Responsive image
博碩士論文 etd-0303112-173129 詳細資訊
Title page for etd-0303112-173129
論文名稱
Title
利用電動力輔助板框式壓濾脫水系統處理不同生物污泥之研究
Dewatering of Biological Sludges by an Electrokinetics-Assisted Filter Press System
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
313
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-02-15
繳交日期
Date of Submission
2012-03-03
關鍵字
Keywords
田口式實驗設計、電極配置、電動力、電脫水、生物污泥、板框式壓濾機
Taguchi method, Electrode array, Biological sludge, Plate and frame filter press, Electrodewatering; Electrokinetics
統計
Statistics
本論文已被瀏覽 5667 次,被下載 699
The thesis/dissertation has been browsed 5667 times, has been downloaded 699 times.
中文摘要
本研究旨在以電動力輔助板框式脫水系統進行某工業區石化廠生物污泥及都市下水生物污泥脫水處理,以期能降低其最終污泥餅含水率,同時,評估電動力輔助板框式壓濾脫水系統之技術與經濟可行性。
為有效提升脫水效率及降低電動力能耗,初期的污泥調理具有其重要性。瓶杯試驗結果顯示,於工業區石化廠生物污泥以弱陽離子型聚合物及中陽離子型聚合物為較佳調理絮凝劑,其最佳加藥量為0.008 wt%;另外,於都市下水生物污泥試驗結果,以鐵鹽為較適合之調理混凝劑,其最佳加藥量為0.08 wt%。
接著,利用田口式實驗設計法,針對工業區石化廠生物污泥及都市下水生物污泥分別以L8(27)與L18(21×37)直交表進行脫水試驗規劃,探討各試驗組別施加電動力輔助脫水後其濾液之變化情形。試驗結果顯示,施加電動力輔助脫水後其濾液流量有明顯上升之現象,其脫水效率於電極並聯及並串聯之試驗組別提高約10-15%以上;但試驗後濾液品質有明顯降低的趨勢,濾液溫度於電極並聯之試驗組別可升至80℃以上,且因施加電動力輔助脫水之關係,使得脫水後其濾液之pH值、濁度及化學需氧量(COD)等皆有明顯變差,因此,脫水後之濾液須迴流至廢(污)水廠加以妥善處理。
最後,以最終污泥餅含水率及電動力能耗作為品質特性,進行正規分析與變異數分析,以評估影響電動力輔助板框式壓濾脫水系統之最顯著控制因子及最佳操作組別。分析結果顯示,於工業區石化廠生物污泥影響最終污泥餅含水率最顯著之控制因子為絮凝劑種類及過濾壓差,而影響電動力能耗最顯著之控制因子為電場強度。至於都市下水生物污泥,影響最終污泥餅含水率的顯著控制因子與影響電動力能耗的顯著控制因子同為電極配置。藉由最佳操作條件進行電動力輔助板框式壓濾脫水系統之試驗,得到工業區石化廠及都市下水生物污泥其最終污泥餅含水率分別為67.1±3.9%與68.1±3.4%,電動力能耗分別為72.6 kWh/ton DS (Dry Solids)與18.6 kWh/ton DS,均符合田口式實驗設計法所預測之結果。
綜合言之,本研究利用電動力輔助板框式壓濾脫水系統進行不同生物污泥之試驗,結果顯示外加電場確實可有效提升污泥脫水效率,且同時於適當的操作條件下,可以符合經濟效益,兼具技術及經濟可行性。
Abstract
The objective of this research was to evaluate the technical and economic feasibility of employing an electric field to enhance the dewatering performance of two types of biological sludge by a pilot-scale plate and frame filter press. In this work a biological industrial sludge and biological municipal sludge were collected and tested, respectively. Through the jar testing, it was found that a low molecular weight cationic polymer or medium molecular weight cationic polymer with a dose of 0.008 wt% would yield a satisfactory flocculation for the biological industrial sludge, whereas an iron-based coagulant with a dose of 0.08 wt% would meet the conditioning need of the biological municipal sludge.
To find out the optimal dewatering conditions for the concerned sludges, experimental designs based on the Taguchi method were adopted. More specifically, L8(27) and L18(21×37) orthogonal arrays were selected for the biological industrial sludge and biological municipal sludge, respectively. Among others, applied mechanical pressure and time, electrode array, and electrodewatering time were operating parameters of concern. Test results showed that a 10-15% increase of dewatering efficiency for both sludges was obtained for the parallel circuit and parallel series circuit. However, the filtrate quality deteriorated, particularly in pH, turbidity, and chemical oxygen demand. In addition, due to ohmic heating the temperature of filtrate might raise to 80 ℃or even higher depending on the operating conditions employed. Thus, the filtrate should be recirculated back to the wastewater treatment system for proper treatment. To find out the significant controlling factors and optimal operating conditions for electrodewatering in a more scientific manner, the final sludge cake moisture and energy consumption for each test was subjected to formal analysis and analysis of variance. For biological industrial sludge, the flocculant type and applied filtration pressure were found to be the most significant controlling factors for the final sludge cake moisture, whereas the applied electric field strength for the power consumption. In the case of biological municipal sludge, however, the electrode array was the most significant controlling factor for both final sludge cake moisture and power consumption. At last, the optimal operating conditions theoretically obtained for electrodewatering were subjected to the respective verification tests for both biological industrial sludge and biological municipal sludge. Test results showed that a final sludge cake moisture of 67.1±3.9% and energy consumption of 72.6 kWh/ton dry solids were obtained for the former sludge, whereas 68.1±3.4% and 18.6 kWh/ton dry solids for the latter sludge. These results validated the predictions made by the Taguchi method. Therefore, it may conclude that electrodewatering is technically and economically feasible for treating both biological industrial sludge and biological municipal through the electrokinetics-assisted filter press system employed in this work.
