rev. Lett., 104:246803, Jun 2010.
[25] Sebastian D. Stolwijk, Anke B. Schmidt, Markus Donath, Kazuyuki
Sakamoto, and Peter Kr ¨uger. Rotating spin and giant splitting: Unoccupied surface electronic structure of Tl/Si(111). Phys. Rev. Lett., 111:176402,
Oct 2013.
[26] H. M. Zhang, T. Balasubramanian, and R. I. G. Uhrberg. Core-level pho-
toelectron spectroscopy study of the au/si(111) 52, α-sqrt[3]sqrt[3], β-
sqrt[3]sqrt[3], and 66 surfaces. Phys. Rev. B, 65(3):035314, December 2001.
[27] H. M. Zhang, T. Balasubramanian, and R. I. G. Uhrberg. Surface electronic
structure study of au/si(111) reconstructions: Observation of a crystal-to-
glass transition. Phys. Rev. B, 66(16):165402, October 2002. 4, 43, 45, 47
[28] J. N. Crain, K. N. Altmann, C. Bromberger, and F. J. Himpsel. Fermi sur-
faces of surface states on si(111)-ag, au. Phys. Rev. B, 66(20):205302, November 2002.
[29] D. V. Gruznev, I. N. Filippov, D. A. Olyanich, D. N. Chubenko, I. A.
Kuyanov, A. A. Saranin, A. V. Zotov, and V. G. Lifshits. Si(111)-α-
sqrt[3]sqrt[3]-au phase modified by in adsorption: Stabilization of a ho-
mogeneous surface by stress relief. Phys. Rev. B, 73(11):115335, March 2006.
[30] J. K. Kim, K. S. Kim, J. L. McChesney, E. Rotenberg, H. N. Hwang, C. C.
Hwang, and H. W. Yeom. Two-dimensional electron gas formed on the
indium-adsorbed si(111)sqrt[3]sqrt[3]-au surface. Phys. Rev. B, 80(7):075312,
August 2009.
[31] Chia Hsiu Hsu, Wen Huan Lin, Vidvuds Ozolins, and Feng Chuan Chuang.
Electronic structure of the indium-adsorbed Au/Si(111)-sqrt[3]sqrt[3] sur-
face: A first-principles study. Phys. Rev. B, 85(15):155401, April 2012
[32] Tong Zhang, Peng Cheng, Wen-Juan Li, Yu-Jie Sun, Guang Wang, Xie-
Gang Zhu, Ke He, Lili Wang, Xucun Ma, Xi Chen, Yayu Wang, Ying Liu,
Hai-Qing Lin, Jin-Feng Jia, and Qi-Kun Xue. Superconductivity in one-
atomic-layer metal films grown on si(111). Nature Physics, 6(2):104–108,
February 2010.
[33] Takashi Uchihashi, Puneet Mishra, Masakazu Aono, and Tomonobu
Nakayama. Macroscopic superconducting current through a silicon sur-
face reconstruction with indium adatoms: Si(111)-(sqrt[7]sqrt[3])-in. Phys.
Rev. Lett., 107(20):207001, November 2011.
[34] Manabu Yamada, Toru Hirahara, and Shuji Hasegawa. Magnetoresistance
measurements of a superconducting surface state of in-induced and pb-
induced structures on si(111). Phys. Rev. Lett., 110(23):237001, June 2013.
[35] Xiao Shen, Philip B. Allen, Mark S. Hybertsen, and James T. Muckerman.
Water adsorption on the gan (101-0) nonpolar surface. The Journal of Phys-
ical Chemistry C, 113(9):3365–3368, 2009.
[36] Xiao Shen, Yolanda A. Small, Jue Wang, Philip B. Allen, Maria V.
Fernandez-Serra, Mark S. Hybertsen, and James T. Muckerman. Photo-
catalytic water oxidation at the gan (101-0)water interface. The Journal of
Physical Chemistry C, 114(32):13695–13704, 2010.
[37] C. Julian Chen. Introduction to Scanning Tunneling Microscopy. Oxford University Press, September 2007.
[38] J. Bardeen. Tunnelling from a many-particle point of view. Phys. Rev. Lett.,
6(2):57–59, January 1961.
[39] W. Drube, D. Straub, F. J. Himpsel, P. Soukiassian, C. L. Fu, and A. J.
Freeman. Unoccupied surface states on w(001) and mo(001) by inverse
photoemission. Phys. Rev. B, 34:8989–8992, Dec 1986.
