Responsive image
博碩士論文 etd-0303109-160315 詳細資訊
Title page for etd-0303109-160315
論文名稱
Title
低溫複晶矽薄膜電晶體之可靠度與異常劣化之研究
Investigation on Reliability and Anomalous Degradation of Low Temperature Poly-Si Thin-Film Transistor
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
85
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-02-25
繳交日期
Date of Submission
2009-03-03
關鍵字
Keywords
自我加熱、低溫複晶矽薄膜電晶體
NBTI, self-heating
統計
Statistics
本論文已被瀏覽 5744 次,被下載 2358
The thesis/dissertation has been browsed 5744 times, has been downloaded 2358 times.
中文摘要
在這篇論文中,我們將研究低溫複晶矽薄膜電晶體(LTPS TFTs)在經過電性stress後的劣化機制。樣品為奇美公司所提供ELA TFTs,電致劣化可以分為直流以及交流兩種。首先,在AC stress方面,此實驗有些機制不能完全由NBTI機制所解釋,除了NBTI外,我們也把自我加熱效應(self-heating effect)考慮進去,因為自我加熱效應會造成通道溫度上升,焦耳熱使得poly-Si/SiO2界面的矽氫鍵分離;我們也比較脈衝(pulse)作用在不同位置(閘極或汲極)造成的差異。
在DC stress方面,我們在此實驗的stress條件,閘極偏壓固定在-15V並改變汲極偏壓,看它對劣化造成的影響;我們的量測方法一種為汲極和源極的定義跟stress條件相同,此論文稱正掃(forward),另一種汲極和源極的定義跟stress條件相反,稱反掃(reverse),藉由正掃和反掃來分析此實驗異常的NBTI劣化結果。
Abstract
In this thesis, we will investigate the degradation of the Low-Temperature-Polycrystalline-Silicon TFTs(LTPS TFTS) under the electrical stress. The devices are offer by Chi Mei Optoelectronics. The two mechanisms of the electrical stress are AC and DC stress. On the AC stress, there are some phenomena which cannot be completely explained by typical NBTI mechanism in the experiment. In addition to NBTI, we suggest that the self-heating effect might be involved, because the self-heating effect could rise channel temperature and cause the dissociation of the Si-H bonds at the poly-Si/SiO2 interface due to the Joule heating. We also compare pulse to give on the degradation difference of different place.
On the DC stress, we show the stress drain voltage dependence of on-current and threshold voltage degradation, in which the stress gate voltage was fixed at -15V and stress time was 2154 s. The electric measurements of forward and reverse modes were employed to analyze the experimental data. The anomalous negative bias temperature instability degradation of poly-Si TFTs was investigated.
目次 Table of Contents
Content
Chinese Abstract
English Abstract
Tables Captions
Figures Caotions
Chapter 1- Introduction
1.1 Overview
1.2 Motivation
1-3 Introduction of Negative Bias Temperature Instability
Chapter 2- Device fabrication and electrical characterization
2.1 Device Fabrication
2.1.1 Technology of ELA Crystallization
2.1.2 Fabrication Processes of LTPS Poly-Si Device
2.2 Defects in polycrystalline-silicon film
2-3. Basic characterization of the LTPS TFT
2.3.1 The I-V transfer characteristics
2.3.2 The C-V transfer characteristics
2-4. Introduction of Seto’s model
Chapter 3- Instruments and device parameter extraction
3.1 Instruments and measurement setup
3.1.1 Instruments
3.1.2 Set up instruments for I-V
3.2 Methods of Device Parameter Extraction
3.2.1 Determination of the threshold voltage
3.2.2 Determination of the field-effect mobility
3.2.3 Determination of on/off current ratio
3.2.4 Determination of the subthreshold swing
3.2.5 Determination of the trap densit
Chapter 4- Results and Discussion
4.1 The influence of AC stress in LTPS TFTs
4.1.1 The Degradation of P-channel TFT under pulse
4.1.2 The self-heating effect
4.1.3 The pulse in drain and in gate
4.2 The influence of DC stress in LTPS TFTs
4.2.1 The anomalous device characteristics
4.2.2 Explain the anomalous device characteristics
Chapter 5- Conclusion
Reference
Tables
Figures
參考文獻 References
Reference
[1.1] W. E. Howard, “Thin Film Transistors,” edited by C. R. Kagan and P. Andry (Dekker, New York, 2003), pp.1.