目次 Table of Contents
目錄
聲明切結書 i
謝誌 ii
摘要 iii
Abstract v
目錄 vii
圖目錄 xiv
表目錄 xxxii
照片目錄 xxxviii
第一章 緒論 1
1-1 研究緣起 1
1-2 研究目的 3
1-3 研究內容與架構 4
第二章 文獻回顧 7
2-1 污泥的產生與水分分佈 7
2-1-1 污泥的產生與性質 8
2-1-2 污泥內的水分分佈 10
2-2 污泥之調理作用 15
2-2-1 化學調理 16
2-2-2 物理調理 26
2-2-3生物調理 28
2-2-4 雙重調理 28
2-3 污泥脫水方式 30
2-3-1 傳統污泥脫水 30
2-3-2 改良式污泥脫水 36
2-4 電動力法 39
2-4-1 電雙層原理 39
2-4-2 電動力機制 40
2-4-3 電滲透脫水 43
第三章 實驗方法及設備 52
3-1 實驗材料 52
3-1-2工業區石化廠生物污泥 52
3-1-1 都市下水生物污泥 53
3-2 實驗材料與設備 54
3-2-1 實驗材料 54
3-2-2 實驗設備 58
3-2-3電動力輔助板框式壓濾脫水系統 60
3-3 研究規劃 62
3-3-1 污泥調理 62
3-3-2 田口式實驗設計法 65
3-3-2-1 實驗設計因子 67
3-3-2-2 直交表 69
3-3-2-3 訊號/雜訊比 71
3-3-2-4正規分析 72
3-3-2-5 變異數分析 73
3-3-2-6 控制因子分類 75
3-3-2-7 品質特性與控制因子的選擇 77
3-3-2-8 實驗參數設計 79
3-4 其他試驗及檢測方法 83
第四章 結果與討論 85
4-1生物污泥基本特性分析 85
4-1-1工業區石化廠生物污泥 85
4-1-2都市下水生物污泥 88
4-2生物污泥化學調理 90
4-2-1工業區石化廠生物污泥瓶杯試驗 91
4-2-1-1污泥絮凝效果 91
4-2-1-2上澄液其濁度及吸光值變化 93
4-2-1-3上澄液中之顆粒其界達電位及粒徑變化 95
4-2-2 都市下水生物污泥瓶杯試驗 97
4-2-2-1 污泥混凝效果 97
4-2-2-2上澄液其濁度及吸光值變化 98
4-2-2-3上澄液中之顆粒其界達電位及粒徑變化 100
4-3生物污泥經化學調理後之總體沉降試驗 102
4-3-1 工業區石化廠生物污泥 102
4-3-2 都市下水生物污泥 106
4-4 生物污泥脫水後濾液特性探討 109
4-4-1 工業區石化廠生物污泥 110
4-4-1-1脫水期間之濾液溫度 110
4-4-1-2 生物污泥脫水期間之濾液濁度 112
4-4-1-3 生物污泥脫水期間之濾液BOD/COD值 114
4-4-1-4 生物污泥脫水期間之濾液pH值 116
4-4-1-5 生物污泥脫水期間之電流密度 118
4-4-1-6 生物污泥脫水期間之濾液導電度 120
4-4-1-7 生物污泥脫水期間之累積濾液流量 122
4-4-1-8 生物污泥脫水期間之濾液通量 125
4-4-1-9 生物污泥脫水期間之擬過濾比阻 127
4-4-2都市下水生物污泥 130
4-4-2-1 生物污泥脫水後之濾液溫度 130
4-4-2-2 生物污泥脫水期間之濾液濁度 135
4-4-2-3 生物污泥脫水期間之濾液BOD/COD值 139
4-4-2-4 生物污泥脫水期間之濾液pH值 144
4-4-2-5 生物污泥脫水期間之電流密度 148
4-4-2-6 生物污泥脫水期間之濾液導電度 152
4-4-2-7 生物污泥脫水期間之累積濾液流量 156
4-4-2-8 生物污泥脫水期間之濾液通量 161
4-4-2-9 生物污泥脫水期間之擬過濾比阻 165
4-5 生物污泥脫水期間之脫水效率及電動力能耗 169
4-5-1 工業區石化廠生物污泥 171
4-5-2 都市下水生物污泥 173
4-6 田口式實驗設計法正規分析及變異數分析 179
4-6-1 工業區石化廠生物污泥 179
4-6-1-1 最終污泥餅含水率S/N比 179
4-6-1-2 最終污泥餅含水率品質特性 185
4-6-1-3 電動力輔助板框式壓濾脫水系統之電動力能耗S/N比 188
4-6-1-4 電動力輔助板框式壓濾脫水系統之電動力能耗品質特性 192
4-6-1-5 電動力輔助板框式壓濾脫水系統之電動力能耗控制因子分類與選擇 195
4-6-1-6 工業區石化廠生物污泥脫水試驗最佳操作條件 197
4-6-2 都市下水生物污泥 198
4-6-2-1 最終污泥餅含水率S/N比 198
4-6-2-2 最終污泥餅含水率品質特性 204
4-6-2-3 電動力輔助板框式壓濾脫水系統之電動力能耗S/N比 207
4-6-2-4 電動力輔助板框式壓濾脫水系統之電動力能耗品質特性 211
4-6-2-5 都市下水生物污泥脫水試驗之最佳操作條件 ..215
4-7 最佳操作條件確認試驗 221
4-7-1 工業區石化廠生物污泥 221
4-5-2都市下水生物污泥 223
第五章 結論與建議 227
5-1結論 227
5-1-1 工業區石化廠生物污泥 227
5-1-2都市下水生物污泥 229
5-2建議 231
參考文獻 232
附錄 253
附錄1 各生物污泥t/v對v作圖斜率變化情形 254
附錄2 工業區石化廠生物污泥最佳操作條件確認試驗結果 258
附錄3 都市下水生物污泥最佳操作條件確認試驗結果 264
碩士在學期間發表之學術論文 271
參考文獻 References
1. Lee, D. J. and Y. H. Hsu, "Fast Freeze/Thaw Treatment on Activated Sludge: Floc Structure and Sludge Dewaterability," Environmental Science and Technology, 28, 1444-1449 (1994).
2. Sanin, F. D., P. A. Vesilind, and J. J. Martel, "Pathogen Reduction Capabilities of Freeze/Thaw Sludge Conditioning," Water Science and Technology, 26, 2183 (1992).