[40] R. H. Gaylord, K. H. Jeong, and S. D. Kevan. Experimental fermi surfaces
of clean and hydrogen-covered w(110). Phys. Rev. Lett., 62:2036–2039, Apr
1989.
[41] R. M. Feenstra. Band gap of the ge(111)21 and si(111)21 surfaces by scan-
ning tunneling spectroscopy. Phys. Rev. B, 44(24):13791–13794, December
1991.
[42] P. M˚artensson and R. M. Feenstra. Geometric and electronic structure of antimony on the gaas(110) surface studied by scanning tunneling microscopy.
Phys. Rev. B, 39:7744–7753, Apr 1989.
[43] Vladimir A. Ukraintsev. Data evaluation technique for electron-tunneling
spectroscopy. Phys. Rev. B, 53:11176–11185, Apr 1996.
[44] G. Binnig, K. H. Frank, H. Fuchs, N. Garcia, B. Reihl, H. Rohrer, F. Salvan,
and A. R. Williams. Tunneling spectroscopy and inverse photoemission:
Image and field states. Phys. Rev. Lett., 55(9):991–994, 1985.
[45] W. B. Su, S. M. Lu, H. T. Shih, C. L. Jiang, C. S. Chang, and Tien T. Tsong.
Manifestation of the quantum size effect in transmission resonance. J. Phys.
Condens. Matter, 18(27):6299–6305, 2006.
[46] S. H. Pan, E. W. Hudson, and J. C. Davis. 3he refrigerator based very
low temperature scanning tunneling microscope. Review of Scientific Instru-
ments, 70(2):1459–1463, 1999.
[47] Hsin-Hsiung Huang, Kuei-Ming Chen, Li-Wei Tu, Ting-Li Chu, Pei-Lun
Wu, Hung-Wei Yu, Chen-Hao Chiang, and Wei-I. Lee. A novel technique
for growing crack-free GaN thick film by hydride vapor phase epitaxy. Jpn.
J. Appl. Phys., 47(11R):8394, November 2008.
[48] Taisuke Ohta, Farid El Gabaly, Aaron Bostwick, Jessica L McChesney, Kon-
stantin V Emtsev, Andreas K Schmid, Thomas Seyller, Karsten Horn, and Eli Rotenberg. Morphology of graphene thin film growth on SiC(0001).
New J. Phys., 10(2):023034, 2008.
[49] I. Forbeaux, J.-M. Themlin, and J.-M. Debever. Heteroepitaxial graphite on
6h-SiC(0001):interface formation through conduction-band electronic structure. Phys. Rev. B, 58(24):16396–16406, December 1998.
[50] C. Riedl, A. A. Zakharov, and U. Starke. Precise in situ thickness analysis of epitaxial graphene layers on sic(0001) using low-energy electron diffraction
and angle resolved ultraviolet photoelectron spectroscopy. Appl. Phys. Lett,
93:033106, 2008.
[51] Kuniyoshi Okamoto, Junich Kashiwagi, Taketoshi Tanaka, and Masashi
Kubota. Nonpolar m-plane InGaN multiple quantum well laser diodes
with a lasing wavelength of 499.8 nm. Applied Physics Letters, 94(7):071105,
February 2009.
[52] Fabio Bernardini, Vincenzo Fiorentini, and David Vanderbilt. Spontaneous
polarization and piezoelectric constants of III-v nitrides. Phys. Rev. B,
56(16):R10024–R10027, October 1997.
[53] V.M Bermudez, D.D Koleske, and A.E Wickenden. The dependence of the
structure and electronic properties of wurtzite gan surfaces on the method
of preparation. Applied Surface Science, 126(1–2):69 – 82, 1998.
[54] M. Bertelli, P. L¨optien, M. Wenderoth, A. Rizzi, R. G. Ulbrich, M. C. Righi,
A. Ferretti, L. Martin-Samos, C. M. Bertoni, and A. Catellani. Atomic and
electronic structure of the nonpolar GaN(11[over ]00) surface. Phys. Rev. B,
80(11):115324, September 2009.
[55] L. Ivanova, S. Borisova, H. Eisele, M. D¨ahne, A. Laubsch, and Ph Ebert.
Surface states and origin of the fermi level pinning on nonpolar GaN(1100)
surfaces. Applied Physics Letters, 93(19):192110, November 2008.
