Responsive image
博碩士論文 etd-0305110-002040 詳細資訊
Title page for etd-0305110-002040
論文名稱
Title
導電透明氧化鋅與銦錫氧化物薄膜之低溫製備與光電性質研究
Low Temperature Preparation and Optoelectronic Properties of ZnO and ITO Transparent Conducting Thin Films
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
88
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-03-03
繳交日期
Date of Submission
2010-03-05
關鍵字
Keywords
薄膜、離子束濺鍍、銦錫氧化物、氧化鋅
Thin films, ZnO, Ion beam sputtering, ITO
統計
Statistics
本論文已被瀏覽 5697 次,被下載 0
The thesis/dissertation has been browsed 5697 times, has been downloaded 0 times.
中文摘要
本論文在研究導電透明銦錫氧化物(ITO)與氧化鋅(ZnO)薄膜之低溫製備,微結構,及其光電性質。首先,使用離子束濺鍍法於低溫製備高穿透率、低電阻之ZnO薄膜於玻璃基材上,藉由控制離子束電壓與電流,可於150 oC的基材溫度下製備出穿透率、電阻率、載子遷移率分別為85-90%、2.95 x 10-3 Ω-cm與21.41 cm2/Vs的氧化鋅薄膜,且厚度低於200 nm。對其微結構與光電性質之關係將進一步分析討論。
然後於200 oC以及400 oC下,於氯化鈉單晶(001)面,分別製備出表面為 與 的ZnO奈米薄膜。使用光致螢光光譜儀分析 面得知在其發光光譜上僅有一在能帶邊緣的發光峰;而在 面上則同時出現能帶邊緣的發光峰與一寬化的可見光峰,其可能機制將加以討論。ZnO與NaCl之間的晶向關係與其界面亦將加以分析討論。
其次使用離子束濺鍍法於室溫下製備高穿透率、低電阻率之ITO薄膜於玻璃基材上,探討在沉積過程中通氣方式、氧流量、離子束電壓、電流等對薄膜結晶性、穿透率與導電性之影響。製備出電阻率約10-4 Ω-cm、穿透率為85-90%之導電透明ITO層,並利用霍爾量測法量測其載子遷移率與載子濃度,並探討對電阻率之影響。
然後於200 oC下製備ITO薄膜於玻璃基材上,探討氧流量對微結構與光電性質之影響。發現於低氧流量的沉積條件下,薄膜表面有ITO鬚晶產生,其頂部為銦金屬,其晶向關係為(010)In//(110)ITO與(001)In// (001)ITO。該鬚晶乃以銦金屬做為晶種並藉由氣體-液體-固體成長機制而形成。隨著氧流量的增加,ITO薄膜結晶性隨之降低直至轉變為非晶相結構為止。高穿透率(~90%)與低電阻率(6 x 10-4 Ω-cm)之ITO薄膜可在中等程度的氧流量下製得。
Abstract
The purposes of this thesis are to prepare ZnO and tin-doped In2O3 (ITO) films at low temperature and study their microstructure and optoelectronic properties. Low-temperature growth of undoped ZnO films with high transparency and low electrical resistance was prepared by ion beam sputtering. After systematic testing, a sheet resistivity as low as 2.95 x 10-3 Ω-cm was obtained at a substrate temperature of 150 oC, ion source voltage of 850 V, and ion beam current of 30 mA. The transmittance of the ZnO films was in the range of 85-90%. Hall measurements showed that a high mobility of 21.41 cm2/Vs was obtained for films less than 200 nm thick. The related microstructures and physical properties were measured and discussed.
ZnO nanofilm of (2-1-10) and (01-11) surfaces were prepared on NaCl (001) surface at 200 oC and 400 oC to produce nearly pure (2-1-10) and (01-11) textures respectively and the orientation relationships were determined and the interface discussed. By dissolving the NaCl substrate, the ZnO (2-1-10) and (01-11) surfaces several cm2 in area, which may have some useful applications, can be easily prepared. The photoluminescence spectrum from the (2-1-10) surface showed only a near-band-edge UV emission peak while the (01-11) surface showed a near band-edge UV emission and a broad green emission.