3. 財團法人中國技術服務社,“工業污染防治手冊 [14]-污泥脫水處理”,經濟部工業局工業污染防治技術服務團,臺北市 (1988)。
4. 歐陽嶠暉,“下水道工程學”,長松文化興業股份有限公司,臺北市 (2005)。
5. Vesilind, P. A., "The Role of Water in Sludge Dewatering," Water Environment Resarch, 66, 4-11 (1994).
6. 朱敬平,“污泥膠羽結構、脫水性、水份分布與熱分解特性之研究”,碩士學位論文,國立臺灣大學化學工程學研究所,臺北市 (1999)。
7. Mikkelsen, L. H. and K. Keiding, "Physico-Chemical Characteristics of Full Scale Sewage Sludges with Implications to Dewatering," Water Research, 36, 2451-2462 (2002).
8. Mahmoud, A., A. Fernandez, T.-M. Chituchi, and P. Arlabosse, "Thermally Assisted Mechanical Dewatering (TAMD) of Suspensions of Fine Particles: Analysis of the Influence of the Operating Conditions Using the Response Surface Methodology," Chemosphere, 72, 1765-1773 (2008).


9. Lee, J. E., J. K. Lee, and H. K. Choi, "Filter Press for Electrodewatering of Waterworks Sludge," Drying Technology, 25, 1649-1657 (2007).
10. Smythe, M. C. and R. J. Wakeman, "The Use of Acoustic Fields as a Filtration and Dewatering Aid," Ultrasonics, 38, 657-661 (2000).
11. 經濟部工業局,“工業廢棄物再利用審查作業管制”,臺北市 (2010)。
12. 陳鴻濤,“污泥減量設備技術及選用實例”,臺灣環保雙月刊,20,8-11 (2003)。
13. 簡學揚、吳佩萱、林靜怡,“大型高透水織布袋進行工業污泥脫水工法之研究”,中華民國環境工程學會2011廢水技術研討會論文集光碟,臺南市 (2011)。
14. Metcalf and Eddy, "Wastwater Engineering," McGraw Hill, New York (2003).
15. Pyper, J. W., "The Determination of Moisture in Solids: A Selected Review," Analytica Chimica Acta, 170, 159-175 (1985).
16. Catalano, E., "Comments on Some of the Physical Chemical Questions Associated with the Analysis of Water in Earth Materials," UCRL-50630, Lawrence Livermore National Laboratory, California (1969).
17. Coackley, P. J. and R. Allos, "The Drying Characteristics of Some Sewage Sludges," Journal of Insitute of Sewage Purification, 6, 557-564 (1962).
18. Colin, F. and S. Gazbar, "Distribution of Water in Sludges in Relation to Their Mechanical Dewatering," Water Research, 29, 2000-2005 (1995).
19. Derjaguin, B.V., "Friction and Adhesion. IV. The Theory of Adhesion of Small Particles," Kolloid-Z, 69, 155-164 (1934).
20. Szent-Gyorgyi, A. G. and C. Cohen, "Role of Proline in Polypeptide Chain Configuration of Proteins," Science, 126, 697-698 (1957).
21. 傅誠剛,“界面活性劑對污泥調理及脫水之研究”,碩士學位論文,國立交通大學環境工程研究所,新竹市 (1998)。
22. Katsiris, N. and A. Kouzeli-Katsiri, "Bound Water Content of Biological Sludges in Relation to Filtration and Dewatering," Water Research, 21, 1319-1327 (1987).
23. Vaxelaire, J. and P. Cezac, "Moisture Distribution in Activated Sludges: A Review," Water Research, 38, 2215-2230 (2004).
24. Halde, R. E., "Sewage Sludge Characterization by Vacuum Drying," Filtration and Separation, 5, 238-242 (1979).
25. Vesilind, P. A. and C. J. Martel, "Freezing of Water and Wastewater Sludge," Journal of Environmental Engineering, 116, 854-862 (1990).
26. Tsang, K. R. and P. A. Vesilind, "Moisture Distribution in Sludges," Water Science and Technology, 22, 135-142 (1990).
27. 曾明加,“廢水處理污泥調理技術介紹”,清潔生產與環保技術e報,83,臺北市 (2003)。
28. 陳蓋文,“冷凍/融化法與活性污泥之研究”,碩士學位論文,國立臺灣大學化學工程研究所,臺北市 (1995)。
29. Mahmoud, A., J. Olivier, J. Vaxelaire, and A. F. A. Hoadley, "Electrical Field: A Historical Review of Its Application and Contributions in Wastewater Sludge Dewatering," Water Research, 44, 2381-2407 (2010).
30. Kuntz Jr, I. D. and W. Kauzmann, "Hydration of Proteins and Polypeptides," Advances in Protein Chemistry, 28,239-345 (1974).
31. Gehr, R. and J. G. Henry, "Removal of Extracellular Material Techniques and Pitfalls," Water Research, 17, 1743-1748 (1983).
32. 平岡正勝、吉野善彌,“污泥處理工學”, 講談社, 東京 (1983)。
33. Mahmoud, A., J. Olivier, J. Vaxelaire and A.F.A. Hoadley, "Electro-Dewatering of Wastewater Sludge: Influence of the Operating Conditions and Their Interactions Effects," Water Research, 45, 2795-2810 (2011).
34. Epstein, S. G., "Human Exposure to Aluminum," Environmental Geochemistry and Health, 12, 65-70 (1990).
35. Koether, M. C., J. E. Deutschman, and G. W. vanLoon, "Low-Cost Polymeric Aluminum Coagulant," Journal of Environmental Engineering, 123, 859-864 (1997).
36. Scholz, M., "Wetland Systems to Control Urban Runoff," Elsevier, Edingburgh (2006).
37. Stumm, W. and C. R. O`Melia, "Stoichiometry of Coagulation," Journal of the American Water Works Association, 60, 514-539 (1968).
38. Shin, J. Y., R. F. Spinette, and C. R. O’Melia, "Stoichiometry of Coagulation Revisited," Environmental Science and Technology, 42, 2582-2589 (2008).
39. James, R. O., G. R. Wiese, and T. W. Healy, "Charge Reversal Coagulation of Colloidal Dispersions by Hydrolysable Metal Ions," Journal of Colloid and Interface Science, 59, 381-385 (1977).