[56] Soeren Porsgaard, Peng Jiang, Ferenc Borondics, Stefan Wendt, Zhi Liu,
Hendrik Bluhm, Flemming Besenbacher, and Miquel Salmeron. Charge
state of gold nanoparticles supported on titania under oxygen pressure.
Angew. Chem. Int. Ed., 50(10):2266–2269, March 2011.
[57] Chung-Lin Wu, Hong-Mao Lee, Cheng-Tai Kuo, Shangjr Gwo, and Chia-
Hung Hsu. Polarization-induced valence-band alignments at cation-
and anion-polar InNGaN heterojunctions. Applied Physics Letters,
91(4):042112, July 2007.
[58] E. A. Kraut, R. W. Grant, J. R. Waldrop, and S. P. Kowalczyk. Semiconductor core-level to valence-band maximum binding-energy differences: Precise determination by x-ray photoelectron spectroscopy. Phys. Rev. B, 28:1965–1977, Aug 1983.
[59] Zhen Zhang and John T. Yates. Band bending in semiconductors: Chem-
ical and physical consequences at surfaces and interfaces. Chem. Rev.,
112(10):5520–5551, October 2012.
[60] R. Schlaf, R. Hinogami, M. Fujitani, S. Yae, and Y. Nakato. Fermi level
pinning on hf etched silicon surfaces investigated by photoelectron spectroscopy. Journal of Vacuum Science & Technology A, 17(1):164–169, 1999.
[61] Mickael Lozac’h, Shigenori Ueda, Shitao Liu, Hideki Yoshikawa, Sang Li-
wen, Xinqiang Wang, Bo Shen, Kazuaki Sakoda, Keisuke Kobayashi, and
Masatomo Sumiya. Determination of the surface band bending in in x ga 1
x n films by hard x-ray photoemission spectroscopy. Science and Technology
of Advanced Materials, 14(1):015007, 2013.
[62] J. P. Long and V. M. Bermudez. Band bending and photoemission-induced
surface photovoltages on clean n- and p-GaN (0001) surfaces. Phys. Rev. B,
66(12):121308, September 2002.
[63] Kristian Sell, Ingo Barke, Stefan Polei, Christian Schumann, Viola von
Oeynhausen, and Karl-Heinz Meiwes-Broer. Surface photovoltage of ag
nanoparticles and au chains on si(111). phys. stat. sol. (b), 247(5):1087–1094,
May 2010.
[64] Leeor Kronik and Yoram Shapira. Surface photovoltage phenomena: theory, experiment, and applications. Surface Science Reports, 37(1–5):1–206,
December 1999.
[65] M. McEllistrem, G. Haase, D. Chen, and R. J. Hamers. Electrostatic sample-
tip interactions in the scanning tunneling microscope. Phys. Rev. Lett.,
70(16):2471–2474, April 1993.
[66] A. Rothschild, A. Levakov, Y. Shapira, N. Ashkenasy, and Y. Komem. Surface photovoltage spectroscopy study of reduced and oxidized nanocrystalline TiO2 films. Surface Science, 532–535:456–460, June 2003.
[67] PAUL KIRKPATRICK and A. V. BAEZ. Formation of optical images by
x-rays. J. Opt. Soc. Am., 38(9):766–773, Sep 1948.
[68] Kenji Nakao. Landau level structure and magnetic breakthrough in
graphite. Journal of the Physical Society of Japan, 40(3):761–768, 1976.
[69] D. Chung. Review graphite. Journal of Materials Science, 37(8):1475–1489,
2002.
[70] Taisuke Ohta, Aaron Bostwick, J. L. McChesney, Thomas Seyller, Karsten
Horn, and Eli Rotenberg. Interlayer interaction and electronic screening in
multilayer graphene investigated with angle-resolved photoemission spectroscopy. Phys. Rev. Lett., 98:206802, 2007.
[71] Mikito Koshino and Tsuneya Ando. Magneto-optical properties of multi-
layer graphene. Phys. Rev. B, 77:115313, 2008
[72] H. Hibino, H. Kageshima, F. Maeda, M. Nagase, Y. Kobayashi, and H. Yam-
aguchi. Microscopic thickness determination of thin graphite films formed
on sic from quantized oscillation in reflectivity of low-energy electrons.
Phys. Rev. B, 77(7):075413, 2008.
[73] H. Hibino, H. Kageshima, M. Kotsugi, F. Maeda, F.-Z. Guo, and Y. Watan-
abe. Dependence of electronic properties of epitaxial few-layer graphene on
the number of layers investigated by photoelectron emission microscopy.