Low-temperature preparation of transparent conducting electrode is essential for flexible optoelectronic devices. ITO films of high transparency and low electrical resistance were prepared at room temperature with a radio-frequency ion beam sputtering system. Specimens with a low sheet resistivity of 10-4 Ω-cm and a high visible-light transmittance of 85-90% were obtained. Hall measurement was used to measure the mobility and carrier concentrations and the effects on resistivity were discussed.
ITO films were deposited on glass substrates at 200 oC at various oxygen flow rates. At low oxygen flow rate the film surface has ITO whiskers with metallic In tips and a crystallographic relationship of (010)In//(110)ITO and (001)In//(001)ITO is present between them. The In tips act as the seeds for the growth of ITO whiskers by a vapor-liquid-solid growth mechanism.
As the oxygen flow rate increases, the crystallinity of the ITO film decreases till an amorphous phase is formed. The microstructure, resistivity and transmittance of the films were studied as a function of oxygen flow rate. Thin films of high transmittance (~90%) and low resistivity (6 x 10-4 Ω-cm) were prepared at an intermediate oxygen flow rates.
目次 Table of Contents
論文摘要內容(中).................................................................I
Abstract.................................................................................III
Contents................................................................................V
List of Figures.................................................................................VII
List of Tables....................................................................................X

Chapter 1...............................................................................1
Low-temperature preparation of undoped ZnO films with high transparency and conductivity by ion beam deposition
1.1Introduction......................................................................1
1.2Experimental procedure...............................................2
1.3Results and discussion............................................................................3
1.4Conclusion......................................................................8

Chapter2.............................................................................15
Oriented growth of ZnO nanofilms on NaCl (001) by ion beam sputtering
2.1Introduction...................................................................15
2.2Experimental procedure.............................................18
2.3Results and discussion.............................................18
2.3.1Low-temperature growth of the ZnO nanofilm...18
2.3.2Structure, interface, and luminescence of the ZnO nanofilm.....................................................................20
2.3.2.1SAED analysis.......................................................21
2.3.2.2Formation of the (01-11) surface.......................21
2.3.2.3The (01-11)ZnO /(001)NaCl interface...............24
2.3.2.4Luminescence.......................................................25
2.4Conclusion....................................................................26

Chapter3.............................................................................40
Room-temperature preparation of high transparency and low resistivity ITO films by ion beam sputtering
3.1Introduction...................................................................40
3.2Experimental procedure.............................................41
3.3Results and discussion.............................................42
3.3.1Oxygen flow into the chamber................................42
3.3.1.1Effect of oxygen flow rate......................................42
3.3.1.2Effect of ion beam voltage...................................42
3.3.2Oxygen flow into the ion beam...............................43
3.3.2.1Effect of oxygen flow..............................................43
3.3.2.2Effect of ion beam current....................................45
3.4Conclusion....................................................................47

Chapter4.............................................................................52
Microstructures and properties of ITO films prepared by ion beam sputtering at low temperature
4.1Introduction...................................................................52
4.2Experiment procedure............................................................................53
4.3Results and discussion.............................................54
4.3.1XRD analysis.............................................................54
4.3.2SEM analysis.............................................................55
4.3.3TEM analysis.............................................................56
4.3.4Optoelectronic properties.......................................57
4.4Conclusion....................................................................59

References.........................................................................67
參考文獻 References
[1]D.S. Gingley, C. Bright, MRS Bull. 25 (2000) 15.
[2]I. Hamberg, C.G. Granqvist, J. Appl. Phys. 60 (1986) R123.
[3]M. Yang, J. Feng, G. Li, and Q. Zhang, J. Cryst. Growth 310 (2008) 3474.
[4]T. Koida and M. Kondo, Appl. Phys. Lett. 89 (2006) 82104.