40. Letterman, R. D. and S. G. Vanderbrook, "Effect of Solution Chemistry on Coagulation with Hydrolyzed Al(III): Significance of Sulfate Ion and pH," Water Research, 17, 195-204 (1983).
41. Letterman, R. D. and D. R. Iyer, "Modeling the Effects of Hydrolyzed Aluminum and Solution Chemistry on Flocculation Kinetics," Environmental Science and Technology, 19, 673-681 (1985).
42. 經濟部工業局,“廢水污泥減量技術手冊”,臺北市 (2005)。
43. Yan, Y. D., S. M. Glover, G. J. Jameson, and S. Biggs, "The Flocculation Efficiency of Polydisperse Polymer Flocculants," International Journal of Mineral Processing, 73, 161-175 (2004).
44. 水知識+,“有機高分子絮凝劑”,http://www.waterinfor.com/mediawiki/index.php/%E6%9C%89%E6%A9%9F%E9%AB%98%E5%88%86%E5%AD%90%E7%B5%AE%E5%87%9D%E5%8A%91#.E9.99.BD.E9.9B.A2.E5.AD.90.E5.9E.8B.E6.9C.89.E6.A9.9F.E9.AB.98.E5.88.86.E5.AD.90.E7.B5.AE.E5.87.9D.E5.8A.91,中國 (2012)。
45. 財團法人中國技術服務社,“工業污染防治手冊[15]-廢水處理常用化學藥劑”,經濟部工業局工業污染防治技術服務團,臺北市 (1994)。
46. Floerger, S., "Sludge Dewatering," SNF Group (2010).
47. Dentel, S. K. and J. M. Gossett, "Coagulation of Organic Suspensions with Aluminum Salts," Water Pollution Control Federation, 59, 101-108 (1987).
48. Gregory, J., "Flocculation by Polymers and Polyelectrolytes," Academic Press, London (1987).
49. La Mer, V. K. and T. W. Healy, "Adsorption-Flocculation Reaction of Macromolecules at the Solid-Liquid Interface," Review of Pure and Applied Chemistry, 13, 112-133 (1963).
50. John, G., "Rates of Flocculation of Latex Particles by Cationic Polymers," Journal of Colloid and Interface Science, 42, 448-456 (1973).
51. O’Melia, C. R., "A Review of the Coagulation Process," Public Works, 100, 87-98 (1969).
52. Liurie, M. and M. Rebhum, "Effect of Properties of Polyelectrolytes on Their Interaction with Particulates and Solube Organics," Water Science and Technology, 36, 93-101 (1997).
53. Eriksson, L. and B. Alm, "Characterization of Activated Sludge and Conditioning with Cationic Polyelectrolytes," Water Science and Technology, 28, 203-212 (1993).
54. Lafuma, F., T. K. Wang, G. Durand, and R. Andebert, "Adsorption and Flocculation Behavior for System of Copolymers and Particles of Opposite Charge," Colloids and Surfaces, 31, 255-257 (1988).
55. Gill, R. I. S. and T. M. Herrington, "The Flocculation of Kaolin Suspensions Using Polyethylenimine and Cationic Polyacrylamides of the Same Molar Mass but Different Charge Density," Colloids and Surfaces, 28, 41-52 (1987).
56. Besra, L., D. K. Sengupta, S. K. Roy, and P. Ay, "Influence of Polymer Adsorption and Conformation on Flocculation and Dewatering of Kaolin Suspension," Separation and Purification Technology, 37, 231-246 (2004).
57. Elimelech, M., J. Gregory, X. Jia, and R. A. William, "Particle Deposition and Aggregation: Measurement, Modelling and Simulation. Chapter 6: Modelling of Aggregation Processes," Butterworth-Heinemann, Oxford (1995).
58. O’Brien, J. H. and J. T. Novak, "Effects of pH and Mixing on Polymer Conditioning of Chemical Sludge," Journal of the American Water Works Association, 69, 600-605 (1977).
59. 朱敬平、李篤中,“污泥處置(II):污泥之前處理”,臺大工程學刊,82,49-76 (2001)。


60. Keep, U., I. Machenbach, N. Weisz, and O. E. Solheim, "Enhanced Stabilization of Sewage Sludge Through Thermal Hydrolysis— Three Years of Experience with Full-Scale Plant," Water Science and Technology, 42, 89-96 (2000).
61. WPCF, "Sludge Disinfection: A Review of the Literature, Prepare by the Water Pollution Control Federation Disinfection Committee, Washington," Washington (1984).
62. Murphy, A. B., K. J. Powell, and R. Morrow, "Thermal Instrument of Sewage Sludge by Ohmic Heating," Proceedings of the IEEE, 138, 242-248 (1991).
63. Goodwill, J. E., R. J. Schmitt, and D. A. Purta, "New Developments in Microwave Treatment of Steel Mill Sludges," Iron and Steel Engineer, 73, 34-38 (1996).
64. Clements, G. S., R. J. Stephenson, and C. J. Regan, "Sludge Dewatering by Freezing with Added Chemicals," Journal of the Institute of Sewage Purification, 4, 318-337 (1950).
65. Farrell, J. B., "Sludge Dewatering by High-Rate Freezing at Small Temperature Differences," Environmental Science and Technology, 5, 716-716 (1971).
66. Randall, C. W., M. Z. Ali Khan, and N. T. Stephens, "Waste Activated Sludge Conditioning by Direct Slurry Freezing," Water Research, 9, 917-925 (1975).
67. Martel, C. J., "Mechanical Freezing of Alum Sludge," Water Science and Technology, 30, 177-184 (1994).
68. Hellstrom, D. and E. Kvarnstrom, "Natural Sludge Dewatering. I: Combination of Freezing, Thawing, and Drying as Dewatering Methods," Journal of Cold Regions Engineering, 11, 1-14 (1997).

69. Neppiras, E. A., "Acoustic Cavitation," Physics Reports, 61, 159-251 (1980).
70. Monnier, H., A. M. Wilhelm, and H. Delmas, "The Influence of Ultrasound on Micromixing in a Semi-Batch Reactor," Chemical Engineering Science, 54, 2953-2961 (1999).