Phys. Rev. B, 79(12):125437, 2009.
[74] G. Mesa and J. J S´aenz. Threedimensional image interaction for nonsmooth
emitters. Appl. Phys. Lett., 69(8):1169–1171, 1996.
[75] G. Mesa, E. DobadoFuentes, and J. J S´aenz. Image charge method for
electrostatic calculations in fieldemission diodes. Journal of Applied Physics,
79(1):39–44, 1996.
[76] B. Borca, S. Barja, M. Garnica, D. S´anchez-Portal, V. M. Silkin, E. V. Chulkov, C. F. Hermanns, J. J. Hinarejos, A. L. V´azquez de Parga, A. Arnau, P. M. Echenique, and R. Miranda. Potential energy landscape for hot electrons in
periodically nanostructured graphene. Phys. Rev. Lett., 105(3):036804, 2010.
[77] Sangita Bose, Vyacheslav M Silkin, Robin Ohmann, Ivan Brihuega, Lucia
Vitali, Christian H Michaelis, Pierre Mallet, Jean Yves Veuillen, M Alexander Schneider, Evgueni V Chulkov, Pedro M Echenique, and Klaus Kern.
Image potential states as a quantum probe of graphene interfaces. New J.
Phys., 12(2):023028, 2010.
[78] Peter Sutter. Epitaxial graphene how silicon leaves the scene. Nature Mater.,
8:171–172, 2009.
[79] Han Huang, Wei Chen, Shi Chen, and Andrew Thye Shen Wee. Bottom-upgrowth of epitaxial graphene on 6h-sic(0001). ACS Nano, 2:2513–2518, 2008.
[80] N. Barrett, E. E. Krasovskii, J.-M. Themlin, and V. N. Strocov. Elastic scattering effects in the electron mean free path in a graphite overlayer studied
by photoelectron spectroscopy and LEED. Phys. Rev. B, 71(3):035427, 2005.
[81] A. J. Caamano, Y. Pogorelov, O. Custance, J. M´endez, A. M. Bar´o, J. Y.
Veuillen, J. M. G´omez-Rodr´ıguez, and J. J. S´aenz. Field emission interferometry with the scanning tunneling microscope. Surf. Sci., 426(1):L420 –
L425, 1999.
[82] W. B. Su, S. M. Lu, C. L. Lin, H. T. Shih, C. L. Jiang, C. S. Chang, and
Tien T. Tsong. Interplay between transmission background and gundlach
oscillation in scanning tunneling spectroscopy. Phys. Rev. B, 75(19):195406,
May 2007.
[83] J. H. Coombs and J. K. Gimzewski. Fine structure in field emission reso-
nances at surfaces. Journal of Microscopy, 152(3):841–851, 1988.
[84] OY Kolesnychenko, OI Shklyarevskii, and H van Kempen. Calibration of
the distance between electrodes of mechanically controlled break junctions
using field emission resonance. Rev. Sci. Instrum., 70(2):1442–1446, 1999.
[85] C. Riedl, U. Starke, J. Bernhardt, M. Franke, and K. Heinz. Structural
properties of the graphene-sic(0001) interface as a key for the preparation of
homogeneous large-terrace graphene surfaces. Phys. Rev. B, 76(24):245406,
2007.
[86] P. Mallet, F. Varchon, C. Naud, L. Magaud, C. Berger, and J.-Y. Veuillen.
Electron states of mono- and bilayer graphene on sic probed by scanning tunneling microscopy. Phys. Rev. B, 76(4):041403, 2007.
[87] Victor W. Brar, Yuanbo Zhang, Yossi Yayon, Taisuke Ohta, Jessica L. Mc-
Chesney, Aaron Bostwick, Eli Rotenberg, Karsten Horn, and Michael F.
Crommie. Scanning tunneling spectroscopy of inhomogeneous electronic
structure in monolayer and bilayer graphene on sic. Appl. Phys. Lett.,
91(12):122102, 2007.
[88] P. Lauffer, K. V. Emtsev, R. Graupner, Th. Seyller, L. Ley, S. A. Reshanov,
and H. B. Weber. Atomic and electronic structure of few-layer graphene on
sic(0001) studied with scanning tunneling microscopy and spectroscopy.
Phys. Rev. B, 77(15):155426, Apr 2008.
[89] T. Nagao, S. Hasegawa, K. Tsuchie, S. Ino, C. Voges, G. Klos, H. Pfnur, and M. Henzler. Structural phase transitions of si(111)-(sqrt[3]sqrt[3])R30 ◦-Au:
phase transitions in domain-wall configurations. Phys. Rev. B, 57(16):10100–
10109, April 1998.