[1.2] H. Oshima and S. Morozumi, “Future trends for TFT integrated circuits on glass substrates,” IEDM Tech. Dig., 157, 1989
[1.3] S. Zhang, C. Zhu, J. K. O. Sin, J. N. Li, and P. K. T. Mok, “Ultra-Thin Elevated Channel Poly-Si TFT Technology for Fully-Integrated AMLCD System on Glass,” IEEE Trans. Electron Devices, Vol. 47, No. 3, pp. 569–575, March 2000.
[1.4] Z. Meng, M. Wang, and M. Wong, “High Performance Low Temperature Metal-Induced Unilaterally Crystallized Polycrystalline Silicon Thin Film Transistors for System-on-Panel Applications,” IEEE Trans. Electron Devices, Vol. 47, No. 2, pp. 404–409, February 2000.
[1.5] S. D. S. Malhi, H. Shichijo, S. K. Banerjee, R. Sundaresan, M. Elahy, G. P. Pollack, W. F. Richardson, A. H. Shah, L. R. Hite, R. H. Womack, P. K. Chatterjee, and H. W. Lam, “Characteristics and Three-Dimensional Integration of MOSFET’s in Small-Grain LPCVD Polycrystalline Silicon, ”IEEE Solid-State Circuits, Vol.SC-20, No.1, pp.178-201, Feb. 1985.
[1.6] H. Kuriyama et al., “An asymmetric memory cell using a C-TFT for ULSI SRAM,” Symp. On VLSI Tech., p.38, 1992
[1.7] T. Yamanaka, T. Hashimoto, N. Hasegawa, T. Tanala, N. Hashimoto, A. Shimizu, N. Ohki, K. Ishibashi, K. Sasaki, T. Nishida, T. Mine, E. Takeda, and T. Nagano, “Advanced TFT SRAM cell technology using a phase-shift lithography,” IEEE Trans. Electron Devices, Vol. 42, pp.1305-1313,1995.
[1.8] Shunji Seki, Osamu Kogure, and Bunjiro Tsujiyama, “Effects of Crystallization on trap State Densities at Grain Boundaries in Polycrystalline Silicon”, IEEE Electron Device Lett., vol.8, pp.368-370, August 1987.
[1.9] T. W. Little, K. I. Takahara, H. Koike, et al, “Low Temperature Poly-Si TFTs Using Solid Phase Crystallization of Very Thin Films and an Electron Cyclotron Resonance Chemical vapor deposition gate insulator”, Jpn. J. Appl., Phys., vol.30, no.12B, pp.3724-3728,December 1991.
[1.10] Hiroyuki Kuriyama, Seiichi Kiyama, Shigeru Nouguchi, et al, “Enlargement of poly-Si Film Grain Size by Excimer Laser Annealing and its Application to High-Performance Poly-Si Thin Film Transistor”, Jpn. J. Appl. Phys., vol.30, no.12B, pp.3700-3703, December 1991.
[1.11] S. W. Lee and S.K. Joo, “Low Temperature Poly-Si Thin Film Transistors Fabrication by Metal-Induced Lateral Crystallization”, IEEE Electron Device Lett., vol.17, no4,pp.160-162, April 1996.
[1.12] J. B. Boyce and P. Mei, “Laser crystallization for polycrystalline silicon device applications,” in Technology and Application of Amorphous Silicon, R. A. Street, Ed. New York: Springer-Verlag, pp.94-146, 2000.
[1.13] J. Levinson, F. R. Shepherd, P. J. Scanlon, W. D. Westwood, G. Este, and M. Rider, “Conductivity behavior in polycrystalline semiconductor thin film transistors,” J. Appl. Phys. Vol. 53, pp.1193-1202, 1982.