71. Bien, J. and L. Wolny, "Changes of Some Sewage Sludge Parameters Prepared with an Ultrasonic Field," Water Science and Technology, 36, 101-106 (1997).
72. 唐文忠,“凝聚與絮凝混合調理及酸鹼值對壓榨操作之影響”,碩士學位論文,國立臺灣大學化學工程研究所,臺北市 (1995)。
73. Moody, G. M., "Pre-Treatment Chemicals," Filtration and Separation, 32, 329-336 (1995).
74. Bohm, N. and W. Kulicke, "Optimization of the Use of Polyelectrolytes for Dewatering Industrial Sludges of Various Origins," Colloid and Polymer Science, 275, 73-81 (1997).
75. Chitikela, S. and S. K. Dentel, "Dual Chemical Conditioning and Dewatering of Anaerobically Digested Biosolids: Laboratory Evaluations," Water Enviroment Research, 70, 1062-1069 (1998).
76. Krishnamurthy, S. and T. Viraraghavan, "Chemical Conditioning for Dewatering Municipal Wastewater Sludges," Energy Sources, 27, 113-122 (2005).
77. Dentel, S. K., "Coagulant Control in Water Treatment," Critical Reviews in Environmental Control, 21, 41-135 (1991).
78. Somasundaran, P. and X. Yu, "Flocculation/Dispersion of Suspensions by Controlling Adsorption and Conformation of Polymers and Surfactants," Advances in Colloid and Interface Science, 53, 33-49 (1994).

79. Lee, C. H. and J. C. Liu, "Enhance Sludge Dewaterability by Dual Polyelectrolytes Conditioning," Water Research, 34, 4430-4436 (2000).
80. Richard J, W., "Separation Technologies for Sludge Dewatering," Journal of Hazardous Materials, 144, 614-619 (2007).
81. 呂維明、呂維芳,“過濾技術”,高立圖書有限公司,臺北市 (1994)。
82. Vincent, C., "Twin Screw Press," http://www.vincentcorp.com/, California (1931).
83. Metcalf and Eddy, "Wastewater Engineering," McGraw-Hill, Inc., New York (2002).
84. Victory Industrial Hydraulics, "Filter Press," http://victoryindustrialhydraulics.com/filter-press.html, Coimbatore, India (2012).
85. Tarleton, E. S., "The Role of Field-Assisted Techniques in Solid/Liquid Separation," Filtration and Separation, 29, 246-252 (1992).
86. Mihoubi, D., "Mechanical and Thermal Dewatering of Residual Sludge," Desalination, 167, 135-139 (2004).
87. Yang, G. C. C., M.-C. Chen, and C.-F. Yeh, "Dewatering of a Biological Industrial Sludge by Electrokinetics-Assisted Filter Press," Separation and Purification Technology, 79, 177-182 (2011).
88. Hassebrauck, M. and G. Ermel, "Two Examples of Thermal Drying of Sewage Sludge," Water Science and Technology, 33, 235-242 (1996).
89. Gazbar, S., J. M. Abadie, and F. Colin, "Combined Action of Electro-Osmotic Drainage and Mechanical Compression on Sludge Dewatering," Water Science and Technology, 30, 169-175 (1994).
90. Peeters, B., "Mechanical Dewatering and Thermal Drying of Sludge in a Single Apparatus," Drying Technology, 28, 454-459 (2010).
91. Lee, J. E., "Thermal Dewatering (TDW) to Reduce the Water Content of Sludge," Drying Technology, 24, 225-232 (2006).
92. Wheeler, R. A., A. F. A. Hoadley, and S. A. Clayton, "Modelling the Mechanical Thermal Expression Behaviour of Lignite," Fuel, 88, 1741-1751 (2009).
93. Bergins, C., S. Berger, and K. Strauss, "Dewatering of Fossil Fuel and Suspension of Ultrafine Particles by Mechanical/Thermal Dewatering," Chemical Engineering and Technology, 22, 923-927 (1999).
94. Kudra, T., "Energy Aspects in Drying," Drying Technology, 22, 917-932 (2004).
95. Winter, P., N. Jones, M. Asaadi, and L. Bowman, "The Odour of Digested Sewage Sludge Determination and Its Abatement by Air Stripping," Water Science and Technology, 49, 185-192 (2004).
96. Whipps, A., "A Review of the Dangerous and Explosive Atmosphere Requlations in Relation to the Water Industry," Water and Environment, 18, 118-120 (2004).
97. Kudra, T., "Sticky Region in Drying—Definition and Identification," Drying Technology, 21, 1457-1469 (2003).
98. Pilli, S., P. Bhunia, S. Yan, R. J. LeBlanc, R. D. Tyagi, and R.Y. Surampalli, "Ultrasonic Pretreatment of Sludge: A Review," Ultrasonics Sonochemistry, 18, 1-18 (2011).
99. Ruecroft, G., D. Hipkiss, T. Ly, N. Maxted, and P. W. Cains, "Sonocrystallization:  The Use of Ultrasound for Improved Industrial Crystallization," Organic Process Research and Development, 9, 923-932 (2005).
100. Hogan, F., S. Mormede, P. Clark, and M. Crane, "Ultrasonic Sludge Treatment for Enhanced Anaerobic Digestion," Water Science and Technology, 50, 25-32 (2004).
101. Zhang, P., G. Zhang, and W. Wang, "Ultrasonic Treatment of Biological Sludge: Floc Disintegration, Cell Lysis and Inactivation," Bioresour Technology, 98, 207-210 (2007).
102. Bekker, M. C., J. P. Meyer, L. Pretorius, and D. F. van der Merwe, "Separation of Solid-Liquid Suspensions with Ultrasonic Acoustic Energy," Water Research, 31, 2543-2549 (1997).
103. Kovalick, W. W., "Innovative Ground-Water Remediation Technologies: Publications and Conference Proceedings 1990-1996," U.S. Environmental Protection Agency Technology Innovation Office, Washington (1996).