[90] H. S. Yoon, J. E. Lee, S. J. Park, I.-W. Lyo, and M.-H. Kang. Electronic and
geometric structure of si(111)-52-au. Phys. Rev. B, 72(15):155443, 2005.
[91] A. Stepniak, P. Nita, M. Krawiec, and M. Jałochowski. In and si adatoms on
si(111)52-au: Scanning tunneling microscopy and first-principles density
functional calculations. Phys. Rev. B, 80(12):125430, 2009.
[92] A.A. Saranin, A.V. Zotov, T. Numata, O. Kubo, K.V. Ignatovich, V.G. Lif-
shits, M. Katayama, and K. Oura. Structural transformations at room temperature adsorption of in on si(111)√3 √3-in surface: LEED-AES-STM
study. Surf. Sci., 388(1–3):299–307, October 1997.
[93] Sakura Takeda, Xiao Tong, Shozo Ino, and Shuji Hasegawa. Structure-
dependent electrical conduction through indium atomic layers on the
si(111) surface. Surf. Sci., 415(3):264–273, October 1998.
[94] J. Nogami, A. A. Baski, and C. F. Quate. √3 √3 66 phase transition on the
Au/Si(111) surface. Phys. Rev. Lett., 65(13):1611–1614, September 1990.
[95] J Falta, A Hille, D Novikov, G Materlik, L Seehofer, G Falkenberg, and R.L
Johnson. Domain wall structure of si(111) (√3 √3)R30 ◦-Au. Surf. Sci.,
330(2):L673–L677, June 1995.
[96] K. Hermann and M. A. van Hove. ”LEEDpat”.
[97] A. Shibata, Y. Kimura, and K. Takayanagi. Si(111)√3 √3-au growing on a
7 7 surface. Surf. Sci., 273(1–2):L430–L434, June 1992.
[98] Robert G. Ryland, Shigehiko Hasegawa, and Ellen D. Williams. Silicon
motion during antimony deposition on si(111). Surf. Sci., 345(1–2):222–234,
January 1996.
[99] A.A. Saranin, A.V. Zotov, V.G. Lifshits, J.-T. Ryu, O. Kubo, H. Tani,
T. Harada, M. Katayama, and K. Oura. Ag-induced structural transfor-
mations on si(111): quantitative investigation of the si mass transport. Surf.
Sci., 429(1–3):127–132, June 1999.
[100] J. Kraft, S.L. Surnev, and F.P. Netzer. The structure of the indium-si(111) (7x3) monolayer surface. Surf. Sci., 340(1–2):36–48, October 1995.
[101] J. Kraft, M. G. Ramsey, and F. P. Netzer. Surface reconstructions of in on
si(111). Phys. Rev. B, 55(8):5384–5393, February 1997.
[102] A. A. Saranin, A. V. Zotov, M. Kishida, Y. Murata, S. Honda, M. Katayama,
K. Oura, D. V. Gruznev, A. Visikovskiy, and H. Tochihara. Reversible phase
transitions in the pseudomorphic sqrt[7]sqrt[3]-hex in layer on si(111).
Phys. Rev. B, 74(3):035436, July 2006.
[103] D.V. Gruznev, A.V. Matetskiy, L.V. Bondarenko, E.A. Borisenko, D.A. Tsukanov, A.V. Zotov, and A.A. Saranin. Structural transformations in
(Au,In)/Si(111) system and their effect on surface conductivity. Surf. Sci.,
605(15–16):1420–1425, August 2011.
[104] John P. Perdew, Kieron Burke, and Matthias Ernzerhof. Generalized gradient approximation made simple. Phys. Rev. Lett., 77(18):3865–3868, October
1996.
[105] P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Phys. Rev.,
136(3B):B864–B871, November 1964.
[106] W. Kohn and L. J. Sham. Self-consistent equations including exchange and
correlation effects. Phys. Rev., 140(4A):A1133–A1138, November 1965.
[107] G. Kresse and D. Joubert. From ultrasoft pseudopotentials to the projector
augmented-wave method. Phys. Rev. B, 59(3):1758–1775, January 1999.
[108] G. Kresse and J. Hafner. Ab initio molecular dynamics for liquid metals.
Phys. Rev. B, 47(1):558–561, January 1993.
