Responsive image
博碩士論文 etd-0302118-011252 詳細資訊
Title page for etd-0302118-011252
論文名稱
Title
基於 WSN CoAP代理伺服器滿足QoS需求之高效率合併機制
Efficient Aggregation in CoAP Proxy for QoS Support of Wireless Sensor Networks
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
101
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-03-29
繳交日期
Date of Submission
2018-04-10
關鍵字
Keywords
能源節省、觀察機制、代理伺服器、受限制型協議、無線感測網路
WSN, Energy Saving, Observe, CoAP, Proxy
統計
Statistics
本論文已被瀏覽 5664 次,被下載 2
The thesis/dissertation has been browsed 5664 times, has been downloaded 2 times.
中文摘要
現今科技發展出各式各樣的無線裝置,提供手持裝置更多元化的使用服務,以及監控周遭電器的各項狀態改變,讓人們能更便利更智慧化的生活。在無線感測網路中的感測器大部分皆為受限制型裝置,近幾年的研究學者們提出將IPv6嵌入至受限型裝置,進而發展出受限型應用層協議 (CoAP,Constrained Application Protocol) ,使得受限型裝置能更容易的聯接上物聯網。然而當受限型裝置間的訊息傳送頻繁時,遽增的耗電量,將使電量受限制的無線裝置難以負荷,因此,節省耗電量將是無線裝置互相通訊的首要關注問題。
  我假設情境為客戶端們各自指定接收訊息的週期,我企圖使用Minimum Period (p_min) 和Maximum Period (p_max) 作為指定週期的參數,客戶端將這兩個參數放入訊息中,便能達到指定週期的效果。在滿足客戶端服務品質 (Quality of Service) 需求的同時,也會確保客戶端和服務器端的連結關係依然存在且能獲得最新的資源狀態訊息。
  我將使用分群演算法對客戶端們進行分組,將週期過短和週期過長的客戶端分開,進而避免週期短的客戶端大幅降低最大週期的情形。也使用代理伺服器的緩存機制加上Max-Age選擇演算法設置每一則通知在緩存中的更新頻率,使客戶端能取得最新的通知,並確認客戶端與服務器端的連線狀態。接著使用合併演算法,將緩存中有效且同一接收端的通知進行合併,以減少客戶端接收通知的次數。
  本篇論文將提出在滿足所有CoAP客戶端的服務品質 (Quality of Service) 需求下,使用分群演算法、緩存機制、Max-Age選擇演算法以及合併演算法,降低代理伺服器的傳輸次數和降低客戶端的訊息接收數量,減少服務器端回應訊息的傳輸次數。於是,得以分別減少客戶端和代理伺服器間的訊息數量以及代理伺服器和服務器端間的訊息數量,進而達成降低整體架構的能量消耗。
Abstract
Nowadays, we make a broad varieties of wireless devices by new technology, which providing handheld devices with multiple variations of services, such as monitoring the state changes of the electrical appliances. The electrical appliances have a greater diversity of functions. Consequently, people life becomes more convenient and intelligent. Most of the sensors in the wireless sensor network are constrained devices. In recent year, researcher have proposed to integrate IPv6 into constrained devices, and subsequently developed a constrained application protocol (CoAP). So that a constrained device can be more easily connected to realize Internet of things. However, when the message transmissions between constrained devices are frequent, the increased power consumption will make micro-wireless devices infeasible for high loads. Therefore, saving power is the primary concern of wireless devices to communicate with each other.
  In this thesis, clients specify the period of receiving messages and inform the proxy, which allows clients to avoid excessive information, and therefore saves energy consumption. Clients confirm the connections with the proxy and the proxy maintains connections with servers. The Minimum Period (p_min) and Maximum Period (p_max), which satisfy the quality of service requirements of clients are used as the parameters of the specified periods. Clients will append these two parameters into their request messages and send them to the proxy.
  Grouping algorithm groups clients by splitting clients of long periods and short periods, for avoiding situations where short-cycle clients drastically let down the maximum periods of the high-cycle groups. Next, the cache mechanism of proxy and the Max-Age selection algorithm to set the frequency at which each notification is updated in the cache ensure the clients receiving the latest notifications and the client-server connections. The merge algorithm combines notifications from the cache that are valid and have the same receiving end, to further reduce the number of times the client getting notifications.
  This thesis will propose scheme to decrease the energy consumption of the overall structure by which all CoAP clients’ quality of service (QoS) requirement are satisfied. To use grouping algorithm, caching mechanism, Max-Age selection algorithm and merge algorithm substantially reduce the number of proxy transmissions, the number of messages received by the clients, and the number of server response messages. As a result, the number of messages between the clients and proxy, the number of messages between the proxy and the server, and the energy consumption of the overall architecture are greatly decreased.