[5]M.A. Martínez, M.T. Gutiérrez, andC. Maffiotte, Surf. Coat. Technol. 110 (1998) 68.
[6]T. Minami, H. Sato, H. Nanto, and S. Takata, Thin Solid Films 176 (1989) 277.
[7]Y. Ma, G. T. Du, S. R. Yang, Z. T. Li, B. J. Zhao, X. T. Yang, T. P. Yang, Y. T. Zhang, and D. L. Liu, J. Appl. Phys. 95 (2004) 6268.
[8]S. Kishimoto, T. Yamamoto, Y. Nakagawa, K. Ikeda, H. Makino, and T. Yamada, Supperlattices and Microstructures 39 (2006) 306.
[9]E. L. Papadopoulou, M. Varda, K. Kouroupis-Agalou, M. Androulidaki, E. Chikoidze, P. Galtier, G. Huyberechts, and E. Aperathitis, Thin Solid Films 516 (2008) 8141.
[10]V. Bhosle, A. Tiwari, and J. Narayan, Appl. Phys. Lett. 88 (2006) 32106.
[11]S.B. Zhang, S.-H. Wei, and A. Zunger, Phys. Rev. B 63 (2001) 75205.
[12]T. G. Khulordava, J. Cryst. Growth 117 (1992) 366.
[13]G. Xiong, J. Wilkinson, B. Mischuck, S. Tüzemen, K. B. Ucer, and R. T. Williams, Appl. Phys. Lett. 80 (2002) 1195.
[14]V. Bhosle, A. Tiwari, and J. Narayan, Appl. Phys. Lett. 88 (2006) 32106.
[15]O. Bamiduro, H. Mustafa, R. Mundle, R. B. Konda, and A. K. Pradhan, Appl. Phys. Lett. 90 (2007) 252108.
[16]Y. Ma, G.T. Du, S.R. Yang, Z.T. Li, B.J. Zhao, X.T. Yang, T.P. Yang, and Y.T. Zhang, J. Appl. Phys. 95 (2004) 6268.
[17]T. Minami, K. Oohashi, S. Takata,, T. Mouri, N. Ogawa, Thin Solid Films 193/194 (1990) 721.
[18]J.F. Chang, W.C. Lin, and M.H. Hon, Appl. Surf. Sci. 183 (2001) 18.
[19]F. Quaranta, A. Valentini, F. R. Rizzi, and G. Casamassima, J. Appl. Phys. 74 (1993) 244.
[20]R.R. Reeber, J. Appl. Phys. 41 (1970) 5063.
[21]J.H. Edgar, C.A. Carosella, C.R. Eddy Jr, and D.T. Smith, J. Mater. Sci.: Maters. Electron. 7 (1996) 247.
[22]Y.N. Zhao, B. Wang, and Z. He, Vacuum 48 (1997) 427.
[23]C.-C. Lee, J.-C. Hsu, and D.-H. Wong, Appl. Surf. Sci. 171 (2001) 151.
[24]Y. Igasaki and H. Saito, J. Appl. Phys. 69 (1991) 2190.
[25]M. Hiramatsu, K. Imaeda, N. Horio, and M. Nawata, J. Vac. Sci. Technol. A 16 (1998) 669.
[26]Z.L. Pei, X.B. Zhang, G.P. Zhang, J. Gong, C. Sun, R.F. Huang, and L.S. Wen, Thin Solid Films 497 (2006) 20.
[27]J. Lee, D. Lee, D. Lim, and K. Yang, Thin Solid Films 515 (2007) 6094.
[28]M.S. Tokumoto, A. Smith, C.V. Santilli, S.H. Pulcinelli, A.F. Craievich, E. Elkaim, A. Traverse, and V. Briois, Thin Solid Films 416 (2002) 284.
[29]R. Ghosh, D. Basak, and S. Fujihara, J. Appl. Phys. 96 (2004) 2689.