104. 吳明諺,“奈米級Fe3O4及[Fe3O4]MgO懸浮液注入結合電動力法整治飽和土壤中NO3-及Cr6+之反應行為探討”,碩士學位論文,國立中山大學環境工程研究所,高雄市 (2010)。
105. 葉峮甫,“電動力法輔助奈米Fe3O4/S2O82-程序整治受TCE及1,2-DCA污染土壤”,碩士學位論文,國立中山大學環境工程研究所,高雄市 (2010)。
106. 蔡啟明,“新穎管狀碳質/陶瓷複合膜製備及其應用於同步電混凝/電過濾程序處理化學機械研磨廢水之研究”,博士學位論文,國立中山大學環境工程研究所,高雄市 (2008)。
107. 顏嘉亨,“多管式Tio2/Al2o3複合膜同步電混凝/電過濾處理光電產業廢水之效能評估”,碩士學位論文,國立中山大學環境工程研究所,高雄市 (2008)。
108. Overbeek, J. T. G., "Colloid Science," Elsevier, Amsterdam (1952).
109. 顏志羽,“以水系電泳沉積法製備奈米碳膜”,碩士學位論文,大同大學材料工程學系,臺北市 (2009)。
110. Hunter, R. J., "The Calculation of Zeta Potential," Academic Press, London (1981).
111. Bhatt, K. H., S. Grego, and O. D. Velev, "An AC Electrokinetic Technique for Collection and Concentration of Particles and Cells on Patterned Electrodes," Langmuir, 21, 6603-6612 (2005).
112. 劉奇岳,“電動力-Fenton法現地處理受三氯乙烯及4-氯酚污染土壤之最佳操作條件探討”,碩士學位論文,國立中山大學環境工程研究所,高雄市 (1999)。
113. 洪源駿,“電動力法-Fenton法-催化性鐵粉牆組合技術現地模場整治受含氯有機物污染之場址”,碩士學位論文,國立中山大學環境工程研究所,高雄市 (2002)。
114. 林舜隆,“利用電動力法處理人工合成重金屬污染土壤之研究”,碩士學位論文,國立中山大學環境工程研究所,高雄市 (1996)。
115. Newman, J. S., "Electrochemical Systems," Prentice-Hall, Englewood Cliffs, New Jersey (1991).
116. 劉永章、葛煥彰,“電動力現象的基本理論”, 化工, 45, 77-83 (1998)。
117. 陳政德,“電動力-Fenton法結合生物分解現地處理受五氯酚污染土壤之研究”,碩士學位論文,國立中山大學環境工程研究所,高雄市 (2000)。
118. Al-Asheh, S., R. Jumah, F. Banat, and K. Al-Zoubi, "Electroosmotic Dewatering of Tomato Paste Suspension Under AC Electric Field," Drying Technology, 23, 1465-1475 (2005).
119. Xia, B., D.-W. Sun, L.-T. Li, X.-Q. Li, and E. Tatsumi, "Effect of Electro-Osmotic Dewatering on the Quality of Tofu Sheet," Drying Technology, 21, 129-145 (2003).

120. Orsat, V., G. S. V. Raghavan, S. Sotorinal, D. G. Lightfoot, and S. Gopalakrishnan, "Roller Press for Electro-Osmotic Dewatering of Bio-Materials," Drying Technology, 17, 523-538 (1999).
121. Kang, J.-W., Y.-T. Yang, J.-M. You, and Q.-Y. Ou, "Fast Chiral Separation of Amino Acid Derivatives and Acidic Drugs by Co-Electroosmotic Flow Capillary Electrophoresis with Vancomycin as Chiral Selector," Journal of Chromatography A, 825, 81-87 (1998).
122. Vijh, A. K., "Electrochemical Aspects of Electroosmotic Dewatering of Clay Suspensions," Drying Technology, 13, 215-224 (1995).
123. Lockhart, N. C. and R. E. Stickland, "Dewatering Coal Washery Tailings Ponds by Electroosmosis," Powder Technology, 40, 215-221 (1984).
124. Banerjee, S. and S. E. Law, "Electroosmotically Enhanced Drying of Biomass," IAS '97: Conference Record of the 1997 IEEE Industry Applications Conference: Thirty-Second IAS Annual Meeting, New Orleans (1997).
125. Olivier, J., J. Vaxelaire, and P. Ginisty, "Gravity Drainage of Activated Sludge: From Laboratory Experiments to Industrial Process," Journal of Chemical Technology and Biotechnology, 79, 461-467 (2004).
126. Yang, G. C. C., M.-C. Chen, and C.-L. Tsai, "Electrodewatering of Biological Sludges Using a Pilot-Scale Filter Press," Book of Abstracts of the 4th IWA-ASPIRE Conference and Exhibition, 299, Tokyo (2011).
127. Zhou, J., Z. Liu, P. She, and F. Ding, "Water Removal from Sludge in a Horizontal Electric Field," Drying Technology, 19, 627-638 (2001).
128. Weng, C. H. and C. Yuan, "Enhancement of Sludge Dewatering: Application of Electrokinetic Technique," Journal of the Chinese Institute of Environmental Engineering, 12, 235-243 (2002).
129. Esmaeily, A., M. Elektorowicz, S. Habibi, and J. Oleszkiewicz, "Dewatering and Coliform Inactivation in Biosolis Using Electrokinetic Phenomena," Journal of Environmental Engineering and Science, 5, 197-202 (2006).
130. Aziz, A. A. A., D. R. Dixon, S. P. Usher, and P. J. Scales, "Electrically Enhanced Dewatering (EED) of Particulate Suspensions," Colloids and Surfaces A: Physicochemical and Engineering Aspects, 290, 194-205 (2006).
131. Hwang, S. and K. S. Min, "Improved Sludge Dewatering by Addition of Electro-Osmosis to Belt Filter Press," Journal of Environmental Engineering and Science, 2, 149-153 (2003).
132. Raats, M. H. M., A. J. G. van Diemen, J. Laven, and H. N. Stein, "Full Scale Electrokinetic Dewatering of Waste Sludge," Colloids and Surfaces A: Physicochemical and Engineering Aspects, 210, 231-241 (2002).