[109] G. Kresse and J. Furthmuller. Efficient iterative schemes for ab initio total-
energy calculations using a plane-wave basis set. Phys. Rev. B, 54(16):11169–
11186, October 1996.
[110] J. Tersoff and D. R. Hamann. Theory of the scanning tunneling microscope.
Phys. Rev. B, 31:805–813, Jan 1985.
[111] Y.G. Ding, C.T. Chan, and K.M. Ho. Theoretical investigation of the structure of the (3 3)R30 ◦-Au/Si(111) surface. Surf. Sci., 275(3):L691–L696,
September 1992.
[112] I. H. Hong, D. K. Liao, Y. C. Chou, C. M. Wei, and S. Y. Tong. Direct
observation of ordered trimers on si(111)√3√3 r30 ◦-au by scanned-energy
glancing-angle kikuchi electron wave-front reconstruction. Phys. Rev. B,
54(7):4762–4765, August 1996.
[113] Takuya Kadohira, Jun Nakamura, and Satoshi Watanabe. First-principles
study on the atomic and electronic structures of the Au/Si(111)-α(√3 × √3)r30° surface. e-Journal of Surface
Science and Nanotechnology, 2:146–150, 2004. 51
[114] Kazuyuki Uchida and Atsushi Oshiyama. Identification of metallic phases
of in atomic layers on si(111) surfaces. Phys. Rev. B, 87:165433, Apr 2013. 54
[115] Z.-C. Dong, D. Fujita, and H. Nejoh. Adsorption and tunneling of atomic
scale lines of indium and lead on si(100). Phys. Rev. B, 63:115402, Feb 2001.
58
[116] P. Sobotik, M. Setvin, P. Zimmermann, P. Kocan, I. Ostadal, P. Mutombo,
M. Ondracek, and P. Jelinek. Emergence of state at fermi level due to
the formation of in-sn heterodimers on si(100). Phys. Rev. B, 88(20):205406–, November 2013.
[117] John E. Northrup and J. Neugebauer. Theory of GaN(101[over ]0) and
(112[over ]0) surfaces. Phys. Rev. B, 53(16):R10477–R10480, April 1996. 61
[118] Chung-Lin Wu, Hong-Mao Lee, Cheng-Tai Kuo, Chia-Hao Chen, and
Shangjr Gwo. Cross-sectional scanning photoelectron microscopy and
spectroscopy of wurtzite InNGaN heterojunction: Measurement of “intrinsic” band lineup. Applied Physics Letters, 92(16):162106, April 2008.
[119] Yunbin He, Antonio Tilocca, Olga Dulub, Annabella Selloni, and Ulrike
Diebold. Local ordering and electronic signatures of submonolayer water
on anatase TiO2(101). Nat Mater, 8(7):585–589, July 2009.
[120] Yunbin He, Wei-Kun Li, Xue-Qing Gong, Olga Dulub, Annabella Selloni,
and Ulrike Diebold. Nucleation and growth of 1d water clusters on rutile
TiO2 (011)-21. J. Phys. Chem. C, 113(24):10329–10332, June 2009.
[121] Lindsay R. Merte, Guowen Peng, Ralf Bechstein, Felix Rieboldt, Car-
rie A. Farberow, Lars C. Grabow, Wilhelmine Kudernatsch, Stefan Wendt,
Erik Lægsgaard, Manos Mavrikakis, and Flemming Besenbacher. Water-
mediated proton hopping on an iron oxide surface. Science, 336(6083):889–
893, May 2012.
[122] R. M. Feenstra and Joseph A. Stroscio. Tunneling spectroscopy of the GaAs(110) surface. Journal of Vacuum Science & Technology B, 5(4):923–929, July 1987.
[123] L. Lymperakis, P. H. Weidlich, H. Eisele, M. Schnedler, J.-P. Nys, B. Gran-
didier, D. Sti´evenard, R. E. Dunin-Borkowski, J. Neugebauer, and Ph Ebert.
Hidden surface states at non-polar GaN ( 10 1 0 ) facets: Intrinsic pinning
of nanowires. Applied Physics Letters, 103(15):152101, October 2013.
[124] Ph. Ebert, L. Ivanova, and H. Eisele. Scanning tunneling microscopy on
unpinned GaN(11[over ]00) surfaces: Invisibility of valence-band states.
Phys. Rev. B, 80(8):085316, August 2009.
[125] J. J. Yeh and I. Lindau. Atomic subshell photoionization cross sections and
asymmetry parameters: 1 z 103. Atomic Data and Nuclear Data Tables,
32(1):1–155, January 1985.