[1.14] P. Migliorato, C. Reita, G. Tallarida, M. Quinn and G. Fortunato,”Anomalous Off-Current Mechanisms in N-Channel Poly-Si Thin Film Transistors.” Solid-State-Electronics, Vol.38, No.12, pp.2075-2079, 1995.
[1.15] M. Hack, I-W. Wu, T. J. King and A. G. Lewis, “Analysis of Leakage Currents in Poly-silicon Thin Film Transistors,”IEDM Tech Dig., Vol. 93, pp.385-388,December 1993.
[1.16] K. Ono, T. Aoyama, N. Konishi, and K. Miyata, “Analysis of Current-Voltage Characteristics of Low-Temperature-Processed Polysilicon Thin-Film Transistors,” IEEE Trans. Electron Devices, Vol. 39, No. 4, pp. 792-802, April 1992.
[1.17] A. Rodriguez, E. G. Moreno, H. Pattyn, J. F. Nijs, and R. P. Mertens, “Model for the Anomalous Off-Current of Polysilicon Thin-Film Transistors and Diodes” IEEE Trans. Electron Devices, Vol. 40, No. 5, pp.938-943, May 1993.
[1.18] K. Y. Choi and M. K. Han, “A Novel Gate-Overlapped LDD Poly-Si Thin-Film Transistor,” IEEE Electron Device Lett., Vol. 17, No. 12, pp. 566-568, December 1996.
[1.19] M. Valdinoci, L. Colalongo, G. Baccarani, G. Foutunato, A. Pecora, and I. Policicchio, “Floating body effects in polysilicon thin-film transistors,” IEEE Trans. Electron Devices, Vol.44, pp.2234-2241, 1997.
[1.20] T. I. Kamins and Marcoux, “Hydrogenation of Transistors Fabricated in Polycrystalline-Silicon Films,” IEEE Electron Devices Lett., Vol. EDL-1, No. 8, pp. 159-161, August 1980.
[1.21] B. A. Khan and R. Pandya, “Activation Energy of Source-Drain Current in Hydrogenated and Unhydrogenated Polysilicon Thin-Film Transistors,” IEEE Trans. Electron Devices, Vol. 37, No. 7, pp.1727-1734, July 1990.
[1.22] K. Baert, H. Murai, K. Kobayashi, H. Namizaki, and M. Nunoshita, “Hydrogen Passivation of Polysilicon Thin-Film Transistors by Electron-Cyclotron-Resonance Plasma,” Jpn. J. Appl. Phys., Vol. 32, No. 6A, pp. 2601-2606, June 1993.
[1.23] T. Aoyama, K. Ogawa,Y. Mochizuki, and N.Konishi, “Inverse staggered poly-Si and amorphous Si double structure TFT's for LCD panels with peripheral driver circuits integration,” IEEE Trans. Elec. Dev., 43, pp. 701 (1996)
[1.24] K. Yoneda, R. Yokoyama, and T. Yamada, “Development trends of LTPS TFT LCDs for mobile applications,” in Proc. Symp. VLSI Circuits, pp. 85–90 (2001).
[1.25] H. Tokioka, M. Agari, M. Inoue, T. Yamamoto, H. Murai, and H. Nagata, “Low power consumption TFT-LCD with dynamic memory embedded in pixels,” in Proc. SID, pp. 280–283 (2001).
[1.26] C. Y. Chen, J. W. Lee, M. W. Ma, W. C. Chen, H. Y. Lin, K. L. Yeh, S. D. Wang, and T. F. Lei, “Bias temperature instabilities for low-temperature polycrystalline silicon complementary thin-film transistors,” J. Electrochem. Soc., 154, H704-707, 2007
[1.27] Chih-Yang Chen, Jam-Wem Lee, Shen-De Wang, Ming-Shan Shieh, Po-Hao Lee, Wei-Cheng Chen, Hsiao-Yi Lin, Kuan-Lin Yeh, and Tan-Fu Lei “Negative Bias Temperature Instability in Low-Temperature Polycrystalline Silicon Thin-Film Transistors” IEEE Trans. Elec. Dev., 53, pp. 2993-3000, 2006.