[30]G. Vaschenko, D. Patel, C.S. Menoni, N.F. Gardner, J. Sun, W. Götz, C.N. Tomé, B. Clausen, Phys. Rev. B 64 (2001) 241308.
[31]H. Matsui, H. Tabata, J. Appl. Phys. 99 (2006) 124307.
[32]N. Fujimura, T. Nishihara, S. Goto, J. Xu and T. Ito, J. Cryst. Growth 130 (1993) 269.
[33]B. Meyer, D. Marx, Phys. Rev. B 67 (2003) 035403.
[34]J. Zúñiga-Pérez, V. Muñoz-Sanjosé, E. Palacios-Lidón, J. Colchero, Phys. Rev. Lett. 95 (2005) 226105.
[35]G.D. Yuan, W.J. Zhang, J.S. Jle, X. Fan, J.A. Zaplen, Y.H. Leung, L.B. Luo, P.F. Wang, C.S. Lee, S.T. Lee, Nano Lett. 8 (2008) 2591.
[36]J.Y. Lao, J.G. Wen, Z.F. Ren, Nano Lett. 2 (2002) 1287.
[37]G. Zhang, A. Nakamura, T. Aoki, J. Temmyo, Phys. Stat. Sol. C 3 (2006) 722.
[38]A. Kobayashi, S. Kawano, K. Ueno, J. Ohta, H. Fujioka, H. Amanai, S. Nagao, H. Horie, Appl. Phys. Lett. 91 (2007) 191905.
[39]P. Vennéguès, J.M. Chauveau, M. Korytov, C. Deparis, J. Zuniga-Perez, C. Morhain, J. Appl. Phys. 103 (2008) 083525.
[40]E. Bellingeri, D. Marré, I. Pallecchi, L. Pellegrino, G. Canu, A.S. Siri, Thin Solid Films 486 (2005) 186.
[41]Y.-T. Ho, W.-L. Wang, C.-Y. Peng, M.-H. Liang, J.-S. Tian, C.-W. Lin, L. Chang, Appl. Phys. Lett. 93 (2008) 121911.
[42]S.J. Henley, M.N.R. Ashfold, D. Cherns, Thin Solid Films 422 (2002) 69.
[43]T. Yanagitani, M. Matsukawa, Y. Watanabe, T. Otani, J. Cryst. Growth 276 (2005) 424.
[44]L.C. Nistor, C. Ghica, D. Matei, G. Dinescu, M. Dinescu, G. Van Tendeloo, J. Cryst. Growth 277 (2005) 26.
[45]I. Shalish, H. Temkin and V. Narayanamurti, Phys. Rev. B 69 (2004) 245401.
[46]L. Shi, Y. Xu, S. Hark, Y. Liu, S. Wang, L.-M. Peng, K. Wang and Q. Li, Nano Lett. 7 (2007) 3559.
[47]A.B. Djurišić, W.C.H. Choy, V.A.L. Roy, Y.H. Leung, C.Y. Kwong, K.W. Cheah, T.K.G. Rao, W.K. Chan, H.F. Lui and C. Surya, Adv. Funct. Mater. 14 (2004) 856.
[48]N.S. Norberg and D.R. Gamelin, J. Phys. Chem. B 109 (2005) 20810.
[49]T. Sekiguchi, S. Miyashita, K. Obara, T. Shishido and N. Sakagami, J. Cryst. Growth 214 (2000) 72.
[50]X. Zhou, Q. Kuang, Z.-Y. Jiang, Z.-X. Xie, T. Xu, R.-B. Huang and L.-S. Zheng, J. Phys. Chem. C 111 (2007) 12091.
[51]Y.R. Ryu, T. S. Lee, J. A. Lubguban, H. W. White, Y. S. Park, C. J. Youn, Appl. Phys. Lett. 87 (2005) 153504.
[52]A. Béré, A. Serra, Phys. Rev. B 68 (2003) 033305.
[53]B.-H. Huang, P. Shen, S.-Y. Chen, J. Europ. Ceram. Soc. 28 (2008) 2545.