目次 Table of Contents
第一章 導論+1
1.1 前言+1
1.2 研究動機+2
1.3 論文架構+3
第二章 相關背景與研究+4
2.1 物聯網(Internet of Things)+4
2.2 無線感測網路(Wireless Sensor Network)+8
2.3 CoAP (Constrained Application Protocol)+11
2.3.1 觀察資源(Observing Resources)+14
2.3.2 代理伺服器(Proxying)+17
2.3.3 緩存(Caching)+19
2.4 相關論文+21
第三章 研究方法+24
3.1 系統架構+24
3.2 客戶端分群+28
3.3 設定Max-Age+38
3.4 合併機制+40
第四章 效能分析+43
4.1模擬環境與參數設定+43
4.2模擬結果與效能分析+46
第五章 結論+84
參考文獻+85
參考文獻 References
[1] Chris Edwards, “Smart dust”, Engineering & Technology ( Volume: 7, Issue: 6, July 2012 ), August 2012
[2] Gartner, “Gartner Says 8.4 Billion Connected "Things" Will Be in Use in 2017, Up 31 Percent From 2016”, http://www.gartner.com/newsroom/id/3598917, February 2017
[3] B .Gates, N. Myhrvold and P. Rinearson, “The road ahead”, Viking Press, November 1995
[4] International Telecommunication Union, “The Internet of Things”, ITU Internet Reports, November 2005
[5] 張志勇, 陳正昌, “物物相聯的龐大網路-物聯網”, 科學月刊(534期), June 2014
[6] R. C. Carrano, D. Passos, L. C. S. Magalhaes, and C. V. N. Albuquerque, “Survey and taxonomy of duty cycling mechanisms in wireless sensor networks’’, IEEE Communications Surveys & Tutorials ( Volume: 16, Issue: 1, First Quarter 2014 ), June 2013
[7] J. Zhu, Y. Zou and B. Zheng, “Physical-Layer Security and Reliability Challenges for Industrial Wireless Sensor Networks’’, IEEE Access ( Volume: 5 ), April 2017
[8] R. Godoi Vieira, A. Marques da Cunha, L. Beatryz Ruiz, and A. Pires de Camargo, “On the Design of a Long Range WSN for Precision Irrigation’’, IEEE Sensors Journal, Jsan 2018
[9] Tajudeen O. Olasupo, Carlos E. Otero, Kehinde O. Olasupo, and Ivica Kostanic, ”Empirical Path Loss Models for Wireless Sensor Network Deployments in Short and Tall Natural Grass Environments”, IEEE Transactions on Antennas and Propagation ( Volume: 64, Issue: 9, Sept. 2016 ), June 2016
[10] Ahmed Boubrima, Walid Bechkit, Hervé Rivano, “Optimal WSN Deployment Models for Air Pollution Monitoring”, IEEE Transactions on Wireless Communications ( Volume: 16, Issue: 5, May 2017 ), January 2017
[11] Wei Liu, Yozo Shoji and Ryoichi Shinkuma, “Logical Correlation-Based Sleep Scheduling for WSNs in Ambient-Assisted Homes”, IEEE Sensors Journal ( Volume: 17, Issue: 10, May15, 15 2017 ), March 2017
[12] Z. Shelby, K. Hartke, and C. Bormann, “The Constrained Application Protocol (CoAP)”, RFC 7252, June 2014
[13] K. Hartke, “Observing Resources in the Constrained Application Protocol (CoAP)”, RFC 7641, September 2015
[14] G. Wilkins, S. Salsano, S. Loreto and P. Saint-Andre, “Known Issues and Best Practices for the Use of Long Polling and Streaming in Bidirectional HTTP”, RFC 6202, April 2011
[15] A. Ludovici, E. Garcia, X. Gimeno, and A. Calveras Augé, “Adding QoS support for timeliness to the observe extension of CoAP”, IEEE 8th Int. Conf. on Wireless and Mobile Computing, Networking and Communications (WiMob), December 2012
[16] G. K. Teklemariam, J. Hoebeke, I. Moerman, and P. Demeester, “Facilitating the creation of IoT applications through conditional observations in CoAP”, EURASIP Journal on Wireless Commu-nications and Networking, June 2013.
[17] E. Mingozzi, G. Tanganelli, and C. Vallati, “CoAP Proxy Virtualization for the Web of Things”, IEEE Int. Conf. on Cloud Computing Technologies and Science (CloudCom), December 2014.
[18] S. Li, K. Li, J. Hoebeke, F. Van den Abeele, and A. Jara, “Conditional observe in CoAP”, draft-li-core-conditional-observe-05, April 2015.
[19] N. Correia, D. Sacramento, and G. Schütz, “Dynamic Aggregation and Scheduling in CoAP/Observe Based Wireless Sensor Networks”, 2015 IEEE Intern. Conf. on Communications (ICC), January 2016
[20] G. Tanganelli, C. Vallati, E. Mingozzi, and M. Kovatsch, “Efficient Proxying of CoAP Observe with Quality of Service Support”, 2016 IEEE 3rd World Forum on Internet of Things (WF-IoT), December 2016.
[21] M. Kovatsch, O. Bergmann, and C. Bormann, “CoAP Implementation Guidance”, draft-ietf-lwig-coap-04, September 2017.
[22] Z. Shelby, Z. Vial, M. Koster, and C. Groves, “Reusable Interface Definitions for Constrained RESTful Environments”, draft-ietf-core-interfaces-09, September 2017.
[23] M. Kovatsch, M. Lanter, and Z. Shelby, “Californium: Scalable cloud services for the Internet of Things with CoAP”, International Conference on the Internet of Things (IOT), February 2015
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code