[1.28] S. Ogawa and N. Shiono, “Generalized diffusion-reaction model for the low-field charge-buildup instability at the Si−SiO2 interface,” Phys. Rev. B, Condens. Matter, 51, pp. 4218–4230, 1995.
[1.29] S. Hashimoto, Y. Uraoka, T. Fuyuki, and Y. Morita, “Analysis of thermal distribution in low- temperature polycrystalline silicon p-channel thin film transistors,” Jpn. J. Appl. Phys., 45, pp. 7-12, 2006.
[1.30] T. Yamanaka, T. Hashimoto, N. Hashimoto, T. Nishida, A. Shimizu, K. Ishibashi, Y. Sakai, K. Shimohigashi,and E. Takeda,”A 25-u,new poly-Si PMOS load(PPL) SRAM cell having excellent soft error immunity,” in IEDM Tech. Dig.,1988,p.48.
[1.31] E. H. Nicollian and J. R. Brews,MOS Physics and Technology(Wiley-Interscience,New York,1982),pp.794-798.
[1.32] B. E. Deal,M. Sklar,A. S. Grove,and E. H. Snow,J. Electrochem.Soc.114,267(1967).
[1.33] A. Goetzberger ,A. D. Lopez ,and R. J. Strain,J. Electrochem.Soc.120,90(1973).
[1.34] M. Nakagiri,Jpn. J. Appl. Phys. 13,1619(1974).
[1.35] K. O. Jeppson and C. M. Svensson, J. Appl. Phys.48,2004(1977).
[1.36] A. K. Sinha and T. E. Smith,J. Electrochem. Soc.125,743(1978).
[1.37] L. Risch, in Insulating Films on Semiconductors, edited by M. Schulz and G. Pensl(Springer,Berlin,1981),p.39.
[1.38] S. Maeda, S. Maegawa, T. Ipposhi, H. Nishimura, T. Ichiki, J. Mitsuhashi, M. Ashida, T. Muragishi, and T. Nishimura,”Negative-bias temperature instability in poly-Si TFT’s,” in Tech. Dig. Symp. VLSI Technol.,1993,p.29.
[1.39] S. Maeda, S. Maegawa, T. Ipposhi, H. Nishimura, T. Ichiki, J. Mitsuhashi, M. Ashida, T. Muragishi, Y. Inoue,and T. Nishimura,”Mechanism of negative-bias temperature instability in polycrystalline-silicon thin-film transistors,”J. Appl. Phys.,vol. 76,p.8160,1994.
[1.40] M. Makabe, T. Kubota, and T. Kitano, IEEE Int. Reliability Phys. Symp.38,205(2000).
[1.41] V. Reddy,A. T. Krishnan,A. Marshall,J. Rodriguez,S. Natarajan,T. Rost,and S. Krishnan,IEEE Int. Rel. Symp. 40, 248 (2002).
[1.42] C. Y. Chen, J. W. Lee, S. D. Wang, M. S. Shieh, P. H. Lee, W. C. Chen, H. Y. Lin, K. L. Yeh, and T. F. Lei, “Negative Bias Temperature Instability in Low-Temperature Polycrystalline Silicon Thin-Film Transistors,” IEEE Trans. Electron Devices, Vol. 53, No. 12, pp. 2993–3000, December 2006.
[1.43] I. W. Wu, W. B. Jackson, T. Y. Huang, A. G. Lewis, and A. Chiang, “Mechanism of Device Degradation in n- and p-Channel Polysilicon TFT’s by Electrical Stressing,” IEEE Electron Device Lett., Vol. 11, No. 4, pp. 167–170, April 1990.
[1.44] C. E. Blat, E. H. Nicollian, and E. H. Poindexter, “Mechanism of Negative Bias-Temperature Instability,” J. Appl. Phys., Vol. 69, No. 3, pp. 1712–1720, February 1991.