133. Saveyn, H., P. van der Meeren, G. Pauwels, and R. Timmerman, "Bench- and Pilot-Scale Sludge Electrodewatering in a Diaphragm Filter Press," Water Science and Technology, 54, 53-60 (2006).
134. Snyman, H. G., P. Forssman, A. Kafaar, and M. Smollen, "The Feasibility of Electro-Osmotic Belt Filter Dewatering Technology at Pilot Scale," Water Science and Technology, 41, 137-144 (2000).
135. Barton, W. A., S. A. Miller, and C. J. Veal, "The Electrodewatering of Sewage Sludges," Drying Technology, 17, 497-522 (1999).

136. Lee, J.-K., H.-S. Shin, C.-J. Park, C.-G. Lee, J.-E. Lee, and Y.-W. Kim, "Performance Evaluation of Electrodewatering System for Sewage Sludges," Korean Journal of Chemical Engineering, 19, 41-45 (2002).
137. Yoshida, H., K. Kitajyo, and M. Nakayama, "Electroosmotic Dewatering Under A. C. Electric Field with Periodic Reversals of Electrode Polarity," Drying Technology, 17, 539-554 (1999).
138. 陳修凡,“調理污泥的電滲透及機械作用下電場脫水之探討”,碩士學位論文,中原大學化學工程學系,臺北市 (1999)。
139. Gopalakrishnan, S., A. S. Mujumdar, and M. E. Weber, "Optimal Off-Time in Interrupted Electroosmotic Dewatering," Separations Technology, 6, 197-200 (1996).
140. 楊金鐘、陳旻聰、蔡佳伶,“電動力輔助板框式壓濾機提升都市下水生物污泥脫水之研究”,中華民國環境工程學會2011廢水處理技術研討會論文集光碟,臺南市 (2011)。
141. Miller, S. A., C. Sacchetta, and C. Veal,"Electrodewatering of Waste Activated Sewage Sludge," 17th AWWA Federal Convention, Melbourne (1997).
142. Yang, G. C. C., M.-C. Chen, and C.-F. Yeh, "Dewatering of an Industrial Sludge by Electrokinetically-Assisted Pilot-Scale Filter Press," Proceedings of the 9th Symposium on Electrokinetic Remediation, 51-52, Kaohsiung (2010).
143. Shin, H.-S. and J.-K. Lee, "Performance Evaluation of Electrocoagulation and Electrodewatering System for Reduction of Water Content In Sewage Sludge," Korean Journal of Chemical Engineering, 23, 188-193 (2006).


144. Yuan, C. and C.-H. Weng, "Sludge Dewatering by Electrokinetic Technique: Effect of Processing Time and Potential Gradient," Advances in Environmental Research, 7, 727-732 (2003).
145. Kondoh, S. and M. Hiraoka, "Commercialization of Pressurized Electroosmotic Dehydrator (PED)," Water Science and Technology, 22, 259-268 (1990).
146. Saveyn, H., G. Pauwel, R. Timmerman, and P. van der Meeren, "Effect of Polyelectrolyte Conditioning on the Enhanced Dewatering of Activated Sludge by Application of an Electric Field During the Expression Phase," Water Research, 39, 3012-3020 (2005).
147. Tuan, P. A., V. Jurate, and M. Sillanpaa, "Electro-Dewatering of Sludge Under Pressure and Non-Pressure Conditions," Environmental Technology, 29, 1075-1084 (2008).
148. Watanabe, S., Y. Yamada, Y. Hobo, N. Hayashi, T. Sumi, D. Dykes, and G. Touchard, "A New Method of Analysing Electro-Osmosis Using FET Models," Journal of Electrostatics, 51–52, 455-462 (2001).
149. Weber, K. and W. Stahl, "Influence of an Electric Field on Filtration in a Filter Press," Chemical Engineering and Technology, 26, 44-48 (2003).
150. Ho, M. Y. and G. Chen, "Enhanced Electro-Osmotic Dewatering of Fine Particle Suspension Using a Rotating Anode," Industrial and Engineering Chemistry Research, 40, 1859-1863 (2001).
151. Gingerich, I., R. D. Neufeld, and T. A. Thomas, "Electroosmotically Enhanced Sludge Pressure Filtration," Water Enviroment Research, 71, 262-276 (1999).

152. Yang, L., G. Nakhla, and A. Bassi, "Electro-Kinetic Dewatering of Oily Sludges," Journal of Hazardous Materials, 125, 130-140 (2005).
153. Li, Z., T. Katsumi, and T. Inui, "Modeling Cake Filtration Under Coupled Hydraulic, Electric and Osmotic Effects," Journal of Membrane Science, 378, 485-494 (2011).
154. Buijs, P. J., A. J. G. Van Diemen, and H. N. Stein, "Efficient Dewatering of Waterworks Sludge by Electroosmosis," Colloids and Surfaces, 85, 29 -36 (1994).
155. Citeau, M., O. Larue, and E. Vorobiev, "Influence of Salt, pH and Polyelectrolyte on the Pressure Electro-Dewatering of Sewage Sludge," Water Research, 45, 2167-2180 (2011).
156. Perry, R. H. and D. W. Green, "Perry’s Chemical Engineers’ Handbook," McGraw-Hill, New York (1997).
157. Laursen, S. and J. B. Jensen, "Electroosmosis in Filter Cakes of Activated Sludge," Water Research, 27, 777-783 (1993).
158. Miller, S., A. Murphy, C. Veal, and M. Young, "Improved Filtration of Sewage Sludges Using Electrodewatering," CSIRO Investigation Report No. ET/IR140 (1998).
159. Chang, I. L., C. P. Chu, D. J. Lee, and C. Huang, "Effects of Alum Dose on Filtration Followed by Expression Characteristics of Clay Slurries," Environmental Science and Technology, 31, 1313-1319 (1997).
160. Chen, G. W., W. W. Lin, and D. J. Lee, "Use of Capillary Suction Time as a Measure of Sludge Dewaterability," Water Science and Technology, 34, 443-448 (1996).