[54]K. Shintani, Phys. Rev. B 47 (1993) 7032.
[55]R.L. Penn, J.F. Banfield, Science 281 (1998) 969.
[56]B. Cao, W. Cai, H. Zeng, G. Duan, J. Appl. Phys. 99 (2006) 73516.
[57]M.-S. Wu, A. Azuma, T. Shiosaki, A. Kawabata, J. Appl. Phys. 62 (1987) 2482.
[58]H. Ieki, H. Tanaka, J. Koike, T. Nishikawa, IEEE Microwave Theory and Techniques Society Digest 409 (1996).
[59]K. Zhang, F. Zhu, C.H.A. Huan, A.T.S. Wee, Thin Solid Films 376 (2000) 255.
[60]C.-H. Yang, S.-C. Lee, T.-C. Lin, S.-C. Chen, Thin Solid Films 516 (2008) 1984.
[61]M.G. Sandoval-Paz, R. Ramírez-Bon, Thin Solid Films 517 (2009) 2596.
[62]J. Ma, S.-Y. Li, J.-Q. Zhao, H.-L. Ma, Thin Solid Films 307 (1997) 200.
[63]G.S. Belo, B.J.P. da Silva, E.A. de Vasconcelos, W.M. de Azevedo, E.F. da Silva Jr., Appl. Surf. Sci. 255 (2008) 755.
[64]C.G. Granqvist, A. Hultåker, Thin Solid Films 411 (2002) 1.
[65]A. Kaijou, M. Ohyama, M. Shibata, K. Inoue, U.S. Patent No. 5972527, 26 Oct. 1999.
[66]Y. Han, D. Kim, J.-S. Cho, S.-K. Koh, Thin Solid Films 473 (2005) 218.
[67]A. Valentini, A. Convertino, M. Alvisi, R. Cingolani, T. Ligonzo, R. Lamendola, L. Tapfer, Thin Solid Films 335 (1998) 80.
[68]S.M. Kane, K.Y. Ahn, J. Vac. Sci. Technol. 16 (1979) 67.
[69]D. Kim, Y. Han, J.-S. Cho, S.-K. Koh, Thin Solid Films 377/378 (2000) 81.
[70]V. Teixeira, H.N. Cui, L.J. Meng, E. Fortunato, R. Matrins, Thin Solid Films 420/421 (2002) 70.
[71]S. Ohno, Y. Kawaguchi, A. Miyamura,Y. Sato, P.K. Song, M. Yoshikawa, P. Frach, Y. Shigesato, Sci. Technol. Adv. Mater. 7 (2006) 56.
[72]S.H. Shin, J.H. Shin, K.J. Park, T. Ishida, O. Tabata, H.H. Kim, Thin Solid Films 341 (1999) 225.
[73]H. Hoffmann, J. Pickl, M. Schmidt, D. Krause, Appl. Phys. Lett. 16 (1978) 239.
[74]C. Wild, P. Koidl, J. Appl. Phys. 69 (1991) 2909.
[75]A. Amassian, P. Desjardins, L. Martinu, J. Vac. Sci. Technol. A24 (2005) 45.
[76]A. Amassian, M. Dudek, O. Zabeida, J. E. Klemberg-Sapieha, L. Martinu, J. Vac. Sci. Technol. A 27 (2009) 362.
[77]J. Szczyrbowski, A. Dietrich, H. Hoffmann, Phys. Stat. Sol. A 78 (1983) 243.
[78]R.B.H. Tahar, T. Ban, Y. Ohya, Y. Takahashi, J. Appl. Phys. 83 (1998) 2631.
[79]A.R. Smith, H.A.H. Al-brithen, D.C. Ingram, D. Gall, J. Appl. Phys. 90 (2001) 1809.
[80]D. Gall, I. Petrov, L.D. Madsen, J.-E. Sundgren, J.E. Greene, J. Vac. Sci. Technol. A 14 (1998) 2411.