Reference
[2.1] C. Prat, D. Zahorski, Y. Helen, T. M. Brahim, and O. Bonnaud. “Excimer laser annealing system for AMLCDs: a long laser pulse for high performance, uniform and stable TFT.” SPIE Proceedings, Vol.4295,p. 33 (2001). [1.2] H. Oshima and S. Morozumi, “Future trends for TFT integrated circuits on glass substrates,” IEDM Tech. Dig., 157, 1989.
[2.2] G.-Y. Yang, S,-H. Hur, and C.-H Han, “A Physical-Based Analytical Turn-On Model of Polysilicon Thin-Film Transistors for Circuie Simulation,” IEEE Trans. Electron Devices, 46(1), 165-172 (1999).
[2.3] Ted Kamins, “Polycrystalline silicon for integrated circuits and displays”,second edition.
[2.4] H. Chern, C. Lee, and T. Lei, “Correlation of polysilicon thin filmtransistor characteristics to defect states via thermal annealing,” IEEE Trans. Electron Devices, vol. 41, p. 460, 1994.
[2.5] N. Lifshitz and S. Luryi, “Enhanced channel mobility in polysiliconthin film transistors,” IEEE Electron Device Lett., vol. 15, p. 274,1994.
[2.6] D. K. Schroder, “Semiconductor Material and Device Characterization, 2nd ed, New York: Wiley, 1998.
[2.7] G.-Y. Yang, S,-H. Hur, and C.-H Han, “A Physical-Based Analytical Turn-On Model of Polysilicon Thin-Film Transistors for Circuie Simulation,” IEEE Trans. Electron Devices, 46(1), 165-172 (1999).
[2.8] J. Levinson, F. R. Shepherd, P. J. Scanlon, W. D. Westwood, G. Este, and M. Rider, “Conductivity behavior in polycrystalline semiconductor thin film transistors,” J. Appl. Phys. Vol. 53, pp.1193-1202, 1982
[2.9] P. Migliorato, C. Reita, G. Tallatida, M. Quinn and G. Fortunato,40 “Anomalous off-current mechanisms in n-channel poly-Si thin film transistors.” Solid-State-Electronics, Vol.38, pp.2075-2079, 1995
[2.10] M. Hack, I-W. Wu, T. H. King and A. G. Lewis, “Analysis of Leakage Currents in Poly-silicon Thin Film Transistors,” IEDM Tech. Dig., vol. 93, pp. 385-387, 1993
[2.11] N. Kubo, N. Kusumoto, T. Inushima, and S. Yamazaki,
“Characteristics of polycrystalline-Si thin film transistors fabricated by excimer laser annealing method,” IEEE Trans. Electron Devices, Vol.41, pp. 1876-1879, 1994.
[2.12] Kwon-Young Choi and Min-Koo Han, “A novel gate-overlapped LDD poly-Si thin-film transistor,” IEEE Electron Device Lett., Vol. 17, pp.566-568, 1996.
[2.13] N. D. Young, G. Harkin, R. M. Bunn, D. J. McCulloch, and I. D. French,“The fabrication and characterization of EEPROM arrays on glass using a low-temperature poly-Si TFT process,” IEEE Trans. Electron Devices,Vol. 43, No. 11, pp. 1930-1936, 1996.
[2.14] R. K. Watts and J. T. C. Lee, “Tenth-Micron Polysilicon Thin-film Transistors,” IEEE Electron Device Lett., Vol. 14, pp.515-517, 1993.
[2.15] “Polycrystalline silicon for integrated circuits and displays”, second edition, written by Ted Kamins, pp.200-210.
[2.16] H. J. Kim and J. S. Im: Appl. Phys. Lett. 68 (1996) 1513.
Reference
[3-1] J. Levinson, F. R. Shepherd, P. J. Scanlon, W. D. Westwood, G. Este, and M. Rider, “Conductivity behavior in polycrystalline semiconductor thin film transistors,”J. Appl. Phys.,vol. 53, no. 2,pp.1193-1202,Feb. 1982.