161. 吳復強,“產品穩健設計:田口方法之原理與應用”,全威圖書出版社,臺北縣 (2005)。
162. 白賜清,“工業實驗計劃法”,中華民國品質管制學會,臺北市 (1993)。
163. 湯燦泰,“熔融紡絲系統參數最佳化之研究”,碩士學位論文,臺灣科技大學纖維及高分子研究所,臺北市 (2001)。
164. 張崇豪,“應用田口方法於撲翼之設計”,碩士學位論文,國立成功大學航空太空工程研究所,臺南市 (2010)。
165. 李輝煌,“田口方法-品質設計的原理與實務”,高立圖書有限公司,臺北市 (2011)。
166. 陳信憲,“結合6σ手法與田口實驗設計對改善製程能力之研究”,碩士學位論文,國防大學管理學院資源管理研究所,桃園縣 (2002)。
167. 鐘清章,“田口式品質工程導論”,中華民國品質學會,臺北市 (1999)。
168. 鐘崑來,“應用田口式方法於鋼板彎曲成形最佳參數選擇之研究”,碩士學位論文,國立成功大學造船及船舶機械工程研究所,臺南市 (2002)。
169. 行政院環保署環境檢驗所,“一般廢棄物(垃圾)水分測定方法-間接測定法”,NIEA R213.21C,臺北市 (2009)。
170. 行政院環保署環境檢驗所,“水中濁度檢測方法-濁度計法”,NIEA W219.52C,臺北市 (2005)。
171. 行政院環保署環境檢驗所,“水中氫離子濃度指數(pH值)測定方法-電極法”,NIEA W424.52A,臺北市 (2008)。
172. 行政院環保署環境檢驗所,“水中導電度測定方法-導電度計法”,NIEA W203.51B,臺北市 (2000)。
173. 行政院環保署環境檢驗所,“污泥廢棄物中總固體、固定性及揮發性固體含量檢測方法”,NIEA R212.01C,臺北市 (2002)。
174. 行政院環保署環境檢驗所,“水中總溶解固體及懸浮固體檢測方法-103℃∼105℃乾燥”,NIEA W210.57A,臺北市 (2006)。
175. 行政院環保署環境檢驗所,“水中化學需氧量檢測方法-密閉式重鉻酸鉀迴流法”, NIEA W517.52B,臺北市 (2009)。
176. 行政院環保署環境檢驗所,“水中生化需氧量檢測方法”,NIEA W510.55B,臺北市 (2011)。
177. 行政院環保署環境檢驗所,“水中溶氧檢測方法-電極法”,NIEA W455.52C,臺北市 (2012)。
178. Shang, J. Q., "Zeta Potential and Electroosmotic Permeability of Clay Soils," Canadian Geotechnical Journal, 34, 627-631 (1997).
179. 陳彥旻,“半導體業化學機械研磨廢水回收處理再利用技術研究”,碩士學位論文,國立成功大學環境工程學系,臺南市 (2003)。
180. 葉瑞芳,“BOD檢驗分析技術”,經濟部工業局,臺北市 (2002)。
181. 陳逸凡,“下水污泥堆肥施用過程有機物對重金屬與營養鹽移動性影響之研究”,碩士學位論文,逢甲大學環境工程與科學學系,臺中市 (2007)。
182. Mujumdar, A. S. and H. Yoshida, "Electro-Osmotic Dewatering (EOD) of Bio-Materials Electrotechnologies for Extraction from Food Plants and Biomaterials," Springer, New York (2009).
183. Shang, J. Q. and K. Y. Lo, "Electrokinetic Dewatering of a Phosphate Clay," Journal of Hazardous Materials, 55, 117-133 (1997).
184. Glendinning, S., C. K. Mok, D. Kalumba, C. D. F. Rogers, and D. V. L. Hunt, "Design Framework for Electrokinetically Enhanced Dewatering of Sludge," Journal of Environmental Engineering, 136, 417-426 (2010).


185. 陳慶彬,“濾餅定壓壓榨操作變因之探討及兩成份粒子壓榨”,碩士學位論文,國立臺灣大學化學工程學研究所,臺北市 (1994)。
186. Churaev, N. V., V. D. Sobolev, and A. N. Zorin, "Measurement of Viscosity of Liquids in Quartz Capillaries, in Thin Liquid Films and Boundary Layers," Academic Press, New York (1970).
187. Tuan, P. A. and M. Sillanpaa, "Migration of Ions and Organic Matter During Electro-Dewatering of Anaerobic Sludge," Journal of Hazardous Materials, 173, 54-61 (2010).
188. Tuan, P. A. and M. Sillanpaa, "Fractionation of Macro and Trace Metals Due to Off-Time Interrupted Electrodewatering," Drying Technology, 28, 762-772 (2010).
189. 范姜仁茂,“預臭氧程序提升綜合性工業廢水生物可分解性之研究”,碩士學位論文,國立中央大學環境工程研究所,桃園縣 (2001)。
190. Yoshida, H., T. Shinkawa, and H. Yukawa, "Comparison Between Electroosmotic Dewatering Under Conditions of Constant Electric Current and Constant Voltage," Journal of Chemical Engineering of Japan, 13, 414-417 (1980).
191. Mok, C. K. "Design and Modelling of Electroosmtoic Dewatering," Ph.D. Thesis, Newcastle University, Newcastle upon Tyne (2006).
192. Kondo, S. and S. Sano, "Method of Electroosmotically Dehydrating Sludge," US Patent 5279718 (1994).
193. Tai, Y.-L., C. W. Yu, F.-C. Yen, and R.-Y. Horng, "A Study of Sludge Treatment, Disposal, and Reuse Strategies for Industrial Park WWTPs in Taiwan," The 11th International Symposium on East Asian Resources Recycling Technology, Kaohsiung (2011).

194. 行政院勞工委員會行業職業就業指南e網,“廢棄物清除、處理及資源回收業”,http://163.29.140.81/careerguide/ind/ind_detail.asp?section_id=1&id_no=D038,臺北市 (2011)。
195. 駱尚廉,“自來水廠備載應變技術可行性之評估”,行政院國家科學委員會,臺北市 (2006)。
196. 臺灣電力公司,“電價表(低壓供電)”,http://www.taipower.com.tw/TaipowerWeb/upload/files/11/main_3_6_3.pdf,臺北市 (2008)。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code