[126] J.-J. Yeh. Atomic Calculation of Photoionization Cross-sections and Asymmetry Parameters. Gordon & Breach Science, Publishers, January 1993.
[127] S. Yamamoto, H. Bluhm, K. Andersson, G. Ketteler, H. Ogasawara,
M. Salmeron, and A. Nilsson. In situ x-ray photoelectron spectroscopy
studies of water on metals and oxides at ambient conditions. J. Phys.: Condens. Matter, 20(18):184025, May 2008.
[128] Susanne Sch¨afer, Sonja A. Wyrzgol, Roberta Caterino, Andreas Jentys, Sebastian J. Schoell, Michael H¨avecker, Axel Knop-Gericke, Johannes A. Lercher, Ian D. Sharp, and Martin Stutzmann. Platinum nanoparticles on
gallium nitride surfaces: Effect of semiconductor doping on nanoparticle
reactivity. J. Am. Chem. Soc., 134(30):12528–12535, August 2012.
[129] Dongsheng Li, M. Sumiya, S. Fuke, Deren Yang, Duanlin Que, Y. Suzuki,
and Y. Fukuda. Selective etching of GaN polar surface in potassium hydroxide solution studied by x-ray photoelectron spectroscopy. Journal of
Applied Physics, 90(8):4219–4223, October 2001.
[130] Mei-Ying Kong, Jian-Ping Zhang, Xiao-Liang Wang, and Dian-Zhao Sun.
Hydrogen behavior in GaN epilayers grown by NH3-MBE. Journal of Crystal
Growth, 227–228:371–375, July 2001.
[131] A. Sidorenko, H. Peisert, H. Neumann, and T. Chass´e. GaN nucleation
on (0001)-sapphire via ion-induced nitridation of gallium. Applied Surface
Science, 252(21):7671–7677, August 2006.
[132] Azusa N. Hattori, Katsuyoshi Endo, Ken Hattori, and Hiroshi Daimon.
Surface treatments toward obtaining clean GaN(0001) from commercial hy-
dride vapor phase epitaxy and metal-organic chemical vapor deposition
substrates in ultrahigh vacuum. Applied Surface Science, 256(14):4745–4756,
May 2010.
[133] Azusa N. Hattori, Fumio Kawamura, Masashi Yoshimura, Yasuo Kitaoka,
Yusuke Mori, Ken Hattori, Hiroshi Daimon, and Katsuyoshi Endo. Chemi-
cal etchant dependence of surface structure and morphology on GaN(0001)
substrates. Surface Science, 604(15–16):1247–1253, August 2010.
[134] Mary R. Coan, Jung Hwan Woo, Derek Johnson, Iman Rezanezhad Gatabi,
and H. Rusty Harris. Band offset measurements of the GaN/dielectric
interfaces. Journal of Applied Physics, 112(2):024508, July 2012.
[135] Wei Wei, Zhixin Qin, Shunfei Fan, Zhiwei Li, Kai Shi, Qinsheng Zhu, and
Guoyi Zhang. Valence band offset of β-ga2o3/wurtzite GaN heterostruc-
ture measured by x-ray photoelectron spectroscopy. Nanoscale Research Let-
ters, 7(1):562, 2012.
[136] Hee-Sung Kang, M Siva Pratap Reddy, Dong-Seok Kim, Ki-Won Kim, Jong-
Bong Ha, Yong Soo Lee, Hyun-Chul Choi, and Jung-Hee Lee. Effect of
oxygen species on the positive flat-band voltage shift in al 2 o 3 /GaN
metal–insulator–semiconductor capacitors with post-deposition annealing.
Journal of Physics D: Applied Physics, 46(15):155101, April 2013.
[137] Cagla Ozgit-Akgun, Eda Goldenberg, Ali Kemal Okyay, and Necmi Biyikli.
Hollow cathode plasma-assisted atomic layer deposition of crystalline AlN,
GaN and AlxGa1xN thin films at low temperatures. Journal of Materials
Chemistry C, 2(12):2123, 2014.
[138] M. P. Seah and W. A. Dench. Quantitative electron spectroscopy of surfaces: A standard data base for electron inelastic mean free paths in solids. Surf. Interface Anal., 1(1):2–11, February 1979.
[139] M. Krawczyk, L. Zommer, A. Jablonski, I. Grzegory, and M. Bockowski. En
ergy dependence of electron inelastic mean free paths in bulk GaN crystals.