[3-2] R. E. Proano, R. S. Misage, and D. G. Ast, “Development and electrical properties of undoped polycrystalline silicon thin-film transistor,” IEEE Trans. Electron Devices, vol. 36, no. 9, pp. 1915-1922, Sep. 1989.
Reference
[4.1] T.-J. King, M. G. Hack, and I.-W. Wu, “Effective density-of-states distributions for accurate modeling of polycrystalline-silicon thin-film transistors,” J. Appl. Phys.,vol. 75,no. 2,pp. 908-913,Jan. 1994.
[4.2] C. A. Dimitriadis, P. A. Coxon, L. Dozsa, L. Papadimitriou, and N. Economou, “Performance of thin-film transistors on polysilicon films grown by low-pressure chemical vapor deposition at various pressures,” From IEEE Trans. Electron Devices, vol. 39, no.3, pp. 598-606, Mar. 1992.
[4.3] Chih-Yang Chen, Jam-Wem Lee, Shen-De Wang, Ming-Shan Shieh, Po-Hao Lee, Wei-Cheng Chen, Hsiao-Yi Lin, Kuan-Lin Yeh, and Tan-Fu Lei, “Negative Bias Temperature Instability in Low-Temperature Polycrystalline Silicon Thin-Film Transistors,” From IEEE Trans. Electron Devices, vol. 53, no. 12, December 2006.
[4.4] Satoshi INOUE, Hiroyuki OHSHIMA and Tatsuya SHIMODA, “Analysis of Degradation Phenomenon Caused by Self-Heating in Low-Temperature-Processed Polycrystalline Silicon Thin Film Transistors,” From Jpn. J. Appl. Phys. Vol. 41 (2002) pp.6313-6319, Part 1, No. 11A, November 2002.
[4.5] S. Hashimoto, Y. Uraoka, T. Fuyuki, and Y. Morita, “Analysis of thermal distribution in low- temperature polycrystalline silicon p-channel thin film transistors,” Jpn. J. Appl. Phys., 45, pp. 7-12, 2006.
[4.6] S. Ogawa and N. Shiono, “Generalized diffusion-reaction model for the low-field charge-buildup instability at the Si−SiO2 interface,” Phys. Rev. B, Condens. Matter, 51, pp. 4218–4230, 1995.
[4.7] A.O. Adan, H. Tsutsui, M. Horita, K. Fujimoto, K. Nakai, T. Inufushi, and R. Miyake, “Analysis and model of leakage current mechanism in polysilicon MOS thin-film transistors,” in Proc. Int. Semiconductor Device Res. Symp., Charlottesville, pp. 525-528, Dec. 1991.
[4.8] G. Fortunato, A. Pecora, G. Tallarida, L. Mariucci, C. Reita, and P. Migliorato, “Hot Carrier Effects in n-Channel Poly crystalline Silicon Thin-Film Transis tors : A Correlation Between Off-Current and Transconductance Variations” IEEE Trans. ON Electron Dev., VOL 41, NO 3, Mar. 1994
[4.9] S. M. Sze, and K. K. NG, “Physics of semiconductor device,” published by John Wiley & Sons, pp. 337 (2007).
[4.10] S. Hashimoto, Y. Uraoka, T. Fuyuki, and Y. Morita, “Analysis of thermal distribution in low- temperature polycrystalline silicon p-channel thin film transistors,” Jpn. J. Appl. Phys., 45, pp. 7-12, 2006.
[4.11] J. Levinson, F. R. Shepherd, P. J. Scanlon, W. D. Westwood, G. Este, and M. Rider, “Conductivity behavior in polycrystalline semiconductor thin film transistors,” J. Appl. Phys., vol. 53, no. 2, pp. 1193–1202, Feb. 1982.
R. E. Proano, R. S. Misage, and D. G. Ast, “Development and
[4.12] R. E. Proano, R. S. Misage, and D. G. Ast, “Development and electricalproperties of undoped polycrystalline silicon thin-film transistor,” IEEE Trans. Elec. Dev., vol. 36, no. 9, pp. 1915–1922, Sep. 1989.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code