[81]Y. Cui, Q. Wei, H. Park, C.M. Lieber, Science 293 (2001) 1289.
[82]A. Bachtold, P. Hadley, T. Nakanishi, C. Dekker, Science 294 (2001) 1317.
[83]X. Duan, C.M. Lieber, Adv. Mater. 12 (2000) 298.
[84]Y. Wu, P. Yang, Chem. Mater. 12 (2000) 605.
[85]T.J. Trentlet, K.M. Hickmans, S.C. Goel, A.M. Viano, P.C. Gibbons, W.E. Buhro, Science 270 (1995) 1791.
[86]I. Hambergend, C.G. Granquist, J. Appl. Phys. 60 (1996) R123.
[87]J.R. Bellingham, A.P. Mackenize, W.A. Philips, Appl. Phys. Lett. 58 (1991) 2506.
[88]K. Osaza, T. Ye, Y. Aoyagi, Thin Solid Films 146 (1994) 58.
[89]R.S. Wagner, W.C. Ellis, Appl. Phys. Lett. 4 (1964) 89.
[90]Q. Wan, Z.T. Song, S.L. Feng, T.H. Wang, Appl. Phys. Lett. 85 (2004) 4759.
[91]P. Nguyen, H.T. Ng, J. Kong, A.M. Cassell, R. Quinn, J. Li, J. Han, M. McNeil, M. Meyyappan, Nano Lett. 3 (2003) 925.
[92]Y. Li, Y. Bando, D. Golberg, Adv. Mater. 15 (2003) 581.
[93]Q. Wang, M. Wei, D. Zhi, J.L. MacManus-Driscoll, M.G. Blamire, Adv. Mater. 18 (2006) 234.
[94]G. Frank, L. Brock, H.D. Bausen, J. Cryst. Growth 36 (1976) 179.
[95]R.P. Burns, J. Chem. Phys. 44 (1966) 3307.
[96]M. Ohring, The Materials Science of Thin Films, Academic Press, Boston, 1992, p.113.
[97]M. Marezio, Acta Crystallogr. 20 (1966) 273.
[98]D.-H. Kim, M.-R. Park, G.-H. Lee, Surf. Coat. Technol. 201 (2006) 927.
[99]T.C. Gorjanc, D. Leong, C. Py, D. Roth, Thin Solid Films 413 (2002) 181.
[100]L.-J. Meng, J. Gao, R.A. Silva, S. Song, Thin Solid Films 516 (2008) 5454.
[101]T.J. Vink, W. Walrave, J.F.C. Daams, P.C. Baarslag, J.E.A.M. Meerakker, Thin Solid Films 266 (1995) 145.
[102]I.A. Blech, P.M. Petroff, K.L. Tai, V. Kumar, J. Cryst. Growth 32 (1975) 161.
[103]R. Banerjee, S. Ray, N. Basu, A.K. Batabyal, A.K. Barua, J. Appl. Phys. 62 (1987) 912.
[104]W.G. Haines, R.H. Bube, J. Appl. Phys. 49 (1978) 304.
[105]A.J. Steckl, G. Mohammed, J. Appl. Phys. 51 (1980) 3890.
[106]K. Sreenivas, T.S. Rao, A. Mansingh, S. Chandra, J. Appl. Phys. 57 (1985) 384.
[107]C.W. Ow-Yang, D. Spinner, Y. Shigesato, D. C. Paine, J. Appl. Phys. 83 (1998) 145.
[108]T. Ishida, H. Kobayashi, Y. Nakato, J. Appl. Phys. 73 (1993) 4344.
[109]Q. Wan, E.N. Dattoli, W.Y. Fung, W. Guo, Y. Chen, X. Pan, W. Lu, Nano Lett. 6 (2006) 2909.
[110]D.-H. Kim, M.-R. Park, G.-H. Lee, Surf. Coat. Technol. 201 (2006) 927.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.217.194.39
論文開放下載的時間是 校外不公開

Your IP address is 18.217.194.39
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code