Surface Science, 566–568, Part 2:1234–1239, September 2004.
[140] Tsung Yu Chen, Cheng-Ta Kuo, Chi-Ling Lee, and Wei-I. Lee. Study of
free-standing GaN substrates prepared by hydride vapor phase epitaxy
technology. In Optoelectronics, Proceedings of the Sixth Chinese Symposium,
pages 46–49, September 2003.
[141] A. Barinov, L. Casalis, L. Gregoratti, and M. Kiskinova. Stages of formation
and thermal stability of a gold-n-GaN interface. J. Phys. D: Appl. Phys.,
34(3):279, February 2001.
[142] Min-Ho Kim, Sung-Nam Lee, Chul Huh, Serng Yerl Park, Jeong Yeul Han,
Jae Myung Seo, and Seong-Ju Park. Interfacial reaction and fermi level
movement induced by sequentially deposited metals on GaN: Au/ni/GaN.
Phys. Rev. B, 61(16):10966–10971, April 2000.
[143] V. M. Bermudez and J. P. Long. Chemisorption of h2o on GaN(0001). Sur-
face Science, 450(1–2):98–105, April 2000.
[144] S.m. Widstrand, K.o. Magnusson, L.s.o. Johansson, E. Moons, M. Gurnett,
and M. Oshima. Core-level photoemission from stoichiometric GaN(0001)-
11. MRS Internet Journal of Nitride Semiconductor Research, 10:e1–null, 2005.
[145] J. W. Liu, A. Kobayashi, S. Toyoda, H. Kamada, A. Kikuchi, J. Ohta, H. Fu
jioka, H. Kumigashira, and M. Oshima. Band offsets of polar and nonpolar
GaN/ZnO heterostructures determined by synchrotron radiation photoe-
mission spectroscopy. phys. stat. sol. (b), 248(4):956–959, April 2011.
[146] M. P. Seah and S. J. Spencer. Ultrathin SiO2 on si II. issues in quantification of the oxide thickness. Surf. Interface Anal., 33(8):640–652, August 2002.
[147] Guido Ketteler, Susumu Yamamoto, Hendrik Bluhm, Klas Andersson,
David E. Starr, D. Frank Ogletree, Hirohito Ogasawara, Anders Nilsson,
and Miquel Salmeron. The nature of water nucleation sites on TiO2(110)
surfaces revealed by ambient pressure x-ray photoelectron spectroscopy. J.
Phys. Chem. C, 111(23):8278–8282, 2007.
[148] Shuji Nakamura. Current status of GaN-based solid-state lighting. MRS
Bulletin, 34(02):101–107, February 2009.
[149] P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. H. Ploog. Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes. Nature, 406(6798):865–
868, August 2000.
[150] Takahiro Deguchi, Kaoru Sekiguchi, Atsushi Nakamura, Takayuki Sota,
Ryuji Matsuo, Shigefusa Chichibu, and Shuji Nakamura. Quantum-
confined stark effect in an AlGaN/GaN/AlGaN single quantum well struc-
ture. Jpn. J. Appl. Phys., 38(8B):L914, August 1999.
[151] M. Himmerlich, A. Eisenhardt, S. Shokhovets, S. Krischok, J. R¨athel, E. Speiser, M. D. Neumann, A. Navarro-Quezada, and N. Esser. Confirmation of intrinsic electron gap states at nonpolar GaN(1-100) surfaces
combining photoelectron and surface optical spectroscopy. Applied Physics
Letters, 104(17):171602, April 2014.
[152] V. M. Bermudez. Study of oxygen chemisorption on the GaN(0001)(11)
surface. Journal of Applied Physics, 80(2):1190–1200, July 1996.
[153] The kinetic energy of the n1s photoelectron is 220 eV in our XPS measure-
ment. the inealstic electron mean free path is 0.5 nm to 0.7nm. from beer-
lambert law, the topmost layer is estimated to contribute 32%˜42% of the
n1s core level. therefore, 22% of the surface area is expected to contribute
7˜9%.
[154] L. V. Bondarenko, D. V. Gruznev, A. A. Yakovlev, A. Y. Tupchaya, D. Us-
achov, O. Vilkov, A. Fedorov, D. V. Vyalikh, S. V. Eremeev, E. V. Chulkov,
A. V. Zotov, and A. A. Saranin. Large spin splitting of metallic surface-state
bands at adsorbate-modified gold/silicon surfaces. Sci. Rep., 3:1826, May
2013.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code